首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Magnetic field (MF) can have different effects on plant metabolism depending on its application style, intensity, and environmental conditions. This study reports the effects of different intensities of static MF (4 or 7 mT) on seed germination and seedling growth of bean or wheat seeds in different media having 0, 2, 6, and 10 atmosphere (atm) osmotic pressure prepared with sucrose or salt. The germination percentages of the treated seeds were compared with untreated seeds germinated in different osmotic pressure during 7 days of incubation. The application of both MFs promoted the germination ratios of bean and wheat seeds, regardless of increasing osmotic pressure of sucrose or salt. Growth data measured on the 7th day showed that the treated plants grew faster than control. After 7 days of incubation, the mean length of treated seedlings was statistically higher than control plants in all the media. The greatest germination and growth rates in both plants were from the test groups exposed to 7 mT MF. Strikingly, effects of static MF on germination and growth increased positively with increasing osmotic pressure or salt stress compared to their respective controls. On the other hand, MF application caused an increase in dry biomass accumulation of root and shoots of both seedlings; however, this effect was found statistically important in all the conditions for wheat but not for bean, in general. Bioelectromagnetics 31:120–129, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
In this study we explored the regeneration niche of 18 alpine plant species by testing the germination responses and seedling growth to soil mixtures made with gypsum, ophiolite, and quartzite, and a control soil. We analyzed different phases of germination: time of radicle emergence, germination duration, and germination percentage, and thereafter seedling performance measured using seedling biomasses. Species were grouped as acidophilous, basophilous and neutrophilous according to their Ellenberg indicator values. Seeds were germinated on each soil mixture in a greenhouse, and then seedlings were selected and transplanted outdoors to grow for one season at 2,050 m a.s.l. The time of radicle emergence, length of germination, final germination percentage, seedling biomass and specific leaf area (SLA) varied according to the soil mixtures depending on the pH group. There were some consistencies between the Ellenberg groups, which were built for adult plant species, and the way these seedlings responded to a particular soil mixture. For instance, the group of species predominantly occurring in basic soils during their adult life (basophilous) had the highest germination percentage and the shortest emergence time on the soil mixture composed of gypsum, but a low germination percentage and the smallest seedling biomass on the other two soil mixtures. In addition, the decrease in SLA for seedlings of the basophilous group when they were cultivated on acidic soil (especially quartzite) seems to indicate a weaker functioning of the plants. Our results highlight, first, the significance of the regeneration niche in the establishment of plants in a given soil environment, especially by emphasizing the links between germination and soil chemistry, and secondly, the consideration that different germination phases add more information about the plant community assemblage with respect to the soil environment.  相似文献   

3.
Information about the effects of biological soil crusts (BSC) on germination, seedling survival and growth of vascular plants is controversial because they can have positive, neutral or negative effects. This controversy may be because most studies conducted until now have just analysed one or two recruitment stages independently. To understand the BSC effects on vascular plants, it is necessary to consider each stage of the recruitment process and synthesise all this information. The goal of this study was twofold. First, we analyse germination, seedling survival and growth of three vascular plants (Agave marmorata, Prosopis laevigata and Neobuxbaumia tetetzo) on BSC (cyanobacteria and mixed crust) from a tropical desert region of south-central México. Second, we synthesise the information to determine the total effect of BSC on plant species performance. We conducted experiments under controlled conditions to evaluate the proportion of germinated seeds, proportion of surviving seedlings and seedling dry weight in BSC and bare soil. Results showed that BSC have different effects on germination, seedling survival and growth of plant species. Plant species performance was qualitatively higher on BSC than bare soil. The highest performance of A. marmorata and P. laevigata was observed on cyanobacteria and mixed crusts, respectively. The highest performance of N. tetetzo was on both crust types.  相似文献   

