首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The antiproliferative effects of gamma-tocotrienol are associated with suppression in epidermal growth factor (EGF)-dependent phosphatidylinositol-3-kinase (PI3K)/PI3K-dependent kinase-1 (PDK-1)/Akt mitogenic signalling in neoplastic mammary epithelial cells. Studies were conducted to investigate the direct effects of gamma-tocotrienol treatment on specific components within the PI3K/PDK-1/Akt mitogenic pathway. +SA cells were grown in culture and maintained in serum-free media containing 10 ng/ml EGF as a mitogen. Treatment with 0-8 microm gamma-tocotrienol resulted in a dose-responsive decrease in the +SA cell growth and a corresponding decrease in phospho-Akt (active) levels. However, gamma-tocotrienol treatment had no direct inhibitory effect on Akt or PI3K enzymatic activity, suggesting that the inhibitory effects of gamma-tocotrienol occur upstream of PI3K, possibly at the level of the EGF-receptor (ErbB1). Additional studies were conducted to determine the effects of gamma-tocotrienol on ErbB receptor activation. Results showed that gamma-tocotrienol treatment had little or no effect on ErbB1 or ErbB2 receptor tyrosine phosphorylation, a prerequisite for substrate interaction and signal transduction, but did cause a significant and progressive decrease in the ErbB3 tyrosine phosphorylation. Because ErbB1 or ErbB2 receptors form heterodimers with the ErbB3 receptor, and ErbB3 heterodimers have been shown to be the most potent activators of PI3K, these findings strongly suggest that the antiproliferative effects of gamma-tocotrienol in neoplastic +SA mouse mammary epithelial cells are mediated by a suppression in ErbB3-receptor tyrosine phosphorylation and subsequent reduction in PI3K/PDK-1/Akt mitogenic signalling.  相似文献   

4.
Tocotrienols, a subclass in the vitamin E family of compounds, have been shown to induce apoptosis by activating caspase-8 and caspase-3 in neoplastic mammary epithelial cells. Since caspase-8 activation is associated with death receptor apoptotic signaling, studies were conducted to determine the exact death receptor/ligand involved in tocotrienol-induced apoptosis. Highly malignant +SA mouse mammary epithelial cells were grown in culture and maintained in serum-free media. Treatment with 20 microM gamma-tocotrienol decreased+SA cell viability by inducing apoptosis, as determined by positive terminal dUTP nick end labeling (TUNEL) immunocytochemical staining. Western blot analysis showed that gamma-tocotrienol treatment increased the levels of cleaved (active) caspase-8 and caspase-3. Combined treatment with caspase inhibitors completely blocked tocotrienol-induced apoptosis. Additional studies showed that treatment with 100 ng/ml tumor necrosis factor-alpha (TNF-alpha), 100 ng/ml FasL, 100 ng/ml TNF-related apoptosis-inducing ligand (TRAIL), or 1 microg/ml apoptosis-inducing Fas antibody failed to induce death in +SA cells, indicating that this mammary tumor cell line is resistant to death receptor-induced apoptosis. Furthermore, treatment with 20 microM gamma-tocotrienol had no effect on total, membrane, or cytosolic levels of Fas, Fas ligand (FasL), or Fas-associated via death domain (FADD) and did not induce translocation of Fas, FasL, or FADD from the cytosolic to the membrane fraction, providing additional evidence that tocotrienol-induced caspase-8 activation is not associated with death receptor apoptotic signaling. Other studies showed that treatment with 20 microM gamma-tocotrienol induced a large decrease in the relative intracellular levels of phospho-phosphatidylinositol 3-kinase (PI3K)-dependent kinase 1 (phospho-PDK-1 active), phospho-Akt (active), and phospho-glycogen synthase kinase3, as well as decreasing intracellular levels of FLICE-inhibitory protein (FLIP), an antiapoptotic protein that inhibits caspase-8 activation, in these cells. Since stimulation of the PI3K/PDK/Akt mitogenic pathway is associated with increased FLIP expression, enhanced cellular proliferation, and survival, these results indicate that tocotrienol-induced caspase-8 activation and apoptosis in malignant +SA mammary epithelial cells is associated with a suppression in PI3K/PDK-1/Akt mitogenic signaling and subsequent reduction in intracellular FLIP levels.  相似文献   

