共查询到20条相似文献,搜索用时 8 毫秒
1.
Wilson C.Y. Lau 《Journal of molecular biology》2008,382(5):1256-1264
We have used electron cryomicroscopy of single particles to determine the structure of the ATP synthase from Saccharomyces cerevisiae. The resulting map at 24 Å resolution can accommodate atomic models of the F1-c10 subcomplex, the peripheral stalk subcomplex, and the N-terminal domain of the oligomycin sensitivity conferral protein. The map is similar to an earlier electron cryomicroscopy structure of bovine mitochondrial ATP synthase but with important differences. It resolves the internal structure of the membrane region of the complex, especially the membrane embedded subunits b, c, and a. Comparison of the yeast ATP synthase map, which lacks density from the dimer-specific subunits e and g, with a map of the bovine enzyme that included e and g indicates where these subunits are located in the intact complex. This new map has allowed construction of a model of subunit arrangement in the FO motor of ATP synthase that dictates how dimerization of the complex via subunits e and g might occur. 相似文献
2.
For determining exercise-induced changes in plasma molecular species, we investigated the feasibility of using two-dimensional correlation spectra (2D-COS) on 21 series of plasma samples obtained from progressive exercise tests. Intensities of 2D synchronous and asynchronous correlation peaks were compared to concentration evolutions of glucose, lactate, triglycerides (TG), glycerol, fatty acyl moieties, amino acids, proteins, and albumin [determined from plasma Fourier transform infrared (FTIR) spectra] and to performance and training levels of athletes. Synchronous 2D-COS allowed us to determine the linear relationship between protein and fatty acid concentration evolutions as exercise intensity increased (nu1-nu2; 2959 vs 1656 and 1543 cm(-1)). Asynchronous 2D-COS allowed differentiation of fibrinolysis level in subjects during intense exercise, as well as parameters of fatty acid metabolism specifically related either to performance or to training levels. Furthermore, unexpected correlated evolutions of molecular species were highlighted by this method, showing that 2D spectrometry may also be used for experimental investigations on human physiology. This study has demonstrated that 2D-COS may be used for the treatment of complex biological samples, such as plasma. 相似文献
3.
Iwanczyk J Sadre-Bazzaz K Ferrell K Kondrashkina E Formosa T Hill CP Ortega J 《Journal of molecular biology》2006,363(3):648-659
The 20 S proteasome is regulated at multiple levels including association with endogenous activators. Two activators have been described for the yeast 20 S proteasome: the 19 S regulatory particle and the Blm10 protein. The sequence of Blm10 is 20% identical to the mammalian PA200 protein. Recent studies have shown that the sequences of Blm10 and PA200 each contain multiple HEAT-repeats and that each binds to the ends of mature proteasomes, suggesting a common structural and biochemical function. In order to advance structural studies, we have developed an efficient purification method that produces high yields of stoichiometric Blm10-mature yeast 20 S proteasome complexes and we constructed a three-dimensional (3D) model of the Blm10-20 S complex from cryo-electron microscopy images. This reconstruction shows that Blm10 binds in a defined orientation to both ends of the 20 S particle and contacts all the proteasome alpha subunits. Blm10 displays the solenoid folding predicted by the presence of multiple HEAT-like repeats and the axial gates on the alpha rings of the proteasome appear to be open in the complex. We also performed a genetic analysis in an effort to identify the physiological role of Blm10. These experiments, however, did not reveal a robust phenotype upon gene deletion, overexpression, or in a screen for synthetic effects. This leaves the physiological role of Blm10 unresolved, but challenges earlier findings of a role in DNA repair. 相似文献
4.
Bor-Yann Chen Chia-Yi Yen Wen-Ming Chen Chan-Tang Chang Chin-Tsan Wang Yuh-Chung Hu 《Bioresource technology》2009,100(23):5763-5770
This follow-up study provided an evaluation on threshold operation criteria of biostimulation in immobilized cell systems (ICSs) with Aeromonas hydrophila onto packing materials Porites corals. Essential nutrients in appropriate flow rate for biostimulation were inevitably required to maintain maximum attached cell population for cost-effective biodecolorization. With the method of “graphical reconstruction”, the most economically feasible strategy of medium stimulation for color removal was quantitatively revealed. Our findings pointed out no matter what operation mode of reactor was (e.g., suspended batch cultures or ICS) color removal efficiency for A. hydrophila still strongly depended upon intrinsic kinetics and chemical reactivities of azo dyes. Mass transport effects in ICS might not play most significant roles to limit dye biodecolorization of A. hydrophila (except Reactive red 198, Reactive green 19), as relative rankings of color removal rates of various dyes were almost in parallel with those in suspended batch cultures. 相似文献
5.
