首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of bio-regulators salicylic acid (SA) and 24-epibrassinolide (EBL) as seed soaking treatment on the growth traits, content of photosynthetic pigments, proline, relative water content (RWC), electrolyte leakage percent (EC%), antioxidative enzymes and leaf anatomy of Zea mays L. seedlings grown under 60 or 120 mM NaCl saline stress were studied. A greenhouse experiment was performed in a completely randomized design with nine treatments [control (treated with tap water); 60 mM NaCl; 120 mM NaCl; 10 4 M SA; 60 mM NaCl + 10 4 M SA; 120 mM NaCl + 10 4 M SA; 10 μM EBL; 60 mM NaCl + 10 μMEBL or 120 mM NaCl + 10 μM EBL] each with four replicates. The results indicated that NaCl stress significantly reduced plant growth traits, leaf photosynthetic pigment, soluble sugars, RWC%, and activities of catalase (CAT), peroxidase (POX) as well as leaf anatomy. However, the application of SA or EBL mitigated the toxic effects of NaCl stress on maize seedlings and considerably improved growth traits, photosynthetic pigments, proline, RWC%, CAT and POX enzyme activities as well as leaf anatomy. This study highlights the potential ameliorative effects of SA or EBL in mitigating the phytotoxicity of NaCl stress in seeds and growing seedlings.  相似文献   

2.
The mixed cultures has been isolated from industrial saline wastewater contaminated with chromium(VI), using enrichment in the presence of 50 mg l−1 chromium(VI) and 4% (w/v) NaCl at pH 8. In this study, the molasses (M) medium was selected a suitable medium for the effective chromium bioaccumulation by the mixed cultures. Eleven pure isolates obtained from mixed cultures and some of them showed high bioaccumulation in the M media containing about 100 mg l−1 chromium(VI) and 4% NaCl. The strain 8 (99.3%) and 10 (99.1%) were able to bioaccumulate more efficient than the mixed culture (98.9%) in this media. But the highest specific Cr uptake was obtained by the mixed cultures followed by strain 8 and 10 with 56.71, 33.14 and 21.7 mg g−1, respectively. Bioaccumulation of chromium(VI) ions by the strain 8 growing in the media with chromium(VI) and NaCl was studied in a batch system as a function of initial chromium(VI) (86.6–547.6 mg l−1) and NaCl (0, 2, 4, 6% w/v) concentrations. During all the experiments, the uptake yield of the strain 8 was highly affected from NaCl concentrations in the medium at high initial chromium(VI) concentrations. But at low chromium(VI) concentration, strain 8 was not affected from NaCl concentrations in the medium. The maximum uptake yield were obtained in the M media with 2% NaCl as 98.8% for 110.0 mg l−1, 98.6% for 217.1 mg l−1, 98.6% for 381.7 mg l−1 and 98.2% for 547.6 mg l−1 initial chromium(VI) concentrations. The strain 8 tolerated a 6% (w/v) NaCl concentration was able to bioaccumulate more than 95% of the applied chromium(VI) at the 97.6–224.4 mg l−1 initial chromium(VI) concentrations. The results presented in this paper was shown that these pure and mixed cultures might be of use for the bioaccumulation of chromium(VI) from saline wastewater.  相似文献   

3.
Surface‐sterilised seeds of Lens culinaris cv. Pusa‐6 were soaked in 0 M, 10?6 M, 10?8 M or 10?10 M aqueous solutions of 28‐homobrassinolide (HBR) for 4 h, 8 h or 12 h and planted in the field in a sandy loam soil. Plants were sampled 60, 90 and 120 days after sowing (DAS). Soaking with HBR decreased root length and nodule number per plant but increased nitrate reductase activity (E.C.1.6.6.1). Soaking with HBR also increased grain yield at the final harvest 140 DAS. The greatest increase was obtained with an HBR concentration of 10?8 M.  相似文献   

