首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
RNA helicases participate in nearly all aspects of RNA metabolism by rearranging RNAs or RNA–protein complexes in an adenosine triphosphatedependent manner. Due to the large RNA helicase families in plants, the precise roles of many RNA helicases in plant physiology and development remain to be clarified. Here, we show that mutations in maize(Zea mays) DEAD-box RNA helicase48(Zm RH48) impair the splicing of mitochondrial introns, mitochondrial complex biosynthesis,and seed development. Loss of Z...  相似文献   

3.
4.
5.
In trypanosomatids, all mRNAs are processed via trans-splicing, although cis-splicing also occurs. In trans-splicing, a common small exon, the spliced leader (SL), which is derived from a small SL RNA species, is added to all mRNAs. Sm and Lsm proteins are core proteins that bind to U snRNAs and are essential for both these splicing processes. In this study, SmD3- and Lsm3-associated complexes were purified to homogeneity from Leishmania tarentolae. The purified complexes were analyzed by mass spectrometry, and 54 and 39 proteins were purified from SmD3 and Lsm complexes, respectively. Interestingly, among the proteins purified from Lsm3, no mRNA degradation factors were detected, as in Lsm complexes from other eukaryotes. The U1A complex was purified and mass spectrometry analysis identified, in addition to U1 small nuclear ribonucleoprotein (snRNP) proteins, additional co-purified proteins, including the polyadenylation factor CPSF73. Defects observed in cells silenced for U1 snRNP proteins suggest that the U1 snRNP functions exclusively in cis-splicing, although U1A also participates in polyadenylation and affects trans-splicing. The study characterized several trypanosome-specific nuclear factors involved in snRNP biogenesis, whose function was elucidated in Trypanosoma brucei. Conserved factors, such as PRP19, which functions at the heart of every cis-spliceosome, also affect SL RNA modification; GEMIN2, a protein associated with SMN (survival of motor neurons) and implicated in selective association of U snRNA with core Sm proteins in trypanosomes, is a master regulator of snRNP assembly. This study demonstrates the existence of trypanosomatid-specific splicing factors but also that conserved snRNP proteins possess trypanosome-specific functions.  相似文献   

6.
The mRNA maturation of the tripartite chloroplast psaA gene from the green alga Chlamydomonas reinhardtii depends on various nucleus-encoded factors that participate in trans splicing of two group II introns. Recently, a multiprotein complex was identified that is involved in processing the psaA precursor mRNA. Using coupled tandem affinity purification (TAP) and mass spectrometry analyses with the trans-splicing factor Raa4 as a bait protein, we recently identified a multisubunit ribonucleoprotein (RNP) complex comprising the previously characterized trans-splicing factors Raa1, Raa3, Raa4, and Rat2 plus novel components. Raa1 and Rat2 share a structural motif, an octatricopeptide repeat (OPR), that presumably functions as an RNA interaction module. Two of the novel RNP complex components also exhibit a predicted OPR motif and were therefore considered potential trans-splicing factors. In this study, we selected bacterial artificial chromosome (BAC) clones encoding these OPR proteins and conducted functional complementation assays using previously generated trans-splicing mutants. Our assay revealed that the trans-splicing defect of mutant F19 was restored by a new factor we named RAA8; molecular characterization of complemented strains verified that Raa8 participates in splicing of the first psaA group II intron. Three of six OPR motifs are located in the C-terminal end of Raa8, which was shown to be essential for restoring psaA mRNA trans splicing. Our results support the important role played by OPR proteins in chloroplast RNA metabolism and also demonstrate that combining TAP and mass spectrometry with functional complementation studies represents a vigorous tool for identifying trans-splicing factors.  相似文献   

7.
8.
9.
10.
11.
Besides linear RNAs, pre-mRNA splicing generates three forms of RNAs: lariat introns, Y-structure introns from trans-splicing, and circular exons through exon skipping. To study the persistence of excised introns in total cellular RNA, we used three Escherichia coli 3′ to 5′ exoribonucleases. Ribonuclease R (RNase R) thoroughly degrades the abundant linear RNAs and the Y-structure RNA, while preserving the loop portion of a lariat RNA. Ribonuclease II (RNase II) and polynucleotide phosphorylase (PNPase) also preserve the lariat loop, but are less efficient in degrading linear RNAs. RNase R digestion of the total RNA from human skeletal muscle generates an RNA pool consisting of lariat and circular RNAs. RT–PCR across the branch sites confirmed lariat RNAs and circular RNAs in the pool generated by constitutive and alternative splicing of the dystrophin pre-mRNA. Our results indicate that RNase R treatment can be used to construct an intronic cDNA library, in which majority of the intron lariats are represented. The highly specific activity of RNase R implies its ability to screen for rare intragenic trans-splicing in any target gene with a large background of cis-splicing. Further analysis of the intronic RNA pool from a specific tissue or cell will provide insights into the global profile of alternative splicing.  相似文献   