Linhua Jiang Rouven Bingel-Erlenmeyer Philipp Korber Daniël C. de Geus Jan Pieter Abrahams 《Journal of molecular biology》2009,386(5):1357-1367
When heat shock prematurely dissociates a translating bacterial ribosome, its 50S subunit is prevented from reinitiating protein synthesis by tRNA covalently linked to the unfinished protein chain that remains threaded through the exit tunnel. Hsp15, a highly upregulated bacterial heat shock protein, reactivates such dead-end complexes. Here, we show with cryo-electron microscopy reconstructions and functional assays that Hsp15 translocates the tRNA moiety from the A site to the P site of stalled 50S subunits. By stabilizing the tRNA in the P site, Hsp15 indirectly frees up the A site, allowing a release factor to land there and cleave off the tRNA. Such a release factor must be stop codon independent, suggesting a possible role for a poorly characterized class of putative release factors that are upregulated by cellular stress, lack a codon recognition domain and are conserved in eukaryotes. 相似文献
6.
为阐明黄河三角洲贝壳堤岛旱柳(Salix matsudana)叶片光合效率对土壤水分的适应机制, 明确其水分阈值效应, 以二年生旱柳为材料, 采用人工给水与自然耗水相结合获取系列水分梯度的方法, 测定分析贝壳砂生境下旱柳叶片光合效率参数对土壤水分的响应特征及其生产力分级。结果表明: 旱柳叶片净光合速率(Pn)、蒸腾速率(Tr)、水分利用效率(WUE)及光合光响应参数具有明显的水分临界效应。(1) Pn、Tr、WUE和潜在水分利用效率均随土壤水分的降低先升高后下降, 但各指标水分临界值表现不同步, 其中Pn水分气孔限制转折点和水分补偿点分别出现在相对含水量(Wr)为42.9%和14.4%时; Pn和Tr的水分饱和点为73.1%和68.9%, WUE水分高效点为80.1%; (2)水分胁迫下旱柳叶片具有明显的光抑制现象, 可通过减弱对光的利用来适应水分逆境。随土壤水分的增加, 表观量子效率(AQY)、光饱和点(LSP)和最大净光合速率(Pnmax)表现为先升高后降低, 但光补偿点(LCP)相反。Pn、AQY、LSP、Pnmax和暗呼吸速率(Rd)均表现为渍水胁迫明显高于干旱胁迫。Wr为69.1%时, LCP达到较低值(18.6 µmol∙m -2∙s-1), AQY最高(0.05), 利用弱光能力较强。Wr为80.9%时, LSP达到最高(1775 µmol∙m -2∙s-1), 光照生态幅最宽, 光能利用效率最高, 水分对光强的补偿效应显著; (3)采用临界值分类法确定出贝壳砂生境下旱柳光合效率的5级水分阈值, 73.1%r<80.1%范围内为高产高效水, 此时旱柳具有较高的光合能力和高效生理用水特性。贝壳砂生境内旱柳表现出一定的耐水湿而不耐干旱的适应特性, 在干旱缺水的贝壳堤岛滩脊地带栽植时需充分考虑其水分环境。 相似文献
7.
The type I AAA (ATPase associated with a variety of cellular activities) ATPase Vps4 and its co-factor Vta1p/LIP5 function in membrane remodeling events that accompany cytokinesis, multivesicular body biogenesis, and retrovirus budding, apparently by driving disassembly and recycling of membrane-associated ESCRT (endosomal sorting complex required for transport)-III complexes. Here, we present electron cryomicroscopy reconstructions of dodecameric yeast Vps4p complexes with and without their microtubule interacting and transport (MIT) N-terminal domains and Vta1p co-factors. The ATPase domains of Vps4p form a bowl-like structure composed of stacked hexameric rings. The two rings adopt dramatically different conformations, with the “upper” ring forming an open assembly that defines the sides of the bowl and the lower ring forming a closed assembly that forms the bottom of the bowl. The N-terminal MIT domains of the upper ring localize on the symmetry axis above the cavity of the bowl, and the binding of six extended Vta1p monomers causes additional density to appear both above and below the bowl. The structures suggest models in which Vps4p MIT and Vta1p domains engage ESCRT-III substrates above the bowl and help transfer them into the bowl to be pumped through the center of the dodecameric assembly. 相似文献
8.
