首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Brain natriuretic peptide inhibits hypoxic pulmonary hypertension in rats   总被引:1,自引:0,他引:1  
Brainnatriuretic peptide (BNP) is a pulmonary vasodilator that is elevatedin the right heart and plasma of hypoxia-adapted rats. To test thehypothesis that BNP protects against hypoxic pulmonary hypertension, wemeasured right ventricular systolic pressure (RVSP), right ventricle(RV) weight-to-body weight (BW) ratio (RV/BW), and percentmuscularization of peripheral pulmonary vessels (%MPPV) in rats givenan intravenous infusion of BNP, atrial natriuretic peptide (ANP), orsaline alone after 2 wk of normoxia or hypobaric hypoxia (0.5 atm).Hypoxia-adapted rats had higher hematocrits, RVSP, RV/BW, and %MPPVthan did normoxic controls. Under normoxic conditions, BNP infusion(0.2 and 1.4 µg/h) increased plasma BNP but had no effect on RVSP,RV/BW, or %MPPV. Under hypoxic conditions, low-rate BNP infusion (0.2 µg/h) had no effect on plasma BNP or on severity of pulmonaryhypertension. However, high-rate BNP infusion (1.4 µg/h) increasedplasma BNP (69 ± 8 vs. 35 ± 4 pg/ml, P < 0.05),lowered RV/BW (0.87 ± 0.05 vs. 1.02 ± 0.04, P < 0.05), and decreased %MPPV (60 vs. 74%,P < 0.05). There was also a trend towardlower RVSP (55 ± 3 vs. 64 ± 2, P = not significant).Infusion of ANP at 1.4 µg/h increased plasma ANP in hypoxic rats (759 ± 153 vs. 393 ± 54 pg/ml, P < 0.05) but had noeffect on RVSP, RV/BW, or %MPPV. We conclude that BNP may regulatepulmonary vascular responses to hypoxia and, at the doses used in thisstudy, is more effective than ANP at blunting pulmonary hypertensionduring the first 2 wk of hypoxia.

  相似文献   

2.
Schmidt, W., A. Bub, M. Meyer, T. Weiss, D. Schneider, N. Maassen, and W. G. Forssmann. Is urodilatin the missing link inexercise-dependent renal sodium retention? J. Appl.Physiol. 84(1): 123-128, 1998.The purpose of thepresent study was to investigate the behavior of plasma atrialnatriuretic peptide [ANP-(99126)] concentration([ANP]) and renal urodilatin [Uro; ANP-(95126)] excretion during and after exercise and theirpossible effects on renal Na+retention. Ten male subjects performed a cycle ergometer test for 60 min at 60% of maximum workload. Blood and urine samples were collectedbefore, during, and up to 24 h after exercise. During exercise, plasma[ANP] and renal Uro excretion were oppositely affected:whereas [ANP] increased from 46.5 ± 5.1 to 124.1 ± 10.6 pg/ml, urinary Uro excretion decreased from 120.8 ± 16.0 to49.5 ± 9.8 fmol/min and remained at a lower level until 1 h afterexercise. Glomerular filtration rate showed lowest values duringexercise (from 164.9 ± 15.3 to 75.8 ± 10.1 ml/min), and urineflow and the fractional excretion rate ofNa+(FENa+) andCl()had their nadir during the first hour after exercise. Positiverelationships were observed between Uro excretion andFENa+(P < 0.05) and, whereas a tendency toward a negative correlation was obtained between[ANP] andFENa+. It seemspossible that Uro may be, among other factors, involved in theexercise-related regulation of renalNa+ retention. The specific rolesUro and ANP play during exercise, however, remain to be investigated.

