首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wan W  Dixon JB  Gleason RL 《Biophysical journal》2012,102(12):2916-2925
Changes in the local mechanical environment and tissue mechanical properties affect the biological activity of cells and play a key role in a variety of diseases, such as cancer, arthritis, nephropathy, and cardiovascular disease. Constitutive relations have long been used to predict the local mechanical environment within biological tissues and to investigate the relationship between biological responses and mechanical stimuli. Recent constitutive relations for soft tissues consider both material and structural properties by incorporating parameters that describe microstructural organization, such as fiber distributions, fiber angles, fiber crimping, and constituent volume fractions. The recently developed technique of imaging the microstructure of a single artery as it undergoes multiple deformations provides quantitative structural data that can reduce the number of estimated parameters by using parameters that are truly experimentally intractable. Here, we employed nonlinear multiphoton microscopy to quantify collagen fiber organization in mouse carotid arteries and incorporated measured fiber distribution data into structurally motivated constitutive relations. Microscopy results demonstrate that collagen fibers deform in an affine manner over physiologically relevant deformations. The incorporation of measured fiber angle distributions into constitutive relations improves the model's predictive accuracy and does not significantly reduce the goodness of fit. The use of measured structural parameters rather than estimated structural parameters promises to improve the predictive capabilities of the local mechanical environment, and to extend the utility of intravital imaging methods for estimating the mechanical behavior of tissues using in situ structural information.  相似文献   

2.
Cerebrovascular disease continues to be responsible for significant morbidity and mortality. There is, therefore, a pressing need to understand better the biomechanics of both intracranial arteries and the extracranial arteries that feed these vessels. We used a validated four-fiber family constitutive relation to model passive biaxial stress-stretch behaviors of basilar and common carotid arteries and we developed a new relation to model their active biaxial responses. These data and constitutive relations allow the first full comparison of circumferential and axial biomechanical behaviors between a muscular (basilar) and an elastic (carotid) artery from the same species. Our active model describes the responses by both types of vessels to four doses of the vasoconstrictor endothelin-1 (10(-10)M, 10(-9)M, 10(-8)M, and 10(-7)M) and predicts levels of smooth muscle cell activation associated with basal tone under specific in vitro testing conditions. These results advance our understanding of the biomechanics of intracranial and extracranial arteries, which is needed to understand better their differential responses to similar perturbations in hemodynamic loading.  相似文献   

3.
In this study, we sought to model the mechanical behavior of an electrospun tubular scaffold previously reported for vascular tissue engineering with hyperelastic constitutive equations. Specifically, the scaffolds were made by wrapping electrospun polycaprolactone membranes that contain aligned fibers around a mandrel in such a way that they have microstructure similar to the native arterial media. The biaxial stress-stretch data of the scaffolds made of moderately or highly aligned fibers with three different off-axis fiber angles \(\alpha \) (30\(^\circ \), 45\(^\circ \), and 60\(^\circ \)) were fit by a phenomenological Fung model and a series of structurally motivated models considering fiber directions and fiber angle distributions. In particular, two forms of fiber strain energy in the structurally motivated model for a linear and a nonlinear fiber stress–strain relation, respectively, were tested. An isotropic neo-Hookean strain energy function was also added to the structurally motivated models to examine its contribution. The two forms of fiber strain energy did not result in significantly different goodness of fit for most groups of the scaffolds. The absence of the neo-Hookean term in the structurally motivated model led to obvious nonlinear stress-stretch fits at a greater axial stretch, especially when fitting data from the scaffolds with a small \(\alpha \). Of the models considered, the Fung model had the overall best fitting results; its applications are limited because of its phenomenological nature. Although a structurally motivated model using the nonlinear fiber stress–strain relation with the neo-Hookean term provided fits comparably as good as the Fung model, the values of its model parameters exhibited large within-group variations. Prescribing the dispersion of fiber orientation in the structurally motivated model, however, reduced the variations without compromising the fits and was thus considered to be the best structurally motivated model for the scaffolds. It appeared that the structurally motivated models could be further improved for fitting the mechanical behavior of the electrospun scaffold; fiber interactions are suggested to be considered in future models.  相似文献   