Two-dimensional (2D) correlation spectroscopy establishes correlations between intensity variations in a series of spectra obtained by the application of an external perturbation. However, spectral effects (wavenumber shift or bandwidth change) are known to generate apparent asynchronisms in 2D maps. Surprisingly, spectral effects are often neglected in the literature when interpreting experimental maps, which can lead to erroneous conclusions. In an attempt to evaluate the contribution of these effects and that of true asynchronisms on 2D maps, the heat-induced aggregation of glutamyl-tRNA synthetase (GluRS) was studied as a typical example of the application of Fourier transform infrared (FTIR) spectroscopy in the amide I region. The data were compared with those obtained from a mutant protein that differs by one amino acid. To determine whether the aggregation mechanisms are identical for both proteins, the experimental 2D maps were compared to simulations based on curve fitting of the initial and final spectra of the series, which allows change in position and bandwidth of the components to be taken into account. Intermediate spectra were generated using a convenient function that mimics the spectral evolution. The speed and the delay of each component were controlled. Apart from the appearance of turns that occur for the mutant and not for GluRS, the aggregation mechanisms of both proteins seems to be essentially identical. In particular, the loss of alpha-helices seems to be concomitant with the formation of intermolecular beta-sheets, whereas the loss of intramolecular beta-sheets is delayed. Since the experimental maps are satisfactorily simulated when almost all the components are in phase, it appears that many of the asynchronous features are mainly due to spectral effects. Thus, one has to be aware that true asynchronisms are not necessarily at the origin of peaks observed in asynchronous maps. 相似文献
9.
Gao T Blanchette CD He W Bourguet F Ly S Katzen F Kudlicki WA Henderson PT Laurence TA Huser T Coleman MA 《Protein science : a publication of the Protein Society》2011,20(2):437-447
Nanolipoprotein particles (NLPs) represent a unique nanometer-sized scaffold for supporting membrane proteins (MP). Characterization of their dynamic shape and association with MP in solution remains a challenge. Here, we present a rapid method of analysis by fluorescence correlation spectroscopy (FCS) to characterize bacteriorhodopsin (bR), a membrane protein capable of forming a NLP complex. By selectively labeling individual components of NLPs during cell-free synthesis, FCS enabled us to measure specific NLP diffusion times and infer size information for different NLP species. The resulting bR-loaded NLPs were shown to be dynamically discoidal in solution with a mean diameter of 7.8 nm. The insertion rate of bR in the complex was ~55% based on a fit model incorporating two separate diffusion properties to best approximate the FCS data. More importantly, based on these data, we infer that membrane protein associated NLPs are thermodynamically constrained as discs in solution, while empty NLPs appear to be less constrained and dynamically spherical. 相似文献
10.
Elmlund H Lundqvist J Al-Karadaghi S Hansson M Hebert H Lindahl M 《Journal of molecular biology》2008,375(4):934-947
The generation of ab initio three-dimensional (3D) models is a bottleneck in the studies of large macromolecular assemblies by single-particle cryo-electron microscopy. We describe here a novel method, in which established methods for two-dimensional image processing are combined with newly developed programs for joint rotational 3D alignment of a large number of class averages (RAD) and calculation of 3D volumes from aligned projections (VolRec). We demonstrate the power of the method by reconstructing an ∼ 660-kDa ATP-fueled AAA+ motor to 7.5 Å resolution, with secondary structure elements identified throughout the structure. We propose the method as a generally applicable automated strategy to obtain 3D reconstructions from unstained single particles imaged in vitreous ice. 相似文献
11.
In the generalized method of moments approach to longitudinaldata analysis, unbiased estimating functions can be constructedto incorporate both the marginal mean and the correlation structureof the data. Increasing the number of parameters in the correlationstructure corresponds to increasing the number of estimatingfunctions. Thus, building a correlation model is equivalentto selecting estimating functions. This paper proposes a chi-squaredtest to choose informative unbiased estimating functions. Weshow that this methodology is useful for identifying which sourceof correlation it is important to incorporate when there aremultiple possible sources of correlation. This method can alsobe applied to determine the optimal working correlation forthe generalized estimating equation approach. 相似文献
12.
