首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Gérard C  Gonze D  Goldbeter A 《The FEBS journal》2012,279(18):3411-3431
The transitions between the G(1) , S, G(2) and M phases of the mammalian cell cycle are driven by a network of cyclin-dependent kinases (Cdks), whose sequential activation is regulated by intertwined negative and positive feedback loops. We previously proposed a detailed computational model for the Cdk network, and showed that this network is capable of temporal self-organization in the form of sustained oscillations, which govern ordered progression through the successive phases of the cell cycle [Gérard and Goldbeter (2009) Proc Natl Acad Sci USA106, 21643-21648]. We subsequently proposed a skeleton model for the cell cycle that retains the core regulatory mechanisms of the detailed model [Gérard and Goldbeter (2011) Interface Focus1, 24-35]. Here we extend this skeleton model by incorporating Cdk regulation through phosphorylation/dephosphorylation and by including the positive feedback loops that underlie the dynamics of the G(1) /S and G(2) /M transitions via phosphatase Cdc25 and via phosphatase Cdc25 and kinase Wee1, respectively. We determine the effects of these positive feedback loops and ultrasensitivity in phosphorylation/dephosphorylation on the dynamics of the Cdk network. The multiplicity of positive feedback loops as well as the existence of ultrasensitivity promote the occurrence of bistability and increase the amplitude of the oscillations in the various cyclin/Cdk complexes. By resorting to stochastic simulations, we further show that the presence of multiple, redundant positive feedback loops in the G(2) /M transition of the cell cycle markedly enhances the robustness of the Cdk oscillations with respect to molecular noise.  相似文献   

4.
The regulation of transporters by nutrient-responsive signaling pathways allows cells to tailor nutrient uptake to environmental conditions. We investigated the role of feedback generated by transporter regulation in the budding yeast phosphate-responsive signal transduction (PHO) pathway. Cells starved for phosphate activate feedback loops that regulate high- and low-affinity phosphate transport. We determined that positive feedback is generated by PHO pathway-dependent upregulation of Spl2, a negative regulator of low-affinity phosphate uptake. The interplay of positive and negative feedback loops leads to bistability in phosphate transporter usage--individual cells express predominantly either low- or high-affinity transporters, both of which can yield similar phosphate uptake capacity. Cells lacking the high-affinity transporter, and associated negative feedback, exhibit phenotypes that arise from hysteresis due to unopposed positive feedback. In wild-type cells, population heterogeneity generated by feedback loops may provide a strategy for anticipating changes in environmental phosphate levels.  相似文献   

5.
Feedback modules, which appear ubiquitously in biological regulations, are often subject to disturbances from the input, leading to fluctuations in the output. Thus, the question becomes how a feedback system can produce a faithful response with a noisy input. We employed multiple time scale analysis, Fluctuation Dissipation Theorem, linear stability, and numerical simulations to investigate a module with one positive feedback loop driven by an external stimulus, and we obtained a critical quantity in noise attenuation, termed as “signed activation time”. We then studied the signed activation time for a system of two positive feedback loops, a system of one positive feedback loop and one negative feedback loop, and six other existing biological models consisting of multiple components along with positive and negative feedback loops. An inverse relationship is found between the noise amplification rate and the signed activation time, defined as the difference between the deactivation and activation time scales of the noise-free system, normalized by the frequency of noises presented in the input. Thus, the combination of fast activation and slow deactivation provides the best noise attenuation, and it can be attained in a single positive feedback loop system. An additional positive feedback loop often leads to a marked decrease in activation time, decrease or slight increase of deactivation time and allows larger kinetic rate variations for slow deactivation and fast activation. On the other hand, a negative feedback loop may increase the activation and deactivation times. The negative relationship between the noise amplification rate and the signed activation time also holds for the six other biological models with multiple components and feedback loops. This principle may be applicable to other feedback systems.  相似文献   