4.
种子萌发和幼苗生长对沙丘环境的适应机制   总被引:11,自引:2,他引:11  
综述了植物沙生适应机制的研究及其进展.一些植物的种子在刚成熟时具有休眠特性.种子需要适度沙埋促进萌发并实现幼苗定居,但过度沙埋则会抑制种子萌发和出苗.在沙层深处,没有萌发的种子会进入休眠状态,形成土壤种子库.幼苗通过增加节数和延长节间来适应沙埋.沙埋深度超过植物的忍耐限度会抑制幼苗生长,甚至导致幼苗死亡.沙生植物必须适应其他环境因子,如盐风与土壤盐分、昆虫采食、土壤养分亏缺等,才能在沙丘上成功生长.沙蚀可导致幼苗根系暴露并干燥脱水.一些沙漠植物的幼苗在萌发后可忍耐一段时期的干燥,水分条件得到满足之后,幼苗能够恢复生长.  相似文献   

5.
Accumulation of cadmium (Cd) in crop plants is of great concern due to the potential for food chain contamination through the soil-root interface. Although Cd uptake varies considerably with plant species, the processes which determine the accumulation of Cd in plant tissues are affected by soil factors. The influence of soil type on Cd uptake by durum wheat (Triticum turgidum var. durum L.) and flax (Linum usitatissimum L.) was studied in a pot experiment under environmentally controlled growth chamber conditions. Four cultivars/lines of durum wheat (Kyle, Sceptre, DT 627, and DT 637) and three cultivars/lines of flax (Flanders, AC Emerson, and YSED 2) were grown in two Saskatchewan soils: an Orthic Gray Luvisol (low background Cd concentration; total/ABDTPA extractable Cd: 0.12/0.03 mg kg-1, respectively) and a Dark Brown Chernozem (relatively high background Cd concentration; total/ABDTPA Cd: 0.34/0.17 mg kg-1 respectively). Plant roots, stems, newly developed heads, and grain/seeds were analyzed for Cd concentration at three stages of plant growth: two and seven weeks after germination, and at plant maturity. The results showed that Cd bioaccumulation and distribution within the plants were strongly affected by both soil type and plant cultivar/line. The Cd concentration in roots leaves and stems varied at different stages of plant growth. However, all cultivars of both plant species grown in the Chernozemic soil accumulated more Cd in grain/seeds than plants grown in the Orthic Gray Luvisol soil. The different Cd accumulation pattern also corresponded to the levels of ABDTPA extractable and metal-organic complex bound soil Cd found in both soils. Large differences were found in grain Cd among the durum wheat cultivars grown in the same soil type, suggesting the importance of rhizosphere processes in Cd bioaccumulation and/or Cd transport processes within the plant. Distribution of Cd in parts of mature plants showed that durum grain contained up to 21 and 36% of the total amount of Cd taken up by the plants for the Orthic Gray Luvisol and Chernozemic soils, respectively. These results indicate the importance of studying Cd speciation, bioaccumulation and cycling in the environment for the management of agricultural soils and crops.  相似文献   

6.
利用滇重楼(Paris polyphylla Smith var.yunnanensis(Franch.)Hand.-Mazz.)种子外种皮和胚乳的水浸液对白菜(Brassica pekinensis(Lour.)Rupr.)、绿豆(Vigna radiata(Linn.)Wilczak)、小麦(Triticum aestivum L.)种子进行处理,研究滇重楼种子水浸液对3种植物种子萌发、幼苗生长和保护酶活性的影响,并利用GC-MS方法对滇重楼种子内源抑制物的成分进行分析。结果显示,不同浓度滇重楼外种皮、胚乳水浸液对上述3种受体植物的发芽率、苗高、根长及鲜重均产生影响,其作用强度和水浸液的浓度有关,总体上表现出低促高抑的双重浓度效应。滇重楼种子水浸液对白菜的影响作用最强,对绿豆的影响作用最弱,且胚乳水浸液的影响较外种皮强。不同浓度滇重楼种子外种皮和胚乳水浸液均能影响3种植物幼苗体内保护酶的活性,随着水浸液浓度的升高,叶片中超氧化物歧化酶(SOD)、过氧化物酶(POD)活性总体增加,与对照相比差异显著。白菜、小麦过氧化氢酶(CAT)活性减少,与对照相比差异显著;绿豆过氧化氢酶(CAT)活性增加,但与对照相比无显著差异。利用GC-MS方法从胚乳和外种皮水浸液中分别检出8种和2种物质。研究结果表明滇重楼种子中存在内源抑制物质,可能是导致种子休眠的原因;种子水浸液可能通过影响植物幼苗保护酶的活性进而影响其正常生长;有机酸类物质可能是滇重楼种子内源抑制物之一。  相似文献   