4.
5.
The pathogenesis of the human muscular dystrophies is unknown, and several competing hypotheses have been proposed. The vascular hypothesis states that muscle fibre necrosis occurs in dystrophy as a result of transient muscle ischemia. Although abnormalities of the vascular system may be demonstrated in dystrophy, their role in pathogenesis remains obscure. The responses to serotonin (5-HT) and noradrenaline (NA) were examined in isolated ischiatic artery preparations from normal and genetically dystrophic chickens. The tension generated in response to 5-HT was greater in arteries from normal chickens than in arteries from dystrophic chickens, whereas responses to NA were similar. Analysis of the concentration-response relationships demonstrated that the dystrophic ischiatic artery was less sensitive to 5-HT than was the normal artery, although the sensitivity to NA was similar in both vessels. The results of this study are not consistent with the view that muscle fibre necrosis in avian dystrophy is a consequence of muscle anoxia. These data do demonstrate pharmacological differences between dystrophic avian arteries and arteries from normal chickens, but their presence may represent merely the expression of dystrophy in vascular smooth muscle.  相似文献   

6.
Muscular dystrophy is characterized by skeletal muscle weakness and wasting, but little is known about possible alterations to the vasculature. Many muscular dystrophies are caused by a defective dystrophin-glycoprotein complex (DGC), which plays an important role in mechanotransduction and maintenance of structural integrity in muscle cells. The DGC is a group of membrane-associated proteins, including dystrophin and sarcoglycan-delta, that helps connect the cytoskeleton of muscle cells to the extracellular matrix. In this paper, mice lacking genes encoding dystrophin (mdx) or sarcoglycan-delta (sgcd-/-) were studied to detect possible alterations to vascular wall mechanics. Pressure-diameter and axial force-length tests were performed on common carotid arteries from mdx, sgcd-/-, and wild-type mice in active (basal) and passive smooth muscle states, and functional responses to three vasoactive compounds were determined at constant pressure and length. Apparent biomechanical differences included the following: mdx and sgcd-/- arteries had decreased distensibilities in pressure-diameter tests, with mdx arteries exhibiting elevated circumferential stresses, and mdx and sgcd-/- arteries generated elevated axial loads and stresses in axial force-length tests. Interestingly, however, mdx and sgcd-/- arteries also had significantly lower in vivo axial stretches than did the wild type. Accounting for this possible adaptation largely eliminated the apparent differences in circumferential and axial stiffness, thus suggesting that loss of DGC proteins may induce adaptive biomechanical changes that can maintain overall wall mechanics in response to normal loads. Nevertheless, there remains a need to understand better possible vascular adaptations in response to sustained altered loads in patients with muscular dystrophy.  相似文献   

7.
Cigarette smoking is the leading self-inflicted risk factor for cardiovascular diseases; it causes arterial stiffening with serious sequelea including atherosclerosis and abdominal aortic aneurysms. This work presents a new interpretation of arterial stiffening caused by smoking based on data published for rat pulmonary arteries. A structurally motivated "four fiber family" constitutive relation was used to fit the available biaxial data and associated best-fit values of material parameters were estimated using multivariate nonlinear regression. Results suggested that arterial stiffening caused by smoking was reflected by consistent increase in an elastin-associated parameter and moreover by marked increase in the collagen-associated parameters. That is, we suggest that arterial stiffening due to cigarette smoking appears to be isotropic, which may allow simpler phenomenological models to capture these effects using a single stiffening parameter similar to the approach in isotropic continuum damage mechanics. There is a pressing need, however, for more detailed histological information coupled with more complete biaxial mechanical data for a broader range of systemic arteries.  相似文献   