6.
MOTIVATION: Mathematical models of the cell cycle can contribute to an understanding of its basic mechanisms. Modern simulation tools make the analysis of key components and their interactions very effective. This paper focuses on the role of small modules and feedbacks in the gene-protein network governing the G1/S transition in mammalian cells. Mutations in this network may lead to uncontrolled cell proliferation. Bifurcation analysis helps to identify the key components of this extremely complex interaction network. RESULTS: We identify various positive and negative feedback loops in the network controlling the G1/S transition. It is shown that the positive feedback regulation of E2F1 and a double activator-inhibitor module can lead to bistability. Extensions of the core module preserve the essential features such as bistability. The complete model exhibits a transcritical bifurcation in addition to bistability. We relate these bifurcations to the cell cycle checkpoint and the G1/S phase transition point. Thus, core modules can explain major features of the complex G1/S network and have a robust decision taking function.  相似文献   

7.
8.
BCR signaling regulates the activities and fates of B cells. BCR signaling encompasses two feedback loops emanating from Lyn and Fyn, which are Src family protein tyrosine kinases (SFKs). Positive feedback arises from SFK-mediated trans phosphorylation of BCR and receptor-bound Lyn and Fyn, which increases the kinase activities of Lyn and Fyn. Negative feedback arises from SFK-mediated cis phosphorylation of the transmembrane adapter protein PAG1, which recruits the cytosolic protein tyrosine kinase Csk to the plasma membrane, where it acts to decrease the kinase activities of Lyn and Fyn. To study the effects of the positive and negative feedback loops on the dynamical stability of BCR signaling and the relative contributions of Lyn and Fyn to BCR signaling, we consider in this study a rule-based model for early events in BCR signaling that encompasses membrane-proximal interactions of six proteins, as follows: BCR, Lyn, Fyn, Csk, PAG1, and Syk, a cytosolic protein tyrosine kinase that is activated as a result of SFK-mediated phosphorylation of BCR. The model is consistent with known effects of Lyn and Fyn deletions. We find that BCR signaling can generate a single pulse or oscillations of Syk activation depending on the strength of Ag signal and the relative levels of Lyn and Fyn. We also show that bistability can arise in Lyn- or Csk-deficient cells.  相似文献   

9.
Previous studies have suggested that positive feedback loops and ultrasensitivity are prerequisites for bistability in covalent modification cascades. However, it was recently shown that bistability and hysteresis can also arise solely from multisite phosphorylation. Here we analytically demonstrate that double phosphorylation of a protein (or other covalent modification) generates bistability only if: (a) the two phosphorylation (or the two dephosphorylation) reactions are catalyzed by the same enzyme; (b) the kinetics operate at least partly in the zero-order region; and (c) the ratio of the catalytic constants of the phosphorylation and dephosphorylation steps in the first modification cycle is less than this ratio in the second cycle. We also show that multisite phosphorylation enlarges the region of kinetic parameter values in which bistability appears, but does not generate multistability. In addition, we conclude that a cascade of phosphorylation/dephosphorylation cycles generates multiple steady states in the absence of feedback or feedforward loops. Our results show that bistable behavior in covalent modification cascades relies not only on the structure and regulatory pattern of feedback/feedforward loops, but also on the kinetic characteristics of their component proteins.  相似文献   

10.

Background

Bistable behaviors are prevalent in cell signaling and can be modeled by ordinary differential equations (ODEs) with kinetic parameters. A bistable switch has recently been found to regulate the activation of transforming growth factor-β1 (TGF-β1) in the context of liver fibrosis, and an ordinary differential equation (ODE) model was published showing that the net activation of TGF-β1 depends on the balance between two antagonistic sub-pathways.

Results

Through modeling the effects of perturbations that affect both sub-pathways, we revealed that bistability is coupled with the signs of feedback loops in the model. We extended the model to include calcium and Krüppel-like factor 2 (KLF2), both regulators of Thrombospondin-1 (TSP1) and Plasmin (PLS). Increased levels of extracellular calcium, which alters the TSP1-PLS balance, would cause high levels of TGF-β1, resembling a fibrotic state. KLF2, which suppresses production of TSP1 and plasminogen activator inhibitor-1 (PAI1), would eradicate bistability and preclude the fibrotic steady-state. Finally, the loop PLS???TGF-β1???PAI1 had previously been reported as negative feedback, but the model suggested a stronger indirect effect of PLS down-regulating PAI1 to produce positive (double-negative) feedback in a fibrotic state. Further simulations showed that activation of KLF2 was able to restore negative feedback in the PLS???TGF-β1???PAI1 loop.