The large amount of image data necessary for high-resolution 3D reconstruction of macromolecular assemblies leads to significant increases in the computational time. One of the most time consuming operations is 3D density map reconstruction, and software optimization can greatly reduce the time required for any given structural study. The majority of algorithms proposed for improving the computational effectiveness of a 3D reconstruction are based on a ray-by-ray projection of each image into the reconstructed volume. In this paper, we propose a novel fast implementation of the "filtered back-projection" algorithm based on a voxel-by-voxel principle. Our version of this implementation has been exhaustively tested using both model and real data. We compared 3D reconstructions obtained by the new approach with results obtained by the filtered Back-Projections algorithm and the Fourier-Bessel algorithm commonly used for reconstructing icosahedral viruses. These computational experiments demonstrate the robustness, reliability, and efficiency of this approach. 相似文献
13.
《Journal of structural biology》2022,214(4):107916
Nanodiscs have become a popular tool in structure determination of membrane proteins using cryogenic electron microscopy and single particle analysis. However, the structure determination of small membrane proteins remains challenging. When the embedded protein is in the same size range as the nanodisc, the nanodisc can significantly contribute to the alignment and classification during the structure determination process. In those cases, it is crucial to minimize the heterogeneity in the nanodisc preparations to assure maximum accuracy in the classification and alignment steps of single particle analysis. Here, we introduce a new in-silico method for the characterization of nanodisc samples that is based on analyzing the Feret diameter distribution of their particle projection as imaged in the electron microscope. We validated the method with comprehensive simulation studies and show that Feret signatures can detect subtle differences in nanodisc morphologies and composition that might otherwise go unnoticed. We used the method to identify a specific biochemical nanodisc preparation with low size variations, allowing us to obtain a structure of the 23-kDa single-span membrane protein Bcl-xL while embedded in a nanodisc. Feret signature analysis can steer experimental data collection strategies, allowing more efficient use of high-end data collection hardware, as well as image analysis investments in studies where nanodiscs significantly contribute to the total volume of the full molecular species. 相似文献
14.
Martin AG Depoix F Stohr M Meissner U Hagner-Holler S Hammouti K Burmester T Heyd J Wriggers W Markl J 《Journal of molecular biology》2007,366(4):1332-1350
The blue copper protein hemocyanin from the horseshoe crab Limulus polyphemus is among the largest respiratory proteins found in nature (3.5 MDa) and exhibits a highly cooperative oxygen binding. Its 48 subunits are arranged as eight hexamers (1x6mers) that form the native 8x6mer in a nested hierarchy of 2x6mers and 4x6mers. This quaternary structure is established by eight subunit types (termed I, IIA, II, IIIA, IIIB, IV, V, and VI), of which only type II has been sequenced. Crystal structures of the 1x6mer are available, but for the 8x6mer only a 40 A 3D reconstruction exists. Consequently, the structural parameters of the 8x6mer are not firmly established, and the molecular interfaces between the eight hexamers are still to be defined. This, however, is crucial for understanding how allosteric transitions are mediated between the different levels of hierarchy. Here, we show the 10 A structure (FSC(1/2-bit) criterion) of the oxygenated 8x6mer from cryo-electron microscopy (cryo-EM) and single-particle analysis. Moreover, we show its molecular model as obtained by DNA sequencing of subunits II, IIIA, IV and VI, and molecular modelling and rigid-body fitting of all subunit types. Remarkably, the latter enabled us to improve the resolution of the cryo-EM structure from 11 A to the final 10 A. The 10 A structure allows firm assessment of various structural parameters of the 8x6mer, the 4x6mer and the 2x6mer, and reveals a total of 46 inter-hexamer bridges. These group as 11 types of interface: four at the 2x6mer level (II-II, II-IV, V-VI, IV-VI), three form the 4x6mer (V-V, V-VI, VI-IIIB/IV/V), and four are required to assemble the 8x6mer (IIIA-IIIA, IIIA-IIIB, II-IV, IV-IV). The molecular model shows the amino acid residues involved, and reveals that several of the interfaces are intriguingly histidine-rich and likely to transfer allosteric signals between the different levels of the nested hierarchy. 相似文献
15.