  相似文献   

3.
We used anexercise paradigm with repeated bouts of heavy forearm exercise to testthe hypothesis that alterations in local acid-base environment thatremain after the first exercise result in greater blood flow andO2 delivery at the onset of the second bout of exercise.Two bouts of handgrip exercise at 75% peak workload were performed for5 min, separated by 5 min of recovery. We continuously measured bloodflow using Doppler ultrasound and sampled venous blood forO2 content, PCO2, pH, and lactateand potassium concentrations, and we calculated muscle O2uptake (O2). Forearm blood flow waselevated before the second exercise compared with the first andremained higher during the first 30 s of exercise (234 ± 18 vs. 187 ± 4 ml/min, P < 0.05). Flow was notdifferent at 5 min. Arteriovenous O2 content difference waslower before the second bout (4.6 ± 0.9 vs. 7.2 ± 0.7 mlO2/dl) and higher by 30 s of exercise(11.2 ± 0.7 vs. 10.8 ± 0.7 ml O2/dl,P < 0.05). Muscle O2was unchanged before the start of exercise but was elevated during thefirst 30 s of the transition to the second exercise bout(26.0 ± 2.1 vs. 20.0 ± 0.9 ml/min, P < 0.05). Changes in venous blood PCO2, pH, andlactate concentration were consistent with reduced reliance onanaerobic glycolysis at the onset of the second exercise bout. Thesedata show that limitations of muscle blood flow can restrict theadaptation of oxidative metabolism at the onset of heavy muscular exertion.

  相似文献   

4.
Chen, Qiu-Hong, Ri-Li Ge, Xiao-Zhen Wang, Hui-Xin Chen,Tian-Yi Wu, Toshio Kobayashi, and Kazuhiko Yoshimura. Exercise performance of Tibetan and Han adolescents at altitudes of 3,417 and4,300 m. J. Appl. Physiol. 83(2):661-667, 1997.The difference was studied betweenO2 transport in lifelong Tibetanadolescents and in newcomer Han adolescents acclimatized to highaltitude. We measured minute ventilation, maximalO2 uptake, maximal cardiac output,and arterial O2 saturation duringmaximal exercise, using the incremental exercise technique, ataltitudes of 3,417 and 4,300 m. The groups were well matched for age,height, and nutritional status. The Tibetans had been living at thealtitudes for a longer period than the Hans (14.5 ± 0.2 vs. 7.8 ± 0.8 yr at 3,417 m, P < 0.01; and 14.7 ± 0.3 vs. 5.3 ± 0.7 yr at 4,300 m,P < 0.01, respectively). At rest,Tibetans had significantly greater vital capacity and maximal voluntaryventilation than the Hans at both altitudes. At maximal exercise,Tibetans compared with Hans had higher maximalO2 uptake (42.2 ± 1.7 vs. 36.7 ± 1.2 ml · min1 · kg1at 3,417 m, P < 0.01; and 36.8 ± 1.9 vs. 30.0 ± 1.4 ml · min1 · kg1at 4,300 m, P < 0.01, respectively)and greater maximal cardiac output (12.8 ± 0.3 vs. 11.4 ± 0.2 l/min at 3,417 m, P < 0.01; 11.5 ± 0.5 vs. 10.0 ± 0.5 l/min at 4,300 m,P < 0.05, respectively). Althoughthe differences in arterial O2saturation between Tibetans and Hans were not significant at rest andduring mild exercise, the differences became greater with increases inexercise workload at both altitudes. We concluded that exposure to highaltitude from birth to adolescence resulted in an efficientO2 transport and a greater aerobicexercise performance that may reflect a successful adaptation to lifeat high altitude.

  相似文献   

5.
Oelberg, David A., Allison B. Evans, Mirko I. Hrovat, PaulP. Pappagianopoulos, Samuel Patz, and David M. Systrom. Skeletal muscle chemoreflex and pHi inexercise ventilatory control. J. Appl.Physiol. 84(2): 676-682, 1998.To determinewhether skeletal muscle hydrogen ion mediates ventilatory drive inhumans during exercise, 12 healthy subjects performed three bouts ofisotonic submaximal quadriceps exercise on each of 2 days in a 1.5-Tmagnet for 31P-magnetic resonancespectroscopy(31P-MRS). Bilaterallower extremity positive pressure cuffs were inflated to 45 Torr duringexercise (BLPPex) or recovery(BLPPrec) in a randomized orderto accentuate a muscle chemoreflex. Simultaneous measurements were madeof breath-by-breath expired gases and minute ventilation, arterializedvenous blood, and by 31P-MRS ofthe vastus medialis, acquired from the average of 12 radio-frequencypulses at a repetition time of 2.5 s. WithBLPPex, end-exercise minuteventilation was higher (53.3 ± 3.8 vs. 37.3 ± 2.2 l/min;P < 0.0001), arterializedPCO2 lower (33 ± 1 vs. 36 ± 1 Torr; P = 0.0009), and quadricepsintracellular pH (pHi) more acid (6.44 ± 0.07 vs. 6.62 ± 0.07; P = 0.004), compared withBLPPrec. Bloodlactate was modestly increased withBLPPex but without a change inarterialized pH. For each subject, pHi was linearly relatedto minute ventilation during exercise but not to arterialized pH. Thesedata suggest that skeletal muscle hydrogen ion contributes to theexercise ventilatory response.