5.
Studies were conducted to determine the comparative effects of tocopherols and tocotrienols on preneoplastic (CL-S1), neoplastic (-SA), and highly malignant (+SA) mouse mammary epithelial cell growth and viability in vitro. Over a 5-day culture period, treatment with 0-120 microM alpha- and gamma-tocopherol had no effect on cell proliferation, whereas growth was inhibited 50% (IC50) as compared with controls by treatment with the following: 13, 7, and 6 microM tocotrienol-rich-fraction of palm oil (TRF); 55, 47, and 23 microM delta-tocopherol; 12, 7, and 5 microM alpha-tocotrienol; 8, 5, and 4 microM gamma-tocotrienol; or 7, 4, and 3 microM delta-tocotrienol in CL-S1, -SA and +SA cells, respectively. Acute 24-hr exposure to 0-250 microM alpha- or gamma-tocopherol (CL-S1, -SA, and +SA) or 0-250 microM delta-tocopherol (CL-S1) had no effect on cell viability, whereas cell viability was reduced 50% (LD50) as compared with controls by treatment with 166 or 125 microM delta-tocopherol in -SA and +SA cells, respectively. Additional LD50 doses were determined as the following: 50, 43, and 38 microM TRF; 27, 28, and 23 microM alpha-tocotrienol; 19, 17, and 14 microM gamma-tocotrienol; or 16, 15, or 12 microM delta-tocotrienol in CL-S1, -SA, and +SA cells, respectively. Treatment-induced cell death resulted from activation of apoptosis, as indicated by DNA fragmentation. Results also showed that CL-S1, -SA, and +SA cells preferentially accumulate tocotrienols as compared with tocopherols, and this may partially explain why tocotrienols display greater biopotency than tocopherols. These data also showed that highly malignant +SA cells were the most sensitive, whereas the preneoplastic CL-S1 cells were the least sensitive to the antiproliferative and apoptotic effects of tocotrienols, and suggest that tocotrienols may have potential health benefits in preventing and/or reducing the risk of breast cancer in women.  相似文献   

6.
Tocotrienols are vitamin E members with potent antiproliferative activity against preneoplastic and neoplastic mammary epithelial cells with little or no effect on normal cell growth or functions. However, physicochemical and pharmacokinetic properties greatly limit their use as therapeutic agents. Tocotrienols' chemical instability, poor water solubility, NPC1L1-mediated transport, and rapid metabolism are examples of such obstacles which hinder the therapeutic use of these valuable natural products. Vitamin E esters like α-tocopheryl succinate were prepared to significantly improve chemical and metabolic stability, water solubility, and potency. Thus, 12 semisynthetic tocotrienol ester analogues 4-15 were prepared by direct esterification of natural tocotrienol isomers with various acid anhydrides or chlorides. Esters 4-15 were evaluated for their ability to inhibit the proliferation and migration of the mammary tumor cells +SA and MDA-MB-231, respectively. Esters 5, 9, and 11 effectively inhibited the proliferation of the highly metastatic +SA rodent mammary epithelial cells with IC(50) values of 0.62, 0.51, and 0.86μM, respectively, at doses that had no effect on immortalized normal mouse CL-S1 mammary epithelial cells. Esters 4, 6, 8-10, and 13 inhibited 50% of the migration of the human metastatic MDA-MB-231 breast cancer cells at a single 5μM dose in wound-healing assay. The most active ester 9 was 1000-fold more water-soluble and chemically stable versus its parent α-tocotrienol (1). These findings strongly suggest that redox-silent tocotrienol esters may provide superior therapeutic forms of tocotrienols for the control of metastatic breast cancer.  相似文献   