Conclusions

Using the TGF-β1 activation model as a case study, we showed that external factors such as calcium or KLF2 can induce or eradicate bistability, accompanied by a switch in the sign of a feedback loop (PLS???TGF-β1???PAI1) in the model. The coupling between bistability and positive/negative feedback suggests an alternative way of characterizing a dynamical system and its biological implications.
  相似文献   

11.
12.
13.
Fluctuations in the copy number of key regulatory macromolecules (“noise”) may cause physiological heterogeneity in populations of (isogenic) cells. The kinetics of processes and their wiring in molecular networks can modulate this molecular noise. Here we present a theoretical framework to study the principles of noise management by the molecular networks in living cells. The theory makes use of the natural, hierarchical organization of those networks and makes their noise management more understandable in terms of network structure. Principles governing noise management by ultrasensitive systems, signaling cascades, gene networks and feedback circuitry are discovered using this approach. For a few frequently occurring network motifs we show how they manage noise. We derive simple and intuitive equations for noise in molecule copy numbers as a determinant of physiological heterogeneity. We show how noise levels and signal sensitivity can be set independently in molecular networks, but often changes in signal sensitivity affect noise propagation. Using theory and simulations, we show that negative feedback can both enhance and reduce noise. We identify a trade-off; noise reduction in one molecular intermediate by negative feedback is at the expense of increased noise in the levels of other molecules along the feedback loop. The reactants of the processes that are strongly (cooperatively) regulated, so as to allow for negative feedback with a high strength, will display enhanced noise.  相似文献   

14.
15.
Cell-to-cell differences in bacterial gene expression can merely reflect the occurrence of noise. In certain cases, however, heterogeneous gene expression is a programmed event that results in bistable expression. If bistability is heritable, bacterial lineages are formed. When programmed bistability is reversible, the phenomenon is known as phase variation. In certain cases, bistability is controlled by genetic mechanisms (e. g., DNA rearrangement). In other cases, bistability has epigenetic origin. A robust epigenetic mechanism for the formation of bacterial lineages is the formation of heritable DNA methylation patterns. However, bistability can also arise upon propagation of gene expression patterns by feedback loops that are stable upon cell division. This review describes examples of bistability and phase variation in Salmonella enterica and discusses their adaptive value, sometimes in a speculative manner.  相似文献   

16.
Positive feedback loops are common regulatory elements in metabolic and protein signalling pathways. The length of such feedback loops determines stability and sensitivity to network perturbations. Here we provide a mathematical analysis of arbitrary length positive feedback loops with protein production and degradation. These loops serve as an abstraction of typical regulation patterns in protein signalling pathways. We first perform a steady state analysis and, independently of the chain length, identify exactly two steady states that represent either biological activity or inactivity. We thereby provide two formulas for the steady state protein concentrations as a function of feedback length, strength of feedback, as well as protein production and degradation rates. Using a control theory approach, analysing the frequency response of the linearisation of the system and exploiting the Small Gain Theorem, we provide conditions for local stability for both steady states. Our results demonstrate that, under some parameter relationships, once a biological meaningful on steady state arises, it is stable, while the off steady state, where all proteins are inactive, becomes unstable. We apply our results to a three-tier feedback of caspase activation in apoptosis and demonstrate how an intermediary protein in such a loop may be used as a signal amplifier within the cascade. Our results provide a rigorous mathematical analysis of positive feedback chains of arbitrary length, thereby relating pathway structure and stability.  相似文献   

17.
Zhao Q  Yi M  Liu Y 《Physical biology》2011,8(5):055004
The mitogen-activated protein kinase (MAPK) cascade plays a critical role in the control of cell growth. Deregulation of this pathway contributes to the development of many cancers. To better understand its signal transduction, we constructed a reaction-diffusion model for the MAPK pathway. We modeled the three layers of phosphorylation-dephosphorylation reactions and diffusion processes from the cell membrane to the nucleus. Based on different types of feedback in the MAPK cascade, four operation modes are introduced. For each of the four modes, spatial distributions and dose-response curves of active kinases (i.e. ppMAPK) are explored by numerical simulation. The effects of propagation length, diffusion coefficient and feedback strength on the pathway dynamics are investigated. We found that intrinsic bistability in the MAPK cascade can generate a traveling wave of ppMAPK with constant amplitude when the propagation length is short. ppMAPK in this mode of intrinsic bistability decays more slowly than it does in all other modes as the propagation length increases. Moreover, we examined the global and local responses to Ras-GTP of these four modes, and demonstrated how the shapes of these dose-response curves change as the propagation length increases. Also, we found that larger diffusion constant gives a higher response level on the zero-order regime and makes the ppMAPK profiles flatter under strong Ras-GTP stimulus. Furthermore, we observed that spatial responses of ppMAPK are more sensitive to negative feedback than to positive feedback in the broader signal range. Finally, we showed how oscillatory signals pass through the kinase cascade, and found that high frequency signals are damped faster than low frequency ones.  相似文献   