  相似文献   

6.
This investigation examined the effects ofNaHCO3 loading on lactateconcentration ([La]), acid-base balance, and performance for a 603.5-m sprint task. Ten greyhounds completed aNaHCO3 (300 mg/kg body weight) andcontrol trial in a crossover design. Results are expressed as means ± SE. Presprint differences (P < 0.05) were found for NaHCO3 vs.control, respectively, for blood pH (7.47 ± 0.01 vs. 7.42 ± 0.01), HCO3 (28.4 ± 0.4 vs. 23.5 ± 0.3 meq/l), and base excess (5.0 ± 0.3 vs. 0.2 ± 0.3 meq/l). Peak blood [La] increased(P < 0.05) inNaHCO3 vs. control (20.4 ± 1.6 vs. 16.9 ± 1.3 mM, respectively). Relative to control,NaHCO3 produced a greater(P < 0.05) reduction in blood baseexcess (18.5 ± 1.4 vs. 14.1 ± 0.8 meq/l) andHCO3 (17.4 ± 1.2 vs.12.8 ± 0.7 meq/l) from presprint to postexercise. Postexercise peak muscle H+concentration ([H+])was higher (P < 0.05) inNaHCO3 vs. control (158.8 ± 8.8 vs. 137.0 ± 5.3 nM, respectively). Muscle[H+] recoveryhalf-time (7.2 ± 1.6 vs. 11.3 ± 1.6 min) and time to predosevalues (22.2 ± 2.4 vs. 32.9 ± 4.0 min) were reduced(P < 0.05) inNaHCO3 vs. control, respectively.No differences were found in blood[H+] or blood[La] recovery curves or performance times.NaHCO3 increased postexerciseblood [La] but did not reduce the muscle or blood acid-basedisturbance associated with a 603.5-m sprint or significantly affectperformance.

  相似文献   

7.
We comparedreflex responses to static handgrip at 30% maximal voluntarycontraction (MVC) in 10 women (mean age 24.1 ± 1.7 yr) during twophases of their ovarian cycle: the menstrual phase (days 1-4) and the follicularphase (days10-12). Changes in muscle sympathetic nerve activity (MSNA; microneurography) in response tostatic exercise were greater during the menstrual compared withfollicular phase (phase effect P = 0.01). Levels of estrogen were less during the menstrual phase(75 ± 5.5 vs. 116 ± 9.6 pg/ml, days 1-4 vs.days 10-12;P = 0.002). Generated tension did not explain differences in MSNA responses (MVC: 29.3 ± 1.3 vs. 28.2 ± 1.5 kg, days 1-4 vs.days 10-12;P = 0.13). In a group of experiments with the use of 31P-NMRspectroscopy, no phase effect was observed forH+ andH2PO4 concentrations(n = 5). During an ischemicrhythmic handgrip paradigm (20% MVC), a phase effect was notobserved for MSNA or H+ orH2PO4 concentrations,suggesting that blood flow was necessary for the expression of thecycle-related effect. The present studies suggest that, during statichandgrip exercise, MSNA is increased during the menstrual compared withthe follicular phase of the ovarian cycle.