7.
The role of intracellular Ca2+ stores and capacitative Ca2+ entry on EGF-induced cell proliferation was investigated in mouse mammary epithelial cells. We have previously demonstrated that EGF enhances Ca2+ mobilization (release of Ca2+ from intracellular Ca2+ stores) and capacitative Ca2+ entry correlated with cell proliferation in mouse mammary epithelial cells. To confirm their role on EGF-induced cell cycle progression, we studied the effects of 2,5-di-tert-butylhydroquinone (DBHQ), a reversible inhibitor of the Ca2+ pump of intracellular Ca2+ stores, and SK&F 96365, a blocker of capacitative Ca2+ entry, on mitotic activity induced by EGF. Mitotic activity was examined using an antibody to PCNA for immunocytochemistry. SK&F 96365 inhibited capacitative Ca2+ entry in a dose-dependent manner (I50: 1-5 microM). SK&F 96365 also inhibited EGF-induced cell proliferation in the same range of concentration (I50: 1-5 microM). DBHQ suppressed [Ca2+]i response to UTP and thus depleted completely Ca2+ stores at 5 microM. DBHQ also inhibited EGF-induced cell proliferation at an I50 value of approximately 10 microM. The removal of these inhibitors from the culture medium increased the reduced mitotic activity reversibly. Using a fluorescent assay of DNA binding of ethidium bromide, no dead cells were detected in any of the cultures. These results indicate that the inhibitory effects of SK&F 96365 and DBHQ on cell proliferation were due to the inhibition of capacitative Ca2+ entry and Ca2+ mobilization suggesting the importance of capacitative Ca2+ entry and Ca2+ mobilization in the control of EGF-induced cell cycle progression in mouse mammary epithelial cells.  相似文献   

8.
Tocotrienols and tocopherols represent the 2 subgroups within the vitamin E family of compounds, but tocotrienols display significantly greater apoptotic activity against a variety of cancer cell types. However, the exact mechanism mediating tocotrienol-induced apoptosis is not understood. Studies were conducted to determine the effects of tocotrienols on mitochondrial-stress-mediated apoptotic signaling in neoplastic +SA mammary epithelial cells grown in vitro. Exposure for 24 h to 0-20 micromol/L gamma-tocotrienol resulted in a dose-responsive increase in +SA cells undergoing apoptosis, as determined by flow cytometric analysis of Annexin V staining. However, tocotrienol-induced apoptosis was not associated with a disruption or loss of mitochondrial membrane potential, or the release of mitochondrial cytochrome c into the cytoplasm, as determined by JC-1 flow cytometric staining and ELISA assay, respectively. Interestingly, apoptotic +SA cells showed a paradoxical decrease in mitochondrial levels of pro-apoptotic proteins Bid, Bax, and Bad, and a corresponding increase in mitochondrial levels of anti-apoptotic proteins, Bcl-2 and Bcl-xL, suggesting that mitochondrial membrane stability and integrity might actually be enhanced for a limited period of time following acute tocotrienol exposure. In summary, these findings clearly demonstrate that tocotrienol-induced apoptosis occurs independently of mitochondrial stress apoptotic signaling in neoplastic +SA mammary epithelial cells.  相似文献   

9.
10.
11.
Cancer progression depends on an accumulation of metastasis supporting cell signaling molecules that target signal transduction pathways and ultimately gene expression. Osteopontin (OPN) is one such chemokine like metastasis gene which plays a key signaling event in regulating the oncogenic potential of various cancers by controlling cell motility, invasiveness and tumor growth. We have reported that OPN stimulates tumor growth and nuclear factor kappaB (NFkappaB)-mediated promatrix metalloproteinase-2 (pro-MMP-2) activation through IkappaBalpha/IKK (IkappaBalpha kinase) signaling pathway in melanoma cells. Urokinase type plasminogen activator (uPA), a widely acting serine protease degrades the ECM components and plays a pivotal role in cancer progression. However, the molecular mechanism by which upstream kinases regulate the OPN-induced NFkappaB activation and uPA secretion in human breast cancer cells is not well defined. Here we report that OPN induces the phosphatidylinositol 3'-kinase (PI 3'-kinase) activity and phosphorylation of Akt/PKB (protein kinase B) in highly invasive (MDA-MB-231) and low invasive (MCF-7) breast cancer cells. The OPN-induced Akt phosphorylation was inhibited when cells were transfected with dominant negative mutant of p85 domain of PI 3'-kinase (Deltap85) indicating that PI 3'-kinase is involved in Akt phosphorylation. OPN enhances the interaction between IkappaBalpha kinase (IKK) and phosphorylated Akt. OPN also induces NFkappaB activation through phosphorylation and degradation of IkappaBalpha by inducing the IKK activity. OPN also enhances uPA secretion, cell motility and ECM-invasion. Furthermore, cells transfected with Deltap85 or super-repressor form of IkappaBalpha suppressed the OPN-induced uPA secretion and cell motility. Pretreatment of cells with PI 3'-kinase inhibitors or NFkappaB inhibitory peptide (SN50) reduced the OPN-induced uPA secretion, cell motility and ECM-invasion. Taken together, OPN induces NFkappaB activity and uPA secretion by activating PI 3'-kinase/Akt/IKK-mediated signaling pathways and further demonstrates a functional molecular link between OPN induced PI 3'-kinase dependent Akt phosphorylation and NFkappaB-mediated uPA secretion, and all of these ultimately control the motility and invasiveness of breast cancer cells.  相似文献   