8.
The biomechanics of large- and medium-sized arteries influence the pathophysiology of arterial disease and the response to therapeutic interventions. However, a comprehensive comparative analysis of human arterial biaxial mechanical properties has not yet been reported. Planar biaxial extension was used to establish the passive mechanical properties of human thoracic (TA, \(n=8\) ) and abdominal (AA, \(n=7\) ) aorta, common carotid (CCA, \(n=21\) ), subclavian (SA, \(n=12\) ), renal (RA, \(n=13\) ) and common iliac (CIA, \(n=16\) ) arteries from 11 deceased subjects ( \(54\pm 21\)  years old). Histological evaluation determined the structure of each specimen. Experimental data were used to determine constitutive parameters for a structurally motivated nonlinear anisotropic constitutive model. All arteries demonstrated appreciable anisotropy and large nonlinear deformations. Most CCA, SA, TA, AA and CIA specimens were stiffer longitudinally, while most RAs were stiffer circumferentially. A switch in anisotropy was occasionally demonstrated for all arteries. The CCA was the most compliant, least anisotropic and least frequently diseased of all arteries, while the CIA and AA were the stiffest and the most diseased. The severity of atherosclerosis correlated with age, but was not affected by laterality. Elastin fibers in the aorta, SA and CCA were uniformly and mostly circumferentially distributed throughout the media, while in the RA and CIA, elastin was primarily axially aligned and concentrated in the external elastic lamina. Constitutive modeling provided good fits to the experimental data for most arteries. Biomechanical and architectural features of major arteries differ depending on location and functional environment. A better understanding of localized arterial mechanical properties may support the development of site-specific treatment modalities for arterial disease.  相似文献   

9.
An axisymmetric deformation of a viscoelastic sphere bounded by a prestressed elastic thin shell in response to external pressure is studied by a finite element method. The research is motivated by the need for understanding the passive behavior of human leukocytes (white blood cells) and interpreting extensive experimental data in terms of the mechanical properties. The cell at rest is modeled as a sphere consisting of a cortical prestressed shell with incompressible Maxwell fluid interior. A large-strain deformation theory is developed based on the proposed model. General non-linear, large strain constitutive relations for the cortical shell are derived by neglecting the bending stiffness. A representation of the constitutive equations in the form of an integral of strain history for the incompressible Maxwell interior is used in the formulation of numerical scheme. A finite element program is developed, in which a sliding boundary condition is imposed on all contact surfaces. The mathematical model developed is applied to evaluate experimental data of pipette tests and observations of blood flow.  相似文献   

10.
We present a new constitutive formulation that combines certain desirable features of two previously used approaches (phenomenological and microstructural). Specifically, we assume that certain soft tissues can be idealized as composed of various families of noninteracting fibers and a homogeneous matrix. Both the fibers and the matrix are assumed to follow the gross deformation. Within the usual framework of pseudoelasticity, incompressibility, homogeneity, and the continuum hypothesis, a pseudostrain-energy function (W) is proposed wherein W is expressed in terms of matrix and fibrous contributions. Unlike phenomenological approaches where a W is usually chosen in an ad hoc manner, the present approach can be used to postulate reasonable forms of W based on limited structural information and multiaxial stress-strain data. Illustrative applications of the theory are discussed for visceral pleura and myocardium. Concise structurally motivated constitutive relations result, wherein load-dependent anisotropy, nonlinear material behavior, finite deformations, and incompressibility are accounted for.  相似文献   

11.
Among organ systems, skeletal muscle is perhaps the most structurally specialized. The remarkable subcellular architecture of this tissue allows it to empower movement with instructions from motor neurons. Despite this high degree of specialization, skeletal muscle also has intrinsic signaling mechanisms that allow adaptation to long-term changes in demand and regeneration after acute damage. The second messenger adenosine 3',5'-monophosphate (cAMP) not only elicits acute changes within myofibers during exercise but also contributes to myofiber size and metabolic phenotype in the long term. Strikingly, sustained activation of cAMP signaling leads to pronounced hypertrophic responses in skeletal myofibers through largely elusive molecular mechanisms. These pathways can promote hypertrophy and combat atrophy in animal models of disorders including muscular dystrophy, age-related atrophy, denervation injury, disuse atrophy, cancer cachexia, and sepsis. cAMP also participates in muscle development and regeneration mediated by muscle precursor cells; thus, downstream signaling pathways may potentially be harnessed to promote muscle regeneration in patients with acute damage or muscular dystrophy. In this review, we summarize studies implicating cAMP signaling in skeletal muscle adaptation. We also highlight ligands that induce cAMP signaling and downstream effectors that are promising pharmacological targets.  相似文献   