  相似文献   

8.
Hinchcliff, K. W., K. H. McKeever, W. W. Muir, and R. A. Sams. Furosemide reduces accumulated oxygen deficit inhorses during brief intense exertion. J. Appl.Physiol. 81(4): 1550-1554, 1996.We theorizedthat furosemide-induced weight reduction would reduce the contributionof anaerobic metabolism to energy expenditure of horses during intenseexertion. The effects of furosemide on accumulatedO2 deficit and plasma lactateconcentration of horses during high-intensity exercise were examined ina three-way balance randomized crossover study. Nine horses completedeach of three trials: 1) a control(C) trial, 2) a furosemide-unloaded(FU) trial in which the horse received furosemide 4 h before running, and 3) a furosemide weight-loaded(FL) trial during which the horse received furosemide and carriedweight equal to the weight lost after furosemide administration. Horsesran for 2 min at ~120% maximalO2 consumption. Furosemide (FU)increased O2 consumption (ml · 2 min1 · kg1)compared with C (268 ± 9 and 257 ± 9, P < 0.05), whereas FL was notdifferent from C (252 ± 8). AccumulatedO2 deficit (ml O2 equivalents/kg) wassignificantly (P < 0.05) lowerduring FU (81.2 ± 12.5), but not during FL (96.9 ± 12.4), thanduring C (91.4 ± 11.5). Rate of increase in blood lactateconcentration (mmol · 2 min1 · kg1)after FU (0.058 ± 0.001), but not after FL (0.061 ± 0.001), was significantly (P < 0.05) lower than after C (0.061 ± 0.001). Furosemide decreased theaccumulated O2 deficit and rate ofincrease in blood lactate concentration of horses during briefhigh-intensity exertion. The reduction in accumulatedO2 deficit in FU-treated horseswas attributable to an increase in the mass-specific rate ofO2 consumption during thehigh-intensity exercise test.

  相似文献   

9.
Human growth hormone response to repeated bouts of aerobic exercise   总被引:4,自引:0,他引:4  
Kanaley, J. A., J. Y. Weltman, J. D. Veldhuis, A. D. Rogol,M. L. Hartman, and A. Weltman. Human growth hormone response torepeated bouts of aerobic exercise. J. Appl.Physiol. 83(5): 1756-1761, 1997.We examinedwhether repeated bouts of exercise could override growth hormone (GH)auto-negative feedback. Seven moderately trained men were studied onthree occasions: a control day (C), a sequential exercise day (SEB; at1000, 1130, and 1300), and a delayed exercise day (DEB; at 1000, 1400, and 1800). The duration of each exercise bout was 30 min at 70%maximal O2 consumption (O2 max) on a cycleergometer. Standard meals were provided at 0600 and 2200. GH wasmeasured every 5-10 min for 24 h (0800-0800). Daytime(0800-2200) integrated GH concentrations were ~150-160% greater during SEB and DEB than during C: 1,282 ± 345, 3,192 ± 669, and 3,389 ± 991 min · µg · l1for C, SEB, and DEB, respectively [SEB > C(P < 0.06), DEB > C(P < 0.03)]. There were nodifferences in GH release during sleep (2300-0700). Deconvolutionanalysis revealed that the increase in 14-h integrated GH concentrationon DEB was accounted for by an increase in the mass of GH secreted perpulse (per liter of distribution volume,lv): 7.0 ± 2.9 and 15.9 ± 2.6 µg/lv for C and DEB,respectively (P < 0.01). Comparisonof 1.5-h integrated GH concentrations on the SEB and DEB days (30 minexercise + 60 min recovery) revealed that, with each subsequentexercise bout, GH release apparently increased progressively, with aslightly greater increase on the DEB day [SEB vs. DEB: 497 ± 162 vs. 407 ± 166 (bout 1), 566 ± 152 vs. 854 ± 184 (bout2), and 633 ± 149 vs. 1,030 ± 352 min · µg · l1(bout 3),P < 0.05]. We conclude thatthe GH response to acute aerobic exercise is augmented with repeatedbouts of exercise.