4.
《Aquatic Botany》2007,87(1):38-42
The density of Zostera marina L. seeds in bottom sediments was examined to study the reproductive patterns of the Z. marina population in Ago Bay, Mie Prefecture, central Japan.Seeds and seed coats were numerous in Tategami, where the annual type of Z. marina grows. In contrast, seeds were scarce in Hamajima, where the perennial type of Z. marina grows. Bottom sediment was sampled with sediment cores at Tategami in November 2004 and March 2005 to examine density and depth distribution of the seeds. Seeds were found as deep as 8 cm, but no deeper. On the other hand, empty seed coats were found as deep as 16 cm in both months. In the upper layers of the sediment to a depth of 8 cm, the average number of seed coats was 7960 ± 2997 m−2 in November and 16,318 ± 2922 m−2 in March. Deeper than 8 cm, the number of seed coats gradually decreased owing to decomposition, and none was found below 16 cm. We used the density of reproductive shoots and number of seeds per spadix in Tategami to estimate the fate of seeds and seed coats of the annual type of Z. marina in bottom sediments: out of the 6000 seeds m−2 produced annually, 72% disappears from the stand and 28% is buried locally. The density and distribution of Z. marina seeds are among the most important factors in maintenance and propagation of the annual population at Tategami.  相似文献   

5.
Asymbiotic germination of immature seeds (embryos), and mature seeds and micropropagation of Spathoglottis plicata were described. Effects of three nutrition media namely, Murashige & Skoog (MS); Phytamax (PM); and Phyto-Technology orchid seed sowing medium (P723), two carbon sources such as glucose and sucrose at 2–3% (w/v), two plant growth regulators such as 6-benzylaminopurine (BAP; 0.5–3.0 mg l 1) and α-naphthalene acetic acid (NAA; 0.5–2.0 mg l 1) and peptone (2.0 g l 1) were examined on seed germination, early protocorm development and micropropagation. The maximum germination of mature seeds (95%) was recorded in PM medium supplemented with 2% (w/v) sucrose + 2.0 g l 1 peptone. For germination of embryos P723 medium supplemented with 1.0 mg l 1 BAP proved best. Multiple shoot buds or protocorm-like bodies (PLBs) were produced from stem segments of in vitro raised seedlings. Both direct organogenesis and embryogenesis were observed and the morphogenetic response was initiated by different concentrations and combinations of PGRs. The optimum PGR combination for maximal PLB regeneration was 1.0 mg l 1 NAA + 2.5 mg l 1 BAP, while 1.0 mg l 1 NAA + 1.0 mg l 1 BAP for shoot bud development. Strong and stout root system was induced in half strength PM medium supplemented with 0.5 mg l 1 IAA. The well-rooted plantlets were transferred to pots containing a potting mixture composed of saw dust, coconut coir, humus, and coal pieces at 1:1:1:2 (w/w) with 80% survival in outside environment and flowered after two years of transfer.  相似文献   

6.
《Aquatic Botany》2005,81(1):1-11
Seed bank samples were collected from Huli Marsh, a subtropical shallow water mountainous marsh in Hunan Province, South China. Core samples were divided into upper and lower layers (each 5 cm in depth) and allowed to germinate in three water levels (0, 5 and 10 cm) over a 4-month period. A total of 51 species germinated and the mean density was 9211 ± 7188 seedlings m−2. In the top 5 cm 41 species and 5747 ± 5111 seedlings m−2 germinated, whereas 40 species and 3464 ± 3363 seedlings m−2 did so from 5–10 cm. Germinated seedling density was significantly higher in the upper layer, largely due to differences in eight species. With increasing experimental water depth, less seedlings germinated: respectively, 9788 ± 7157 m−2, 2050 ± 2412 m−2 and 1978 ± 2616 m−2, of 44, 21 and 19 species, submerged under 0, 5 or 10 cm. Seven species could emerge only in 0 water level. Vallisneria natans occurred only in 5 cm water, whereas Ottelia alismoides occurred in 10 cm water. In the vegetation survey of the marsh, 25 species were recorded, which was less than half of the species recorded in the seed bank. The top 10 dominants in the standing vegetation, accounting for 89% of vegetation abundance, represented only 10% in the seed bank. Twenty germinated species that also occurred in the standing vegetation accounted for 56% of the total seed bank. Our observed number of species germinating from a Chinese wetland seed bank is within the range observed elsewhere in the northern hemisphere (15–113 species).  相似文献   