12.
Nuclear envelope-related muscular dystrophies, in particular those referred to as laminopathies, are relatively novel and unclear diseases, also considering the increasing number of mutations identified so far in genes of the nuclear envelope. As regard LMNA gene, only tentative relations between phenotype, type and localization of the mutations have been established in striated muscle diseases, while laminopathies affecting adipose tissue, peripheral nerves or progerioid syndromes could be linked to specific genetic variants. This study describes the biochemical phenotype of neuromuscular laminopathies in samples derived from LMNA mutant patients. Since it has been reported that nuclear alterations, due to LMNA defects, are present also in fibroblasts from Emery-Dreifuss muscular dystrophy and familial partial lipodystrophy patients, we analyzed 2D-maps of skin fibroblasts of patients carrying 12 different LMNA mutations spread along the entire gene. To recognize distinctive proteins underlying affected biochemical pathways, we compared them with fibroblasts from healthy controls and, more importantly, fibroblasts from patients with non-lamin related neuromuscular disorders. We found less abundance of cytoskeletal/structural proteins, confirming a dominant role for Lamin A/C in structural support of nuclear architecture. Interestingly, we also established significant changes in the expression of proteins involved in cellular energy production and oxidative stress response. To our knowledge, this is the first report where proteomics was applied to characterize ex-vivo cells from LMNA patients, suggesting that this may represent a new approach to better understand the molecular mechanisms of these rare diseases and facilitate the development of novel therapeutic treatments.  相似文献   

13.
14.
Golden retriever muscular dystrophy (GRMD) provides the best animal model for characterizing the disease progress of the human disorder, Duchenne muscular dystrophy (DMD). The purpose of this study was to determine steroid hormone concentration profiles in healthy golden retriever dogs (control group - CtGR) versus GRMD-gene carrier (CaGR) and affected female dogs (AfCR). Therefore, a sensitive and specific analytical method was developed and validated to determine the estradiol, progesterone, cortisol, and testosterone levels in the canine serum by isotope dilution liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). To more accurately understand the dynamic nature of the serum steroid profile, the fluctuating levels of these four steroid hormones over the estrous cycle were compared across the three experimental groups using a multivariate statistical analysis. The concentration profiles of estradiol, cortisol, progesterone, and testosterone revealed a characteristic pattern for each studied group at each specific estrous phase. Additionally, several important changes in the serum concentrations of cortisol and estradiol in the CaGR and AfCR groups seem to be correlated with the status and progression of the muscular dystrophy. A comprehensive and quantitative monitoring of steroid profiles throughout the estrous cycle of normal and GRMD dogs were achieved. Significant differences in these profiles were observed between GRMD and healthy animals, most notably for estradiol. These findings contribute to a better understanding of both dog reproduction and the muscular dystrophy pathology. Our data open new venues for hormonal behavior studies in dystrophinopathies and that may affect the quality of life of DMD patients.  相似文献   

15.
Unique anatomic locations and physiologic functions predispose different arteries to varying mechanical responses and pathologies. However, the underlying causes of these mechanical differences are not well understood. The objective of this study was to first identify structural differences in the arterial matrix that would account for the mechanical differences between healthy femoral and carotid arteries and second to utilize these structural observations to perform a microstructurally motivated constitutive analysis. Femoral and carotid arteries were subjected to cylindrical biaxial loading and their microstructure was quantified using two-photon microscopy. The femoral arteries were found to be less compliant than the carotid arteries at physiologic loads, consistent with previous studies, despite similar extracellular compositions of collagen and elastin ( \(P> 0.05\) ). The femoral arteries exhibited significantly less circumferential dispersion of collagen fibers ( \(P< 0.05\) ), despite a similar mean fiber alignment direction as the carotid arteries. Elastin transmural distribution, in vivo axial stretch, and opening angles were also found to be distinctly different between the arteries. Lastly, we modeled the arteries’ mechanical behaviors using a microstructural-based, distributed collagen fiber constitutive model. With this approach, the material parameters of the model were solved using the experimental microstructural observations. The findings of this study support an important role for microstructural organization in arterial stiffness.  相似文献   