  相似文献   

10.
We employed a glycogen-depleting session of exercise followed by a low-carbohydrate (CHO) diet to investigate modifications that occur in muscle sarcoplasmic reticulum (SR) Ca2+-cycling properties compared with low-CHO diet alone. SR properties were assessed in nine untrained males [peak aerobic power (O2 peak) = 43.6 ± 2.6 (SE) ml·kg–1·min–1] during prolonged cycle exercise to fatigue performed at 58% O2 peak after 4 days of low-CHO diet (Lo CHO) and after glycogen-depleting exercise plus 4 days of low-CHO (Ex+Lo CHO). Compared with Lo CHO, Ex+Lo CHO resulted in 12% lower (P < 0.05) resting maximal Ca2+-ATPase activity (Vmax = 174 ± 12 vs. 153 ± 10 µmol·g protein–1·min–1) and smaller reduction in Vmax induced during exercise. A similar effect was observed for Ca2+ uptake. The Hill coefficient, defined as slope of the relationship between cytosolic free Ca2+ concentration and Ca2+-ATPase activity, was higher (P < 0.05) at rest (2.07 ± 0.15 vs. 1.90 ± 0.10) with Ex+Lo CHO, an effect that persisted throughout the exercise. The coupling ratio, defined as the ratio of Ca2+ uptake to Vmax, was 23–30% elevated (P < 0.05) at rest and during the first 60 min of exercise with Ex+Lo CHO. The 27 and 34% reductions (P < 0.05) in phase 1 and phase 2 Ca2+ release, respectively, observed during exercise with Lo CHO were not altered by Ex+Lo CHO. These results indicate that when prolonged exercise precedes a short-term Lo CHO diet, Ca2+ sequestration properties and efficiency are improved compared with those during Lo CHO alone. calcium cycling; vastus lateralis; contractile activity; glycogen; phosphorylation potential  相似文献   

11.
Haskell, Andrew, Ethan R. Nadel, Nina S. Stachenfeld, KeiNagashima, and Gary W. Mack. Transcapillary escape rate of albuminin humans during exercise-induced hypervolemia. J. Appl. Physiol. 83(2): 407-413, 1997.To test thehypotheses that plasma volume (PV) expansion 24 h after intenseexercise is associated with reduced transcapillary escape rate ofalbumin (TERalb) and that localchanges in transcapillary forces in the previously active tissues favorretention of protein in the vascular space, we measured PV,TERalb, plasma colloid osmoticpressure (COPp), interstitialfluid hydrostatic pressure (Pi), and colloid osmotic pressure in legmuscle and skin and capillary filtration coefficient (CFC) in the armand leg in seven men and women before and 24 h after intense uprightcycle ergometer exercise. Exercise expanded PV by 6.4% at 24 h (43.9 ± 0.8 to 46.8 ± 1.2 ml/kg, P < 0.05) and decreased total protein concentration (6.5 ± 0.1 to6.3 ± 0.1 g/dl, P < 0.05) andCOPp (26.1 ± 0.8 to 24.3 ± 0.9 mmHg, P < 0.05), although plasmaalbumin concentration was unchanged. TERalb tended to decline (8.4 ± 0.5 to 6.5 ± 0.7%/h, P = 0.11) and was correlated with the increase in PV(r = 0.69,P < 0.05). CFC increased in the leg(3.2 ± 0.2 to 4.3 ± 0.5 µl · 100 g1 · min1 · mmHg1,P < 0.05), and Pi showed a trend toincrease in the leg muscle (2.8 ± 0.7 to 3.8 ± 0.3 mmHg, P = 0.08). These datademonstrate that TERalb isassociated with PV regulation and that local transcapillary forcesin the leg muscle may favor retention of albumin in the vascular spaceafter exercise.