7.
Fariduddin  Q.  Ahmad  A.  Hayat  S. 《Photosynthetica》2003,41(2):307-310
Surface sterilised seeds of mungbean (Vigna radiata L. Wilczek cv. T-44) were soaked in 0, 10−8, 10−6, or 10−4 M aqueous solution of 28-homobrassinolide (HBR) for 4, 8, or 12 h. The treated seeds were grown in sandy loam soil filled in earthen pots and sampled at 30, 40, and 50 d. Net photosynthetic rate, leaf chlorophyll content, carbonic anhydrase activity (E.C. 4.2.1.1), carboxylation efficiency, stomatal conductance, and seed yield at harvest were enhanced by the HBR treatment. The best combination was the pre-sowing seed treatment with 10−6 M HBR for 8 h. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
《Biological Control》2006,36(2):247-257
The seed damaging fly, Ophiomyia lantanae is a widespread agent that infests the fruits and seeds of Lantana camara. Its effectiveness in reducing seed dispersal or seedling recruitment has not been comprehensively tested. We determined the effects of O. lantanae damage on fruit removal rates of L. camara in a field study. We also investigated recruitment responses (seed germination in growth cabinets and seedling emergence in pot trials) of two common L. camara biotypes, pink and pink-edged red (PER) to O. lantanae damage. We found that fewer damaged fruits were removed than undamaged fruits, suggesting that frugivores select against damaged fruit. In all recruitment experiments, the responses to damage were biotype dependent. In germination experiments, these differential responses were primarily due to significantly reduced germination of damaged PER seeds. Seedling emergence from pots of the PER biotype was also lower in damaged seeds (27.5%) than undamaged seeds (56.1%). In contrast, emergence increased with seed damage in the pink biotype, from 28.2 to 41.1%. O. lantanae damage significantly reduced seed mass only in the smaller seeded PER biotype. In the larger seeded pink biotype, it may have promoted seedling emergence by interfering with dormancy mechanisms. We also examined in situ seed banks at L. camara populations prior to peak seed production. Mean viable seed densities ranged from 78.6 to 402.8 seeds m−2. Of these, non-dormant seeds comprised 24.6 to 98.2 seeds m−2, suggesting that recruitment is unlikely to be seed limited. We conclude that while O. lantanae influences recruitment and dispersal processes, the magnitude of the responses measured are unlikely to greatly influence plant densities in south-east Queensland infestations.  相似文献   

9.
Australian Acacia species introduced to South Africa as ornamentals have notably smaller invasive ranges than those introduced for forestry or dune stabilization. We asked whether the relatively small invasive extent of Acacia elata, a species used widely for ornamental purposes, is due to low rates of reproduction. Age at reproductive maturity, seed dispersal, annual seed production, seed bank dynamics and seed germination and viability were assessed at five sites in the Western Cape. Results indicate that A. elata has similar traits to other invasive Australia Acacia species: annual seed input into the leaf litter was high (up to 5000 seeds m 2); large seed banks develop (> 20,000 seeds m 2) in established stands; seed germinability is high (> 90%); seeds accumulate mostly in the top soil layers but can infiltrate to depths of 40 cm; and seed germination appears to be stimulated by fire. However the age at the onset of reproduction (~ 4 years) is longer than most widespread invaders (~ 3 years) and dispersal is fairly limited (seeds fell up to distances of 6 m from the parent canopy; the highest density of seed rain was found directly under the canopy with over 20% of seeds falling directly under the terminal branches). We suggest that the current limited distribution of invasive A. elata populations is the result of the relatively small size of initial populations (cf. large plantations and widespread plantings for forestry and dune stabilization species), the species' apparent lack of secondary dispersal vectors, and the planting of trees in gardens and urban settings offer limited opportunities for recruitment, proliferation and spread. The species is, however, increasing in abundance and range. We propose methods to improve management of invasions of the species. Management to reduce seed production of this species through classical biological control, as has been achieved for other Australian Acacia species in South Africa, should be prioritised.  相似文献   