12.
c-Myc-overexpressing mammary epithelial cells are proapoptotic; their survival is strongly promoted by epidermal growth factor (EGF). We now demonstrate that EGF-induced Akt activation and survival in transgenic mouse mammary tumor virus-c-Myc mouse mammary carcinoma cells are both calcium/calmodulin-dependent. Akt activation is abolished by the phospholipase C-gamma inhibitor U-73122, by the intracellular calcium chelator BAPTA-AM, and by the specific calmodulin antagonist W-7. These results implicate calcium/calmodulin in the activation of Akt in these cells. In addition, Akt activation by serum and insulin is also inhibited by W-7. EGF-induced and calcium/calmodulin-mediated Akt activation occurs in both tumorigenic and non-tumorigenic mouse and human mammary epithelial cells, independent of their overexpression of c-Myc. These results imply that calcium/calmodulin may be a common regulator of Akt activation, irrespective of upstream receptor activator, mammalian species, and transformation status in mammary epithelial cells. However, only c-Myc-overexpressing mouse mammary carcinoma cells (but not normal mouse mammary epithelial cells) undergo apoptosis in the presence of the calmodulin antagonist W-7, indicating the vital selective role of calmodulin for survival of these cells. Calcium/calmodulin-regulated Akt activation is mediated directly by neither calmodulin kinases nor phosphatidylinositol 3-kinase (PI-3 kinase). Pharmacological inhibitors of calmodulin kinase kinase and calmodulin kinases II and III do not inhibit EGF-induced Akt activation, and calmodulin antagonist W-7 does not inhibit phosphotyrosine-associated PI-3 kinase activation. Akt is, however, co-immunoprecipitated with calmodulin in an EGF-dependent manner, which is inhibited by calmodulin antagonist W-7. We conclude that calmodulin may serve a vital regulatory function to direct the localization of Akt to the plasma membrane for its activation by PI-3 kinase.  相似文献   

13.
Protein tyrosine kinase 6 (PTK6) (also called Brk or Sik) is an intracellular tyrosine kinase that is expressed in breast cancer and normal epithelial linings. In adult mice, PTK6 expression is high in villus epithelial cells of the small intestine. To explore functions of PTK6, we disrupted the mouse Ptk6 gene. We detected longer villi, an expanded zone of PCNA expression, and increased bromodeoxyuridine incorporation in the PTK6-deficient small intestine. Although differentiation of major epithelial cell types occurred, there was a marked delay in expression of intestinal fatty acid binding protein, suggesting a role for PTK6 in enterocyte differentiation. However, fat absorption was comparable in wild-type and Ptk6-/- mice. It was previously shown that the serine threonine kinase Akt is a substrate of PTK6 and that PTK6-mediated phosphorylation of Akt on tyrosine resulted in inhibition of Akt activity. Consistent with these findings, we detected increased Akt activity and nuclear beta-catenin in intestines of PTK6-deficient mice and decreased nuclear localization of the Akt substrate FoxO1 in villus epithelial cells. PTK6 contributes to maintenance of tissue homeostasis through negative regulation of Akt in the small intestine and is associated with cell cycle exit and differentiation in normal intestinal epithelial cells.  相似文献   