  相似文献   

12.
Little is known about the relationship among training,energy expenditure, muscle volume, and fitness in prepubertalgirls. Because physical activity is high in prepubertalchildren, we hypothesized that there would be no effect of training.Forty pre- and early pubertal (mean age 9.1 ± 0.1 yr) nonobesegirls enrolled in a 5 day/wk summer school program for 5 wk and were randomized to control (n = 20) or training groups(n = 20; 1.5 h/day, endurance-type exercise). Totalenergy expenditure (TEE) was measured using doubly labeled water, thighmuscle volume using magnetic resonance imaging, and peak O2uptake (O2 peak) using cycle ergometry.TEE was significantly greater (17%, P < 0.02) in thetraining girls. Training increased thigh muscle volume (+4.3 ± 0.9%, P < 0.005) andO2 peak (+9.5 ± 6%,P < 0.05), effects surprisingly similar to thoseobserved in adolescent girls using the same protocol (Eliakim A,Barstow TJ, Brasel JA, Ajie H, Lee W-NP, Renslo R, Berman N, and CooperDM, J Pediatr 129: 537-543, 1996). We furthercompared these two sample populations: thigh muscle volume per weightwas much lower in adolescent compared with prepubertal girls (17.0 ± 0.3 vs. 27.8 ± 0.6 ml/kg body mass; P < 0.001), and allometric analysis revealed remarkably low scaling factorsrelating muscle volume (0.34 ± 0.05, P < 0.0001), TEE (0.24 ± 0.06, P < 0.0004), andO2 peak (0.28 ± 0.07, P < 0.0001) to body mass in all subjects. Muscle andcardiorespiratory functions were quite responsive to brief training inprepubertal girls. Moreover, a retrospective, cross-sectional analysissuggests that increases in muscle mass andO2 peak may be depressed in nonobeseAmerican girls as they mature.

  相似文献   

13.
The role ofnitric oxide (NO) in the cholinergic regulation of heart rate(HR) recovery from an aspect of simulated exercise wasinvestigated in atria isolated from guinea pig to test the hypothesisthat NO may be involved in the cholinergic antagonism of the positivechronotropic response to adrenergic stimulation. Inhibition of NOsynthesis withNG-monomethyl-L-arginine(L-NMMA, 100 µM) significantlyslowed the time course of the reduction in HR without affecting themagnitude of the response elicited by bath-applied ACh (100 nM) orvagal nerve stimulation (2 Hz). The half-times(t1/2) of responses were 3.99 ± 0.41 s in control vs. 7.49 ± 0.68 s inL-NMMA(P < 0.05). This was dependent onprior adrenergic stimulation (norepinephrine, 1 µM). The effect ofL-NMMA was reversed byL-arginine (1 mM; t1/2 4.62 ± 0.39 s). The calcium-channelantagonist nifedipine (0.2 µM) also slowed the kinetics of thereduction in HR caused by vagal nerve stimulation. However, thet1/2 for the reduction in HR with antagonists (2 mM Cs+ and 1 µM ZD-7288) of thehyperpolarization-activated current were significantlyfaster compared with control. There was no additional effect ofL-NMMA orL-NMMA+L-arginineon vagal stimulation in groups treated with nifedipine,Cs+, or ZD-7288. Weconclude that NO contributes to the cholinergic antagonism of thepositive cardiac chronotropic effects of adrenergic stimulation byaccelerating the HR response to vagal stimulation. This may involve aninterplay between two pacemaking currents (L-type calcium channelcurrent and hyperpolarization-activated current). Whether NO modulatesthe vagal control of HR recovery from actual exercise remains to bedetermined.

  相似文献   

14.
Isotonic and isometric properties of nine human bronchial smoothmuscles were studied under various loading and tone conditions. Freshlydissected bronchial strips were electrically stimulated successively atbaseline, after precontraction with107 M methacholine (MCh),and after relaxation with105 M albuterol (Alb).Resting tension, i.e., preload determining optimal initial length(Lo) atbaseline, was held constant. Compared with baseline, MCh decreasedmuscle length to 93 ± 1%Lo(P < 0.001) before any electricalstimulation, whereas Alb increased it to 111 ± 3%Lo(P < 0.01). MCh significantlydecreased maximum unloaded shortening velocity (0.045 ± 0.007 vs.0.059 ± 0.007 Lo/s), maximalextent of muscle shortening (8.4 ± 1.2 vs. 13.9 ± 2.4%Lo), and peakisometric tension (6.1 ± 0.8 vs. 7.2 ± 1.0 mN/mm2). Alb restored all thesecontractile indexes to baseline values. These findings suggest that MChreversibly increased the number of active actomyosin cross bridgesunder resting conditions, limiting further muscle shortening and activetension development. After the electrically induced contraction,muscles showed a transient phase of decrease in tension below preload.This decrease in tension was unaffected by afterload levels but wassignificantly increased by MCh and reduced by Alb. These findingssuggest that the cross bridges activated before, but not during, theelectrically elicited contraction may modulate the phase of decrease intension below preload, reflecting the active part of resting tension.  相似文献   