10.
Effects of exogenous nitric oxide (NO) on starch degradation, oxidation in mitochondria and K+/Na+ accumulation during seed germination of wheat were investigated under a high salinity level. Seeds of winter wheat (Triticum aestivum L., cv. Huaimai 17) were pre-soaked with 0 mM or 0.1 mM of sodium nitroprusside (SNP, as nitric oxide donor) for 20 h just before germination under 300 mM NaCl. At 300 mM NaCl, exogenous NO increased germination rate and weights of coleoptile and radicle, but decreased seed weight. Exogenous NO also enhanced seed respiration rate and ATP synthesis. In addition, seed starch content decreased while soluble sugar content increased by exogenous NO pre-treatment, which was in accordance with the improved amylase activities in the germinating seeds. Exogenous NO increased the activities of superoxide dismutase (SOD, EC 1.15.1.1) and catalase (CAT, EC 1.11.1.6); whereas decreased the contents of malondialdehyde (MDA) and hydrogen peroxide (H2O2), and superoxide anions (O2??) release rate in the mitochondria. Exogenous NO also decreased Na+ concentration while increased K+ concentration in the seeds thereby maintained a balance between K+ and Na+ during germination under salt stress. It is concluded that exogenous NO treatment on wheat seeds may be a good option to improve seed germination and crop establishment under saline conditions.  相似文献   

11.
Protocorm cultures of Dendrobium candidum were established in balloon type bubble bioreactors using Murashige and Skoog (MS) medium with 0.5 mg l−1 α-naphthaleneacetic acid (NAA), 2.5% (w/v) sucrose, 5:25 mM NH4:NO3 and 1% (v/v) banana homogenate for the production of biomass and bioactive compounds. In 3 l bioreactor containing 2 l medium, a maximum protocorm biomass (21.0 g l−1 dry biomass) and also optimum quantities of total polysaccharides (389.3 mg g−1 DW), coumarins (18.0 mg g−1 DW), polyphenolics (11.9 mg g−1 DW), and flavonoids (4.5 mg g−1 DW) were achieved after 7 weeks of culture. Based on these studies, 5 and 10 l bioreactor cultures were established to harvest 80 g and 160 g dry biomass. In 10 l bioreactors, the protocorms grown were accumulated with optimal levels of polysaccharides (424.1 mg g−1 DW), coumarins (15.8 mg g−1 DW), polyphenols (9.03 mg g−1 DW) and flavonoids (4.7 mg g−1 DW). The bioreactor technology developed here will be useful for the production of important bioactive compounds from D. candidum.  相似文献   

12.
《Process Biochemistry》2014,49(1):33-37
The ectoine-excreting bacterial strain of Halomonas salina was employed in the co-production of poly-β-hydroxybutyrate (PHB) and ectoine (Ect) during a fermentation process (PHB/Ect co-production). An efficient PHB/Ect co-production process was carried out at low NaCl concentration (30 g L−1). It was established using 1H Nuclear Magnetic Resonance spectroscopy that H. salina produces PHB. The effects of the NaCl concentration, the initial C/N ratio, the phosphate concentration and mixed carbon sources were investigated with respect to PHB/Ect co-production. The PHB/Ect co-production system comprised growing and non-growing cell phases and was developed with NaCl concentration of 30 g L−1. The optimal conditions for PHB/Ect co-production by the ectoine-excreting strain of H. salina were 30 g L−1 NaCl, with an initial C/N ratio of 15, an initial phosphate concentration of 12 g L−1 and mixed carbon sources of 55 g L−1 glucose and 25 g L−1 monosodium glutamate. Using a PHB/Ect co-production system with growing and non-growing cell phases prevents the inhibition of PHB synthesis by high concentration of NaCl and significantly reduces ectoine degradation. PHB and ectoine concentrations as high as 35.3 g L−1 and 8.6 g L−1, respectively, were achieved. The efficient co-production of PHB and ectoine at a low NaCl concentration has been realised.  相似文献   