Annette K. Shrive Hui-Ting Chou Peter B. Armstrong 《Journal of molecular biology》2009,386(5):1240-1254
The serum-amyloid-P-component-like pentraxin from Limulus polyphemus, a recently discovered pentraxin species and important effector protein of the hemolymph immune system, displays two distinct doubly stacked cyclic molecular aggregations, heptameric and octameric. The refined three-dimensional structures determined by X-ray crystallography, both based on the same cDNA sequence, show that each aggregate is constructed from a similar dimer of protomers, which is repeated to make up the ring structure. The native octameric form has been refined at a resolution of 3 Å, the native heptameric form at 2.3 Å, and the phosphoethanolamine (PE)-bound octameric form at 2.7 Å. The existence of the hitherto undescribed heptameric form was confirmed by single-particle analysis using cryo-electron microscopy. In the native structures, the calcium-binding site is similar to that in human pentraxins, with two calcium ions bound in each subunit. Upon binding PE, however, each subunit binds a third calcium ion, with all three calcium ions contributing to the binding and orientation of the bound phosphate group within the ligand-binding pocket. While the phosphate is well-defined in the electron density, the ethanolamine group is poorly defined, suggesting structural and binding variabilities of this group. Although sequence homology with human serum amyloid P component is relatively low, structural homology is high, with very similar overall folds and a common affinity for PE. This is due, in part, to a “topological” equivalence of side-chain position. Identical side chains that are important in both function and fold, from different regions of the sequence in human and Limulus structures, occupy similar space within the overall subunit fold. Sequence and structure alignment, based on the refined three-dimensional structures presented here and the known horseshoe crab pentraxin sequences, suggest that adaptation and refinement of C-reactive-protein-mediated immune responses in these ancient creatures lacking antibody-based immunity are based on adaptation by gene duplication. 相似文献
16.
High-resolution electron microscopy of helical specimens: a fresh look at tobacco mosaic virus 总被引:1,自引:0,他引:1
Sachse C Chen JZ Coureux PD Stroupe ME Fändrich M Grigorieff N 《Journal of molecular biology》2007,371(3):812-835
The treatment of helical objects as a string of single particles has become an established technique to resolve their three-dimensional (3D) structure using electron cryo-microscopy. It can be applied to a wide range of helical particles such as viruses, microtubules and helical filaments. We have made improvements to this approach using Tobacco Mosaic Virus (TMV) as a test specimen and obtained a map from 210,000 asymmetric units at a resolution better than 5 A. This was made possible by performing a full correction of the contrast transfer function of the microscope. Alignment of helical segments was helped by constraints derived from the helical symmetry of the virus. Furthermore, symmetrization was implemented by multiple inclusions of symmetry-related views in the 3D reconstruction. We used the density map to build an atomic model of TMV. The model was refined using a real-space refinement strategy that accommodates multiple conformers. The atomic model shows significant deviations from the deposited model for the helical form of TMV at the lower-radius region (residues 88 to 109). This region appears more ordered with well-defined secondary structure, compared with the earlier helical structure. The RNA phosphate backbone is sandwiched between two arginine side-chains, stabilizing the interaction between RNA and coat protein. A cluster of two or three carboxylates is buried in a hydrophobic environment isolating it from neighboring subunits. These carboxylates may represent the so-called Caspar carboxylates that form a metastable switch for viral disassembly. Overall, the observed differences suggest that the new model represents a different, more stable state of the virus, compared with the earlier published model. 相似文献
17.
Hiroki Yamaguchi Akiko Kamegawa Kunio Nakata Tatsuki Kashiwagi Toshimi Mizukoshi Yoshinori Fujiyoshi Kazutoshi Tani 《Journal of structural biology》2019,205(1):11-21
Leucine dehydrogenase (LDH, EC 1.4.1.9) is a NAD+-dependent oxidoreductase that catalyzes the deamination of branched-chain l-amino acids (BCAAs). LDH of Geobacillus stearothermophilus (GstLDH) is a highly thermostable enzyme that has been applied for the quantification or production of BCAAs. Here the cryo-electron microscopy (cryo-EM) structures of apo and NAD+-bound LDH are reported at 3.0 and 3.2?Å resolution, respectively. On comparing the structures, the two overall structures are almost identical, but it was observed that the partial conformational change was triggered by the interaction between Ser147 and the nicotinamide moiety of NAD+. NAD+ binding also enhanced the strength of oligomerization interfaces formed by the core domains. Such additional interdomain interaction is in good agreement with our experimental results showing that the residual activity of NAD+-bound form was approximately three times higher than that of the apo form after incubation at 80?°C. In addition, sequence comparison of three structurally known LDHs indicated a set of candidates for site-directed mutagenesis to improve thermostability. Subsequent mutation analysis actually revealed that non-conserved residues, including Ala94, Tyr127, and the C-terminal region, are crucial for oligomeric thermostability. 相似文献
18.