16.
The structural protein elastin endows large arteries with unique biological functionality and mechanical integrity, hence its disorganization, fragmentation, or degradation can have important consequences on the progression and treatment of vascular diseases. There is, therefore, a need in arterial mechanics to move from materially uniform, phenomenological, constitutive relations for the wall to those that account for separate contributions of the primary structural constituents: elastin, fibrillar collagens, smooth muscle, and amorphous matrix. In this paper, we employ a recently proposed constrained mixture model of the arterial wall and show that prestretched elastin contributes significantly to both the retraction of arteries that is observed upon transection and the opening angle that follows the introduction of a radial cut in an unloaded segment. We also show that the transmural distributions of elastin and collagen, compressive stiffness of collagen, and smooth muscle tone play complementary roles. Axial prestresses and residual stresses in arteries contribute to the homeostatic state of stress in vivo as well as adaptations to perturbed loads, disease, or injury. Understanding better the development of and changes in wall stress due to individual extracellular matrix constituents thus promises to provide considerable clinically important insight into arterial health and disease.  相似文献   

17.
The dystrophin-glycoprotein complex (DGC) can be considered as a specialized adhesion complex, linking the extracellular matrix to the actin cytoskeleton, primarily in muscle cells. Mutations in several components of the DGC lead to its partial or total loss, resulting in various forms of muscular dystrophy. These typically manifest as progressive wasting diseases with loss of muscle integrity. Debate is ongoing about the precise function of the DGC: initially a strictly mechanical role was proposed but it has been suggested that there is aberrant calcium handling in muscular dystrophy and, more recently, changes in MAP kinase and GTPase signalling have been implicated in the aetiology of the disease. Here, we discuss new and interesting developments in these aspects of DGC function and attempt to rationalize the mechanical, calcium and signalling hypotheses to provide a unifying hypothesis of the underlying process of muscular dystrophy.  相似文献   

18.
Congenital muscular dystrophies involving the O-mannose pathway   总被引:1,自引:0,他引:1  
A number of forms of congenital muscular dystrophy (CMD) have been identified that involve defects in the glycosylation of dystroglycan with O-mannosyl-linked glycans. There are at least six genes that can affect this type of glycosylation, and defects in these genes give rise to disorders that have many aspects of muscle and brain pathology in common. Overexpression of one gene implicated in CMD, LARGE, was recently shown to increase dystroglycan glycosylation and restore its function in cells taken from CMD patients. Overexpression of Galgt2, a glycosyltransferase not implicated in CMD, also alters dystroglycan glycosylation and inhibits muscular dystrophy in a mouse model of Duchenne muscular dystrophy. These findings suggest that a common approach to therapy in muscular dystrophies may be to increase the glycosylation of dystroglycan with particular glycan structures.  相似文献   

19.
In this report, we have developed a novel method to identify compounds that rescue the dystrophin-glycoprotein complex (DGC) in patients with Duchenne or Becker muscular dystrophy. Briefly, freshly isolated skeletal muscle biopsies (termed skeletal muscle explants) from patients with Duchenne or Becker muscular dystrophy were maintained under defined cell culture conditions for a 24-h period in the absence or presence of a specific candidate compound. Using this approach, we have demonstrated that treatment with a well-characterized proteasome inhibitor, MG-132, is sufficient to rescue the expression of dystrophin, -dystroglycan, and -sarcoglycan in skeletal muscle explants from patients with Duchenne or Becker muscular dystrophy. These data are consistent with our previous findings regarding systemic treatment with MG-132 in a dystrophin-deficient mdx mouse model (Bonuccelli G, Sotgia F, Schubert W, Park D, Frank PG, Woodman SE, Insabato L, Cammer M, Minetti C, and Lisanti MP. Am J Pathol 163: 1663–1675, 2003). Our present results may have important new implications for the possible pharmacological treatment of Duchenne or Becker muscular dystrophy in humans. muscular dystrophy; membrane proteins; MG-132  相似文献   

20.
In the first paper of this series, we proposed a new transversely isotropic pseudostrain-energy function W for describing the biomechanical behavior of excised noncontracting myocardium. The specific functional form of W was inferred directly from biaxial data to be a polynomial function of two coordinate invariant measures of the finite deformation and five material parameters. In this paper, best-fit values of the material parameters are determined from biaxial data using a nonlinear least-squares regression. These values of the parameters are shown to be well-determined, and the final constitutive relation is shown to have good predictive capabilities. Since the proposed constitutive relation describes much broader classes of in-vitro biaxial data than previously proposed relations, it may be better applicable to analyses of stress in the passive heart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号