13.
Members of the Chenopodiaceae are well adapted to both salt and drought stress and can serve as model species to understand the mechanisms of tolerance in plants. We grew Atriplex hortensis (ATHO), A. canescens (ATCA), and A. lentiformis (ATLE) along a NaCL salinity gradient under non-water-limited conditions and in drying soils in greenhouse experiments. The species differed in photosynthetic carbon fixation pathway, capacity for sodium uptake, and habitat preferences. Under non-water-limited conditions, ATLE (C4) maintained high growth rates up to 30 g L−1 NaCl. ATHO (C3) had lower growth than ATLE at high salinities, while ATCA (C4) grew more slowly than either ATLE or ATHO and showed no net growth above 20 g L−1 NaCl. ATHO and ATLE accumulated twice as much sodium in their shoots as ATCA, but all three species had increasing sodium levels at higher salinities. Potassium, magnesium and calcium levels were relatively constant over the salinity gradient. All three species showed marked accumulation of chloride across the salinity gradient, whereas nitrate, phosphorous and sulfate decreased with salinity. The effect of drought was simulated by growing plants in sealed pots with an initial charge of water plus NaCl, and allowing them to grow to the end point at which they no longer were able to extract water from the soil solution. Drought and salinity were not additive stress factors for Atriplex spp. in this experiment. NaCl increased their ability to extract water from the soil solution compared to fresh water controls. ATLE showed increased shoot dry matter production and increased water use efficiency (WUE) as initial salinity levels increased from 0 to 30 g L−1 NaCl, whereas dry matter production and WUE peaked at 5 g L−1 for ATHO and ATCA. Final soil moisture salinities tolerated by species were 85 g L−1, 55 g L−1 and 160 g L−1 NaCl for ATHO, ATCA and ATLE, respectively. C4 photosynthesis and sodium accumulation in shoots were associated with high drought and salt tolerance.  相似文献   

14.
Croton macrostachyus Hochst. ex Del. (Euphorbiaceae) is a multipurpose, deciduous, and medium sized tree of pantropic occurrence. Because the species has numerous useful qualities (e.g., establishment and growth in disturbed sites, drought tolerance, fast growth rate, copious litter/necromass production, suitability for agroforestry, and ability to attract avian frugivores), its speedy restoration has become increasingly critical. Germination studies were therefore conducted on seeds pooled from five widely located provenances with a view to supporting efforts geared toward the speedy propagation and restoration of this valuable tree species. Seed pretreatments were achieved using various dilution levels of plant-derived smoke–water (1:1, 1:10, 1:100 and 1:1000), as well as gibberellic acid (GA3) or potassium nitrate (KNO3) ranging in concentration from 0.1 to 100 μmol. The control was to use distilled water for seed pretreatment. Seeds were germinated under either illuminated (ca 60 μmol m 2 s 1; cool-white fluorescent lamp) or non-illuminated conditions. Experiments on the impact of seed storage durations, as well as storage temperatures were also conducted. The study found that germination percentage (GP: ca 90%), and mean germination time (MGT: 14 days) were significantly (P < 0.001) better when seeds were pretreated with smoke–water and germinated under non-illuminated conditions, than when these were pretreated with various concentrations of GA3 or KNO3 (GP and MGT of ca 65% and 20 days, respectively). Germination percentage (GP) and germination vigor (GV) declined with increasing storage-time for all storage temperatures, but GV's decline was faster for seeds stored at 22 °C than for those stored at 5 and 15 °C. On the other hand, mean germination time (MGT) increased significantly (P < 0.01) with seed storage-time of up to 8 months at 5, 15, and 22 °C, but the increase was more marked for seeds stored at 22 °C than for those stored at 5 and 15 °C. From these investigations, it is concluded that germination of C. macrostachyus seeds through use of smoke–water is faster, cheaper, and technically less demanding, compared to that of either GA3 or KNO3. The study also concludes that C. macrostachyus is intermediate between orthodox and recalcitrant seeds, and that it is non-photoblastic.  相似文献   