7.
四种植物种子萌发及苗期抗旱性差异的研究   总被引:9,自引:2,他引:7  
对四种豆科植物种子萌发及苗期抗旱性作了比较研究,结果表示:种子萌发期抗旱笥强的植物其苗期抗旱性亦强。干旱引起组织脱水,植株生长受到抑制,幼苗出现衩始萎蔫时间与细胞膜受害时间一致。四种植物显示萎蔫时土壤含水量明显不同,红豆草为4.80%、羊柴2.2%、花棒1.74%、柠条1.51%.据种子相对发芽率、膜透性变化等生理指标综合评定四种植物种子萌发及苗期抗旱能力次序为:柠条>花棒>羊柴>红豆草。  相似文献   

8.
BackgroundThe rare earth elements (REE) are non-essential elements for plants. They stimulate plant growth at low doses, but at high levels are phytotoxic. There are differences in concentrations of REE in various organs of the same plant species, but the normalized REE patterns can be very similar in samples of the same species collected in different locations. Here we compare normalized REE curves in above-ground samples of Juncus effusus L. (common rush, soft rush) collected from sites with different land-use types.MethodsThe concentrations of rare earth elements were measured in 55 shoot samples of J. effusus L. The samples were collected from 15 sampling sites located in the Holy Cross Mts., south-central Poland and analyzed with the use of inductively coupled plasma mass spectrometry (ICP-MS). The results were normalized to the North American Shale Composite and anomalies of different elements were calculated.ResultsTotal REE concentrations varied from 0.028 mg/kg to 2.7 mg/kg. The samples were enriched in the light REE (from La to Eu) with the highest concentrations of La and Ce. The North American Shale Composite (NASC)-normalized REE curves were roughly similar in all samples except for two samples collected in the acid mine drainageaffected areas.ConclusionAll samples showed positive europium anomalies in NASC-normalized REE concentration patterns. The most probable explanation of this is that the uptake and translocation of Eu in J. effusus (and possibly in other wetland plants) is caused by a short-term decrease of the redox potential in a rhizosphere favoring reduction of Eu3+ to Eu2+ and thus enhancing Eu mobility in the soil-plant environment.  相似文献   

9.
燃烧植物产生的烟与热对植物的生理生态功能有重要的影响,相关研究已成为生态学研究的热点之一。植物源烟对一些植物种子的萌发和幼苗生长有促进作用,这种促进作用与GA和细胞分裂素的作用相似。在植物烟水溶液中分离得到了具有促进植物种子萌发作用的化合物丁烯羟酸内酯,该物质具有热稳定性、挥发性和有效浓度范围广等特点。丁烯羟酸内酯可以通过纤维素加热产生,因而几乎所有的植物燃烧产生的烟中都可以产生丁烯羟酸内酯。热因子对植物种子萌发有利作用表现为打破种子休眠、清除限制种子萌发的物理、化学因素和减轻种子病原体等方面。大量研究显示,不同植物对烟与热的响应机理存在显著的差异,这是植物群落过火后物种组成改变的重要原因之一。烟与热因子对植物生理生态作用的研究我国开展较少.这与我国是一个森林、草原火灾频繁的国家是不相称的,加强这方面的研究很有必要。另外,今后我国可以在烟与热因子对植物作用的机理,揭示传统用烟火处理土壤促进农林业植物生长的物理和化学本质,以及这些机理在发展有机农业中运用等方面开展深入的研究。  相似文献   