18.
Feedback loops have been identified in a variety of regulatory systems and organisms. While feedback loops of the same type (negative or positive) tend to have properties in common, they can play distinctively diverse roles in different regulatory systems, where they can affect virulence in a pathogenic bacterium, maturation patterns of vertebrate oocytes and transitions through cell cycle phases in eukaryotic cells. This review focuses on the properties and functions of positive feedback in biological systems, including bistability, hysteresis and activation surges.  相似文献   

19.
ABSTRACT: BACKGROUND: Feedback loops, both positive and negative are embedded in the Mitogen Activated Protein Kinase (MAPK) cascade. In the three layer MAPK cascade, both feedback loops originate from the terminal layer and their sites of action are either of the two upstream layers. Recent studies have shown that the cascade uses coupled positive and negative feedback loops in generating oscillations. Two plausible designs of coupled positive and negative feedback loops can be elucidated from the literature; in one design the positive feedback precedes the negative feedback in the direction of signal flow and vice-versa in another. But it remains unexplored how the two designs contribute towards triggering oscillations in MAPK cascade. Thus it is also not known how amplitude, frequency, robustness or nature (analogous/digital) of the oscillations would be shaped by these two designs. RESULTS: We built two models of MAPK cascade that exhibited oscillations as function of two underlying designs of coupled positive and negative feedback loops. Frequency, amplitude and nature (digital/analogous) of oscillations were found to be differentially determined by each design. It was observed that the positive feedback emerging from an oscillating MAPK cascade and functional in an external signal processing module can trigger oscillations in the target module, provided that the target module satisfy certain parametric requirements. The augmentation of the two models was done to incorporate the nuclear-cytoplasmic shuttling of cascade components followed by induction of a nuclear phosphatase. It revealed that the fate of oscillations in the MAPK cascade is governed by the feedback designs. Oscillations were unaffected due to nuclear compartmentalization owing to one design but were completely abolished in the other case. CONCLUSION: The MAPK cascade can utilize two distinct designs of coupled positive and negative feedback loops to trigger oscillations. The amplitude, frequency and robustness of the oscillations in presence or absence of nuclear compartmentalization were differentially determined by two designs of coupled positive and negative feedback loops. A positive feedback from an oscillating MAPK cascade was shown to induce oscillations in an external signal processing module, uncovering a novel regulatory aspect of MAPK signal processing.  相似文献   

20.
Autoregulatory feedback loops, where the protein expressed from a gene inhibits or activates its own expression are common gene network motifs within cells. In these networks, stochastic fluctuations in protein levels are attributed to two factors: intrinsic noise (i.e., the randomness associated with mRNA/protein expression and degradation) and extrinsic noise (i.e., the noise caused by fluctuations in cellular components such as enzyme levels and gene-copy numbers). We present results that predict the level of both intrinsic and extrinsic noise in protein numbers as a function of quantities that can be experimentally determined and/or manipulated, such as the response time of the protein and the level of feedback strength. In particular, we show that for a fixed average number of protein molecules, decreasing response times leads to attenuation of both protein intrinsic and extrinsic noise, with the extrinsic noise being more sensitive to changes in the response time. We further show that for autoregulatory networks with negative feedback, the protein noise levels can be minimal at an optimal level of feedback strength. For such cases, we provide an analytical expression for the highest level of noise suppression and the amount of feedback that achieves this minimal noise. These theoretical results are shown to be consistent and explain recent experimental observations. Finally, we illustrate how measuring changes in the protein noise levels as the feedback strength is manipulated can be used to determine the level of extrinsic noise in these gene networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号