15.
Salsola ferganica L. (Chenopodianceae) is an annual halophytic species. Experiments were carried out in laboratory to determine the effects of temperature, perianths and various types of salinity on seed germination and germination recovery. Seeds were germinated at 6 levels of temperature with perianths, plus perianths and removed perianths in complete darkness for 9 days. The germination responses of the seeds without perianths at 25 °C were determined over a wide range of NaCl, NaHCO3 or NaCl–NaHCO3 mixed stress for 13 days. Perianths seriously affected germination as a barrier for seed germination and the optimal temperature was at 25 °C. Highest germination percentage was obtained under control and seed germination was progressively inhibited with the increase of salinity concentration. The negative effect of NaHCO3 at the same concentration on germination was stronger than that of NaCl and NaCl–NaHCO3 mixed. When substrate salinity was removed, seeds exposed to a high NaCl concentration (400–800 mM), NaHCO3 (50–200 mM) and NaCl–NaHCO3 mixed (100–400 mM) germinated well. Final germination of Salsola ferganica seeds was significantly affected by types of salt at the low salinity (?200 mM) and with increased salinity it was influenced mainly by salinity concentration for various proportion of salt–alkali mixed stress.  相似文献   

16.
Simultaneous saccharification and fermentation (SSF) of renewable cellulose for the production of 3-phenyllactic acid (PhLA) by recombinant Escherichia coli was investigated. Kraft pulp recovered from biomass fractionation processes was used as a model cellulosic feedstock and was hydrolyzed using 10–50 filter paper unit (FPU) g−1 kraft pulp of a commercial cellulase mixture, which increased the glucose yield from 21% to 72% in an enzyme dose-dependent manner. PhLA fermentation of the hydrolyzed kraft pulp by a recombinant E. coli strain expressing phenylpyruvate reductase from Wickerhamia fluorescens TK1 produced 1.9 mM PhLA. The PhLA yield obtained using separate hydrolysis and fermentation was enhanced from 5.8% to 42% by process integration into SSF of kraft pulp (20 g L−1) in a complex medium (pH 7.0) at 37 °C. The PhLA yield was negatively correlated with the initial glucose concentration, with a five-fold higher PhLA yield observed in culture medium containing 10 g L−1 glucose compared to 100 g L−1. Taken together, these results suggest that the PhLA yield from cellulose in kraft pulp can be improved by SSF under glucose-limited conditions.  相似文献   

17.
Terminalia sericea is widely distributed in the African Savannah bushveld. It is one of the indigenous fruit bearing trees put to multiple uses. Research has focused on the phytochemical composition of its root, bark, and leaf extracts that are used in ethnomedicine neglecting the potential of its seed. This study purposed to determine, by chemical analyses, the nutritive value of T. sericea seed. 78.8% of the seed was found to be crude protein (46.2%) and lipid (32.6%). Ash made up 6.90% of the seed mass. Linoleic and oleic acids constituted 68.63% and 14.05%, respectively, of the seed oil. Phosphorus (1121.75 ± 10.39 mg 100 g 1 DM) and glutamic acid (8.07 ± 0.13 g 100 1 DM) constituted the most concentrated mineral and amino acid, respectively. T. sericea seed could be utilized as a protein source in feeds and foods and could also be exploited as a non-conventional plant oil source of oleic acid and linoleic acid.  相似文献   