12.
13.
14.
15.
A forwards genetic screen of a chemically mutated plant population identified mitochondrial RNA editing factor 10 (MEF10) in Arabidopsis thaliana. MEF10 is a trans-factor required specifically for the C to U editing of site nad2-842. The MEF10 protein is characterized by a stretch of pentatricopeptide repeats (PPR) and a C-terminal extension domain ending with the amino acids DYW. Editing is lost in mutant plants but is recovered by transgenic introduction of an intact MEF10 gene. The MEF10 protein interacts with multiple organellar RNA editing factor 8 (MORF8) but not with other mitochondrial MORF proteins in yeast two hybrid assays. These results support the model that specific combinations of MORF and MEF proteins are involved in RNA editing in plant mitochondria.  相似文献   

16.
17.
Previous studies have identified a conserved AG dinucleotide at the 3′ splice site (3′SS) and a polypyrimidine (pPy) tract that are required for trans splicing of polycistronic pre-mRNAs in trypanosomatids. Furthermore, the pPy tract of the Trypanosoma brucei α-tubulin 3′SS region is required to specify accurate 3′-end formation of the upstream β-tubulin gene and trans splicing of the downstream α-tubulin gene. Here, we employed an in vivo cis competition assay to determine whether sequences other than those of the AG dinucleotide and the pPy tract were required for 3′SS identification. Our results indicate that a minimal α-tubulin 3′SS, from the putative branch site region to the AG dinucleotide, is not sufficient for recognition by the trans-splicing machinery and that polyadenylation is strictly dependent on downstream trans splicing. We show that efficient use of the α-tubulin 3′SS is dependent upon the presence of exon sequences. Furthermore, β-tubulin, but not actin exon sequences or unrelated plasmid sequences, can replace α-tubulin exon sequences for accurate trans-splice-site selection. Taken together, these results support a model in which the informational content required for efficient trans splicing of the α-tubulin pre-mRNA includes exon sequences which are involved in modulation of trans-splicing efficiency. Sequences that positively regulate trans splicing might be similar to cis-splicing enhancers described in other systems.  相似文献   

18.
19.
In mitochondria of flowering plants the nad5 open reading frame is assembled from five exons via two conventional cis-splicing and two trans-splicing events. Trans-splicing between exons c and d in wheat, petunia and Arabidopsis involves a bipartite group II intron structure, while in Oenothera a large portion of intron domains I–IV is missing from the major genomic locus. This intron region has been lost downstream of exon c and is now found in a distant genomic region. Intragenomic recombination across an 11 nucleotide sequence has separated these intron parts, which now have to be reassembled from three independent RNA precursors. This organisation coexists with highly substoichiometric copy numbers of the bipartite intron arrangement, consistent with an evolutionary origin of the tripartite intron by genomic disruption. Received: 28 August 1996 / Accepted: 11 December 1996  相似文献   

20.
Protein trans-splicing based dual-vector factor VIII(FVIII) gene delivery is adversely affected by less efficiency of protein splicing.We sought to increase the amount of spliced FVIII protein and plasma coagulation activity in dual-vector FVIII transgene in mice by means of strengthening the interaction of inteins,protein splicing elements,thereby facilitating protein trans-splicing.Dual-vector delivery of the FVIII gene in cultured cells showed that replacement of Met226 in the heavy chain and Asp1828 in the light chain with Cys residues could facilitate inter-chain disulfide linking and improve protein trans-splicing,increasing the levels of spliced FVIII protein.In this study,C57BL/6 mice were coadministered dual vectors of intein-fused human FVIII heavy chain and light chain with Cys mutations via portal vein injection into the liver.Forty-eight hours post-injection,plasma was collected and analyzed for FVIII antigen concentration and coagulation activity.These mice showed increased circulating FVIII heavy chain polypeptide(442±151 ng mL-1 vs.305±103 ng mL-1) and coagulation activity(1.46±0.37 IU mL-1 vs.0.85±0.23 IU mL-1) compared with control mice co-administered dual vectors expressing the heavy and light chains of wild-type FVIII.Moreover,coagulation activity was similar to that of mice receiving a single vector expressing FVIII(1.79±0.59 IU mL-1).These findings indicate that improving protein trans-splicing by inter-chain disulfide bonding is a promising approach for increasing the efficacy of dual-vector based FVIII gene transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号