10.
以烟农19号小麦种子为实验材料,采用园土为基本培养材料,用0.0(CK)、0.5、1.0、1.5、2.0 g活性炭与150 g园土混合均匀后装入培养容器中培养。发芽后测定小麦发芽率、株高、根长、鲜重等性状指标及还原性糖和叶绿素含量。结果表明:在实验范围内,随着活性炭施用比例的增加,小麦根长、还原性糖含量以及叶绿素含量呈先增后降的趋势,株高和发芽率持续增加。因此认为,适量施用活性炭能有效促进小麦的生长发育。  相似文献   

11.
钙离子对盐胁迫小麦幼苗氮代谢的影响   总被引:3,自引:0,他引:3  
为探讨增强小麦抗盐能力的调控途径,以普通小麦豫麦34为材料,研究了Ca2+对盐胁迫下小麦幼苗氮代谢及生长的影响.采用全营养液培养小麦幼苗至第一片叶完全展开,更换无钙营养液,并开始不同处理.处理分别为低盐胁迫(150 mmol · L-1 NaCl)、低盐胁迫+4 mmol · L-1 Ca2+、高盐胁迫(300 mmol · L-1 NaCl)、高盐胁迫+4mmol · L-1 Ca2+,以无NaCl胁迫的小麦为对照.5 d后取样,测定了氮同化酶活性、代谢物含量、积累量及幼苗生长状况.结果表明,Ca2+明显缓解了低盐胁迫对小麦幼苗的生长抑制,表现在鲜重、叶绿素及可溶性蛋白含量的增加,而对高盐胁迫下小麦幼苗的生长无明显改善效果;Ca2+改善了低盐胁迫下小麦幼苗的氮营养状况,表现在氮积累量的增加,这一效应主要是通过硝酸还原酶(NR)、谷氨酰胺合成酶(GS)以及异柠檬酸脱氢酶(NADP-ICDH)活性的增强而实现的.Ca2+未能改善高盐胁迫下小麦幼苗氮营养状况的主要限制因子在于NADP-ICDH活性未明显增加.  相似文献   

12.
刘兴坦 《生物技术》2002,12(2):25-26
初步探讨了磺胺对小麦种子萌发与幼苗生长的影响。研究表明,用低浓度(<6.0mg/L)的磺胺溶液浸泡小麦种子,能显著增加幼苗的根重,根长和根冠比,提高根系活力和叶片叶绿素的含量,降低幼苗的苗高,苗重,但对发芽率影响不大。高浓度(>10.0mg/L)和安则强烈抑制小麦幼苗根,芽的生长,并导致幼苗形态的不良变化。  相似文献   

13.
Rare earth elements (REEs) have become increasingly important metals used in modern technology. Processes including mining, oil refining, discarding of obsolete equipment containing REEs, and the use of REE-containing phosphate fertilizers may increase the likelihood of environmental contamination. However, there is a scarcity of information on the toxicity and accumulation of these metals to terrestrial primary producers in contaminated soils. The objective of this work was to assess the phytotoxicity and uptake from contaminated soil of six REEs (chloride forms of praseodymium, neodymium, samarium, terbium, dysprosium, and erbium) on three native plants (Asclepias syriaca L., Desmodium canadense (L.) DC., Panicum virgatum L.) and two crop species (Raphanus sativus L., Solanum lycopersicum L.) in separate dose-response experiments under growth chamber conditions. Limited effects of REEs were found on seed germination and speed of germination. Effects on aboveground and belowground biomass were more pronounced, especially for the three native species, which were always more sensitive than the crop species tested. Inhibition concentrations (IC25 and IC50) causing 25 or 50% reductions in plant biomass respectively, were measured. For the native species, the majority of aboveground biomass IC25s (11 out of 18) fell within 100 to 300 mg REE/kg dry soil. In comparison to the native species, IC25s for the crops were always greater than 400 mg REE/kg, with the majority of results (seven out of 12) falling above 700 mg REE/kg. IC50s were often not detected for the crops. Root biomass of native species was also affected at lower doses than in crops. REE uptake by plants was higher in the belowground parts than in the above-ground plant tissues. Results also revealed that chloride may have contributed to the sensitivity of the native species, Desmodium canadense, one of the most sensitive species studied. Nevertheless, these results demonstrated that phytotoxicity may be a concern in contaminated areas.  相似文献   