18.
The diatom Eucampia zodiacus is a harmful species that indirectly causes bleaching to nori (Pyropia) cultivation through competitive utilization of nutrients during its bloom, however cellular storage and changes in physiology by asexual reproduction remains unclear. In the present study, we experimentally investigated the nitrate (N), phosphate (P) and silicic acid (Si) consumption by various cell sizes of E. zodiacus strains, the apical axis length of which ranged from 10.2 to 77.3 μm. Nutrient cell quotas of E. zodiacus ranged from 2.7 to 8.4 pM cell−1 for N, 0.34–0.76 pM cell−1 for P and 1.7–7.3 pM cell−1 for Si, and they increased with cell size, in which there is a significant correlation between these two elements. The N and P quotas were estimated to be several times higher than the minimum cell quotas. In contrast, the Si cell quotas were approximately equal to those of the minimum values. Based on the present cell quotas, total nitrate consumption by E. zodiacus population when the blooms reached maximum cell density (=1000 cells ml−1) were estimated to be 6.5 μM. Monthly mean concentrations of dissolved inorganic nitrogen (DIN) range from 3.5 to 8.2 μM during the period of late nori harvest season when E. zodiacus blooms occur, and nori bleaching is reported at the condition of DIN concentration of less than 3 μM in Harima-Nada, eastern Seto Inland Sea, Japan. Therefore, the present results suggest that E. zodiacus causes serious damage to nori cultivation due to high levels of nutrient consumption.  相似文献   

19.
《Aquatic Botany》2005,81(4):353-366
Carbon fixation and allocation were studied using 13C incubation and leaf marking techniques in mature monospecific stands of Enhalus acoroides L.f. Royle in August 1998 and January 1999 in Banten Bay, Indonesia. The highest rate of 13C uptake (>0.008 g 13C g C−1 d−1) was found in the middle to distal parts of leaves of E. acoroides. Young and senescing leaves numbers had lower 13C incorporation compared to mature leaves. The incorporation of 13C by epiphytes on the leaves was higher than that of the leaves themselves (>0.01 g 13C g C−1 d−1). The results showed that turbidity of the water influenced the leaf growth, productivity and Relative Growth Rate of E. acoroides, which were lower at Kepuh Island, the more turbid site. However, at Kepuh Island, where the water column was turbid, the plant could still harvest sufficient light for an uptake rate of 13C, higher than the uptake rates at Kubur and Panjang Islands, stations with a much more transparent water column (on average 0.0047 g 13C g C−1 d−1 at Kepuh Island, versus 0.0045 g 13C g C−1 d−1 at Panjang Island and 0.0034 g 13C g C−1 d−1 at Kubur Island). There was evidence that 13C was exported from the incubated shoots to the roots and rhizomes and to neighboring shoots of E. acoroides in clear water, but not in turbid water. We suggest that single shoots of E. acoroides are able to grow in turbid water under low light conditions. They assimilate sufficient carbon for their own maintenance but are not able to export to neighboring plant parts.  相似文献   

20.
《Journal of Asia》2014,17(1):7-11
The Sunn pest, Eurygaster integriceps Puton (Hemiptera: Scutelleridae), is a significant limiting factor in the production of wheat and barley in many areas of the world. In the current study, the effect of semi-purified proteinaceous extracts of seeds on digestive enzymes, and the growth and development of the Sunn pest were studied. The results showed that the purified α-amylase inhibitor from Triticum aestivum (type І) and rice semi-purified seed extract did not significantly affect the Sunn pest α-amylase activity. However, bean and cowpea seed extracts significantly affected α-amylase activity in vitro. For example, the bean seed extract at concentrations of 0.125 and 2.0 mg · mL 1 inhibited α-amylase activity of the pest by 15% and 45%, respectively, while the cowpea seed extract, at the same concentrations, inhibited α-amylase activity of the pest by 9% and 40%, respectively. Further, incorporation of the seed extracts into the insect diet showed that the rice seed extract did not affect insect development time, while bean and cowpea seed extracts at high concentrations (e.g., 3.0%) significantly affected nymphal development time and survivability (P > 0.05). These results show that semi-purified seed extracts affect α-amylase activity, developmental time, and survivability but not the adult weight of the Sunn pest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号