14.
GPR40 has recently been identified as a G protein-coupled cell-surface receptor for long-chain fatty acids (LCFAs). The mRNA of the bovine ortholog of GPR40 (bGPR40) was detected by RT-PCR in cloned bovine mammary epithelial cells (bMEC) and in the bovine mammary gland at various stages of lactation. Oleate and linoleate caused an increase in intracellular Ca2+ concentrations in these cells, and significantly reduced forskolin-induced cAMP concentrations. Phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 and Akt kinase, which regulates cell proliferation and survival, was rapidly increased by oleate. Incubation with oleate and linoleate for 24 h significantly promoted cell proliferation. Moreover, in serum-free medium, oleate significantly stimulated cell proliferation during a 7-day culture. These results suggest that bGPR40 mediates LCFA signaling in mammary epithelial cells and thereby plays an important role in cell proliferation and survival.  相似文献   

15.
Cyclooxygenase 2 (COX-2) expression is induced by physiological and inflammatory stimuli. Regulation of COX-2 expression is stimulus and cell type specific. Exposure to Zn2+ has been associated with activation of multiple intracellular signaling pathways as well as the induction of COX-2 expression. This study aims to elucidate the role of intracellular signaling pathways in Zn2+-induced COX-2 expression in human bronchial epithelial cells. Inhibitors of the phosphatidylinositol 3-kinase (PI3K) potently block Zn2+-induced COX-2 mRNA and protein expression. Overexpression of adenoviral constructs encoding dominant-negative Akt kinase downstream of PI3K or wild-type phosphatase and tensin homolog deleted on chromosome 10, an important PI3K phosphatase, suppresses COX-2 mRNA expression induced by Zn2+. Zn2+ exposure induces phosphorylation of the tyrosine kinases, including Src and EGF receptor (EGFR), and the p38 mitogen-activated protein kinase. Blockage of these kinases results in inhibition of Zn2+-induced Akt phosphorylation as well as COX-2 protein expression. Overexpression of dominant negative p38 constructs suppresses Zn2+-induced increase in COX-2 promoter activity. In contrast, the c-Jun NH2-terminal kinase and the extracellular signal-regulated kinases have minimal effect on Akt phosphorylation and COX-2 expression. Inhibition of p38, Src, and EGFR kinases with pharmacological inhibitors markedly reduces Akt phosphorylation induced by Zn2+. However, the PI3K inhibitors do not show inhibitory effects on p38, Src, and EGFR. These data suggest that p38 and EGFR kinase-mediated Akt activation is required for Zn2+-induced COX-2 expression and that the PI3K/Akt signaling pathway plays a central role in this event.  相似文献   

16.
In the course of a project aimed to clarify the molecular mechanisms by which phorbol 12-myristate 13-acetate (PMA)-activated forms of protein kinase C (PKC) promote growth arrest in an MCF-7 cell line, we found that the PKCdelta inhibitor Rottlerin was able by itself to block cell proliferation. In the current study, we investigated further the antiproliferative response to Rottlerin. Western blotting analysis of cytoplasmic/nuclear extracts showed that the drug did not prevent either extracellular signal-regulated kinase (ERK) activation by PMA or Akt phosphorylation, but did interfere with the NFkappaB activation process (both basal and PMA-stimulated), by lowering the levels of phospho-IkappaBalpha and preventing p65 nuclear migration. The growth arrest evoked by Rottlerin was not mediated by cell-cycle inhibitors p21 and p27 but was accompanied by a dramatic fall in the cyclin-D1 protein, the levels of which were not altered by the pan-PKC inhibitor GF 109203X, thus excluding a PKC-mediated mechanism in the Rottlerin effect. The parallel drop in cyclin-D1 mRNA suggested a down-regulation of the gene caused by the inhibition of nuclear factor-kappa B (NFkappaB), which occurs via a PKC-, Akt-, ERK- and mitochondrial uncoupling-independent mechanism. We provide preliminary evidence that the interference on the NFkappaB activation process likely occurs at the level of calcium/calmodulin-dependent protein kinase II (CaMKII), a known Rottlerin target. Indeed the drug prevented calcium-induced CaMKII autophosphorylation which, in turn, led to decreased NFkappaB activation.  相似文献   