14.
Polycyclic aromatic hydrocarbons (PAHs) are one of the highly persistent organic pollutants, and they are toxic to plants and other living organisms, including human beings. To analyze the response of higher plant to PAHs, we investigated the effects of phenanthrene (PHE) on seed germination and various physiological changes of wheat seedlings. Specifically, we investigated growth, chlorophyll content, lipid peroxidation (LPO), activities of antioxidant enzymes and H2O2 accumulation. The results showed that PHE inhibited seed germination, affected the growth and chlorophyll level of wheat seedlings. Furthermore, PHE elevated the levels of LPO and induced H2O2 accumulation in leaf tissues in a dose-dependent manner, accompanied by the changes in the antioxidant status. The activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX), displayed a decreasing trend with the increasing of PHE concentration. The results indicated that PHE could exert oxidative damages in the early development stage of wheat and the harmfulness occurred mainly in samples with higher concentrations of PHE.  相似文献   

15.
Jatropha curcas shows invasive characters and is a significant source of many phytochemicals with varying biological activities. Different plant parts of Jatropha curcas L exhibited variation in their phytochemical constituents. Leaves and ovary walls were found to contain higher contents of total phenols, tannins and phytic acid whereas free amino acids were greater in leaves. Young leaves of Jatropha show greater contents of all these metabolites. Further, plants exhibit seasonal differences as leaves collected during summer (May-June) have greater accumulation of total phenols, tannins and free amino acids however, phytic acid was more during rainy season. Leachates and extracts in their higher concentrations adversely affected the germination and growth of wheat seedlings however, lower concentrations were more or less stimulatory. These treatments not only decreased the length, fresh and dry weight of seedlings but also affected the chlorophyll contents and activity of enzymes such as nitrate reductase, aminotransferases in wheat seedlings however, the activity of superoxide dismutase and ascorbate peroxidases increased. Experiments indicate harmful allelopathic effects of Jatropha leachates /extracts on wheat seedlings, hence further experimentation and analysis is recommended before continued plantation of Jatropha particularly on fertile soils. However. Growth of Jatropha plants on saline soils and their potential for accumulating sodium, potassium and chloride are the attributes suggesting the possibility of use of Jatropha plants in improving saline soils.  相似文献   

16.
小麦根系分泌物对黄瓜生长及土壤真菌群落结构的影响   总被引:1,自引:1,他引:0  
以黄瓜为受体,以不同化感效应(促进/抑制)小麦品种为供体,采用PCR-DGGE技术,研究了小麦根系分泌物及伴生小麦对黄瓜生长及土壤真菌群落结构的影响.结果表明: 在处理第6天和第12天,化感促进效应小麦根系分泌物分别显著提高了黄瓜幼苗株高和茎粗;在处理第18天,化感促进和抑制效应小麦根系分泌物均显著提高了黄瓜幼苗株高;在处理第6天,不同化感效应小麦根系分泌物均显著降低了黄瓜幼苗根际土壤真菌群落条带数、Shannon指数及均匀度指数,有苗对照(W)显著高于无苗对照(Wn);在处理第18天,各处理的真菌群落结构条带数、Shannon指数及均匀度指数均显著高于无苗对照(Wn).伴生化感抑制效应小麦显著降低了黄瓜根际土壤真菌群落Shannon指数和均匀度指数,说明小麦根系分泌物及伴生小麦改变了土壤真菌群落结构.DGGE图谱及其主成分分析结果表明,伴生不同化感效应小麦对土壤真菌群落结构影响较大.  相似文献   