Lee SC Stoilova-McPhie S Baxter L Fülöp V Henderson J Rodger A Roper DI Scott DJ Smith CJ Morgan JA 《Journal of molecular biology》2007,366(5):1558-1568
A recently identified class of proteins conferring insecticidal activity to several bacteria within the Enterobacteriaceae family have potential for control of commercially important insect pests. Here, we report the first purification, biophysical characterisation and 3-D structural analysis of one of the toxin components, XptA1, from Xenorhabdus nematophila PMFI296 to a resolution of 23 A. Membrane binding studies indicate that the three-component toxin system has a different mode of action from that of proteins from Bacillus thuringiensis (Bt). Biophysical characterisation of XptA1 suggests a mechanism of action of XptA1 whereby it first binds to the cell membrane forming a structure with a central cavity and forms a complex with its partners XptB1 and XptC1 producing the full insecticidal toxin. The structure of XptA1 is shown by a combination of electron microscopy, ultracentrifugation and circular dichroism spectroscopy to be a 1.15 MDa tetramer with a cage-like structure. Each of the four symmetry-related subunits has three well-defined domains and a longitudinal twist with one end narrower than the other. One third of the residues of XptA1 are alpha-helical and it is suggested the subunits associate partly via an alpha-helical coiled-coil interaction. XptA1 itself shows the same secondary structure at neutral pH and in an alkaline environment up to pH10.5. This pH tolerance indicates that the folded XptA1 can pass through the midgut of Lepidopteran insects susceptible to the insecticidal toxin complex. This implies therefore that its folded structure is important for its biological activity. 相似文献
19.
Molecular determination by electron microscopy of the dynein-microtubule complex structure 总被引:1,自引:0,他引:1
Dynein is a minus-end-directed microtubule (MT) motor that is responsible for the wide range of MT-based motility in eukaryotic cells. Detailed mechanism of the dynein chemomechanical conversion is still unknown, partly because the structure of dynein is not studied at high resolution. To address this problem and reconstruct the dynein-MT complex at higher resolution, we have developed new procedures based on single particle analysis. To accurately determine the orientation of the dynein-MT complex, we introduced a "dynein track model" to restrict the possible dynein positions on the images. We tested our procedures by reconstructing structures from simulated dynein-MT complex images. Starting from the simulated noisy images generated using three different models of the dynein-MT complex, we have successfully recovered the original three-dimensional (3-D) structure. We also showed that our procedure is robust against fluctuation of the dynein molecules and can determine the structure even when the dynein position fluctuates to a certain extent. Convergence of the final 3-D structure can be tested with a "two-dimensional (2-D) agreement value," which we introduced to see whether the final structure is a result of overfit from fluctuating dynein or not. When the procedures did not work well due to the fluctuation, we could recognize the failure by this 2-D agreement value. Finally, the actual structure of the dynein-MT complex was determined from actual cryoelectron micrographs of Dictyostelium cytoplasmic dynein-MT complex. This method has revealed the detailed 3-D structures of the dynein-MT complex and will shed light on the motor mechanism of the dynein molecule. 相似文献
20.
Mio K Ogura T Kiyonaka S Hiroaki Y Tanimura Y Fujiyoshi Y Mori Y Sato C 《Journal of molecular biology》2007,367(2):373-383
Transient receptor potential (TRP) channels are intrinsic sensors adapted for response to all manner of stimuli both from inside and from outside the cell. Within the TRP superfamily, the canonical TRP-3 (TRPC3) has been widely studied and is involved in various biological processes such as neuronal differentiation, blood vessel constriction, and immune cell maturation. Upon stimulation of surface membrane receptors linked to phospholipase C, TRPC3 mediates transmembrane Ca(2+) influx from outside the cell to control Ca(2+) signaling, in concert with the Ca(2+) release from internal stores. The structural basis of TRP superfamily has, however, been poorly understood. Here we present a structure of the TRPC3 at 15 A resolution. This first 3D depiction of TRP superfamily was reconstructed from 135,909 particle images obtained with cryo-electron microscopy. The large intracellular domain represents a "nested-box" structure: a wireframe outer shell is functionable as sensors for activators and modulators, and a globular inner chamber may modulate ion flow, since it is aligned tandem along the central axis with the dense membrane-spanning core. The transmembrane domain demonstrates a pore-forming property. This structure implies that the TRP superfamily has diversely evolved as sensors specialized for various signals, rather than as simple ion-conducting apparatuses. 相似文献