17.
The tumor suppressor PTEN is a lipid phosphatase that is frequently mutated in various human cancers. PTEN suppresses tumor cell proliferation, survival, and growth mainly by inhibiting the PI3K-Akt signaling pathway through dephosphorylation of phosphatidylinositol 3,4,5-triphosphate. In addition to it role in tumor suppression, the PTEN-PI3K pathway controls many cellular functions, some of which may be important for cellular resistance to infection. Currently, the intersection between tumorigenic signaling pathways and cellular susceptibility to infection is not well defined. In this study we report that PTEN signaling regulates infection of both noncancerous and cancerous cells by multiple intracellular mycobacterial pathogens and that pharmacological modulation of PTEN signaling can affect mycobacterial infection. We found that PTEN deficiency renders multiple types of cells hyper-susceptible to infection by Mycoplasma and Mycobacterium bovis Bacillus Calmette-Guérin (BCG). The lipid phosphatase activity of PTEN is required for attenuating infection. Furthermore, we found mycobacterial infection activates host cell Akt phosphorylation, and pharmacological inhibition of Akt or PI3K activity reduced levels of intracellular infection. Intriguingly, inhibition of mTOR, one of the downstream components of the Akt signaling and a promising cancer therapeutic target, also lowered intracellular Bacillus Calmette-Guérin levels in mammary epithelial cancer MCF-7 cells. These findings demonstrate a critical role of PTEN-regulated pathways in pathogen infection. The relationship of PTEN-PI3K-Akt mTOR status and susceptibility to mycobacterial infection suggests that the interaction of mycobacterial pathogens with cancer cells may be influenced by genetic alterations in the tumor cells.  相似文献   

18.
19.
Both prolactin (PRL) and TGF-beta regulate cell survival in mammary epithelial cells, but their mechanisms of interactions are not known. In primary mammary epithelial cells and the HC11 mouse mammary epithelial cell line, PRL prevented TGF-beta-induced apoptosis, as measured by terminal deoxynucleotidyltransferase dUTP nick-end labeling staining and caspase-3 activation. This effect depended on phosphatidyl inositol triphosphate kinase (PI3K). PI3K activates a downstream serine/threonine kinase, Akt; therefore, we investigated the role of Akt in the interaction between PRL and TGF-beta signaling. Akt activity was inhibited by TGF-beta over a 20- to 60-min time course. In TGF-beta-treated cells, PRL disinhibited Akt in a PI3K-dependent manner. Expression of dominant negative Akt blocked the protective effect of PRL in TGF-beta-induced apoptosis. Transgenic mice overexpressing a dominant-negative TGF-beta type II receptor (DNIIR) in the mammary epithelium undergo hyperplastic alveolar development, and this effect was PRL dependent. Involution in response to teat sealing was slowed by overexpression of DNIIR; furthermore, Akt and forkhead phosphorylation increased in the sealed mammary glands of DNIIR mice. Thus, Akt appears to be an essential component of the interaction between PRL and TGF-beta signaling in mammary epithelial cells both in vitro and in vivo.  相似文献   

20.
Biological and morphological differences in the mammary tumors of BALB/cfC3H and BALB/cfRIII mice are due to differences in the causative viruses. The C3H and RIII variants of the murine mammary tumor virus (MuMTV) might give origin to different mammary tumors by transforming different types of cell, i.e. epithelial or myoepithelial cells. The nature (epithelial or myoepithelial) of the neoplastic cells has been investigated by demonstrating their plasma membrane ATPase activities. We found that in normal murine mammary gland both epithelium and myoepithelium have Mg++ dependent ATPase activity, while the myoepithelium shows in addition an Na+K+ dependent ATPase activity. It is suggested that the results obtained exclude the participation of myoepithelium to the neoplastic growth and we ascribe the differences in mammary tumors of the two strains of mice to differences in the mechanisms of action of the virus variants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号