17.
盐生植物种子萌发对环境的适应对策   总被引:45,自引:0,他引:45  
渠晓霞  黄振英 《生态学报》2005,25(9):2389-2398
盐生环境是一种严峻的胁迫环境,对植物的生长、发育、繁殖等生活史的各阶段都产生着重要的影响。盐生植物是生长在盐渍土壤上的一类天然植物区系,它们在长期的进化过程中形成了一系列适应盐生生境的特殊生存策略。一般情况下,盐生植物种子对环境的适应能力,是植物对盐生环境适应性的重要体现;而植物发育早期对盐度的适应能力又是决定物种分布和群落组成的关键因素。在对国内外相关文献进行分析归纳的基础上,从盐分对种子萌发的影响机理及植物种子萌发对盐生环境的适应对策两个方面综述了植物种子休眠萌发与盐生环境的关系。  相似文献   

18.
Summary Treatment of wheat (Triticum aestivum L.) seedlings with elicitors originating from either plant or fungal cell walls induces about a 2-fold increase of wheat germ agglutinin (WGA) in the roots. While the WGA content in roots of healthy plants normally decreases as a function of germination time, a transient accumulation of WGA could be observed in plants challenged with different fungi, including Rhizoctonia solani, Fusarium culmorum, Pythium ultimum and Neurospora crassa. Peak levels in challenged roots were 2 to 5 times as high as in control plants. Most of this induced WGA could be released from the roots by soaking them in a solution of the hapten N-acetylglucosamine. On the basis of the results obtained it is postulated that WGA may be involved in the defence of wheat against fungal attack.  相似文献   

19.
We investigated effects of sodium nitroprusside (SNP), the donor of nitric oxide (NO), on the growth and hormonal system of wheat plants (Triticum aestivum L.) in normal conditions and after salt stress (2% NaCl). During germination of seeds treated with SNP (50–500 μM), we obtained the SNP concentration (200 μM) optimal for stimulation of seedling growth estimated by increase in seed germination capacity and seedlings' linear sizes and their fresh and dry biomass. A comparative analysis of SNP (200 μM) effects, after seed germination in the medium with SNP or pretreatment of 3-day-old seedlings, showed SNP ability to increase the wheat plant resistance to subsequent effects of sodium chloride salinity at both treatment methods. Protective SNP effects appeared in the reduction of stress inhibitory action on seedling growth rates and significant reduction in the level of lipid peroxidation and exosmosis of electrolytes. An important contribution to realization of the growth-stimulating and protective effects of NO is associated with its ability to influence the state of the hormonal system of wheat plants due to an increase in the concentration of hormones of a cytokinin nature under normal conditions and the prevention of a decrease in their level under stress.  相似文献   

20.
In arid and semiarid ecosystems, the potential threats of exotic invasive species are enhanced due to increasing human activities. Biological soil crusts (BSCs), acting as arid ecosystem engineers, may play an important role in preventing the establishment of exotic invasive plants. Our goal was to examine whether BSCs could inhibit the establishment of probable exotic plant species originating from adjacent grasslands located along the southeast edge of the Tengger Desert. In our study, we investigated the effects of three BSC types (cyanobacteria, lichen, and moss crusts) under two disturbance conditions (intact and disturbed) on the establishment of two exotic plant species (Ceratoides latens and Setaria viridis) using indoor experiments. We found both negative and positive effects of BSCs on the establishment of the two exotic plant species. Compared with the disturbed BSCs, the germination percentages of C. latens and S. viridis were reduced by 54% to 87% and 89% to 93%, respectively, in intact BSCs. In contrast, BSCs significantly promoted the height growth and aboveground biomass of the two exotic plant species (< .05) by enhancing the soil water and nutrient availability for the exotic plants. Our results confirm that BSCs strongly suppress the rapid expansion of exotic plant populations by inhibiting germination of seed with big size or appendages and have a weak inhibitory effect on exotic plant with small and smooth seeds. This may decrease the threat of propagation of exotic species. In the meantime, BSCs promote the growth of a few successful engraftment seedlings, which increased the beta diversity. Our work suggests that better understanding the two opposing effects of BSCs on the establishment of exotic plant species in different growth stages (germination and growth) is important for maintaining the health and stability of revegetated regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号