15.
Isolated rat heart perfused with 1.5-7.5µM NO solutions or bradykinin, which activates endothelial NOsynthase, showed a dose-dependent decrease in myocardial O2uptake from 3.2 ± 0.3 to 1.6 ± 0.1 (7.5 µM NO, n = 18,P < 0.05) and to 1.2 ± 0.1 µM O2 · min1 · gtissue1 (10 µM bradykinin, n = 10,P < 0.05). Perfused NO concentrations correlated with aninduced release of hydrogen peroxide (H2O2) inthe effluent (r = 0.99, P < 0.01). NO markedlydecreased the O2 uptake of isolated rat heart mitochondria(50% inhibition at 0.4 µM NO, r = 0.99,P < 0.001). Cytochrome spectra in NO-treated submitochondrial particles showed a double inhibition of electron transfer at cytochrome oxidase and between cytochrome b andcytochrome c, which accounts for the effects in O2uptake and H2O2 release. Most NO was bound tomyoglobin; this fact is consistent with NO steady-state concentrationsof 0.1-0.3 µM, which affect mitochondria. In the intact heart,finely adjusted NO concentrations regulate mitochondrial O2uptake and superoxide anion production (reflected byH2O2), which in turn contributes to thephysiological clearance of NO through peroxynitrite formation.

  相似文献   

16.
Fuel metabolism in men and women during and after long-duration exercise   总被引:5,自引:0,他引:5  
This study aimed to determine gender-baseddifferences in fuel metabolism in response to long-duration exercise.Fuel oxidation and the metabolic response to exercise were compared inmen (n = 14) and women(n = 13) during 2 h (40% of maximalO2 uptake) of cycling and 2 h ofpostexercise recovery. In addition, subjects completed a separatecontrol day on which no exercise was performed. Fuel oxidation wasmeasured using indirect calorimetry, and blood samples were drawn forthe determination of circulating substrate and hormone levels. Duringexercise, women derived proportionally more of the total energyexpended from fat oxidation (50.9 ± 1.8 and 43.7 ± 2.1% forwomen and men, respectively, P < 0.02), whereas men derived proportionally more energy from carbohydrateoxidation (53.1 ± 2.1 and 45.7 ± 1.8% for men and women,respectively, P < 0.01). Thesegender-based differences were not observed before exercise, afterexercise, or on the control day. Epinephrine(P < 0.007) and norepinephrine(P < 0.0009) levels weresignificantly greater during exercise in men than in women (peakepinephrine concentrations: 208 ± 36 and 121 ± 15 pg/ml in menand women, respectively; peak norepinephrine concentrations: 924 ± 125 and 659 ± 68 pg/ml in men and women, respectively). Ascirculating glycerol levels were not different between the two groups,this suggests that women may be more sensitive to the lipolytic action of the catecholamines. In conclusion, these data support the view thatdifferent priorities are placed on lipid and carbohydrate oxidationduring exercise in men and women and that these gender-based differences extend to the catecholamine response to exercise.

  相似文献   

17.
Lee, Dae T., Michael M. Toner, William D. McArdle, IoannisS. Vrabas, and Kent B. Pandolf. Thermal and metabolic responses tocold-water immersion at knee, hip, and shoulder levels.J. Appl. Physiol. 82(5):1523-1530, 1997.To examine the effect of cold-water immersion atdifferent depths on thermal and metabolic responses, eight men (25 yrold, 16% body fat) attempted 12 tests: immersed to the knee (K), hip(H), and shoulder (Sh) in 15 and 25°C water during both rest (R) orleg cycling [35% peak oxygen uptake; (E)] for up to 135 min. At 15°C, rectal (Tre)and esophageal temperatures(Tes) between R and E were notdifferent in Sh and H groups (P > 0.05), whereas both in K group were higher during E than R(P < 0.05). At 25°C,Tre was higher(P < 0.05) during E than R at alldepths, whereas Tes during E washigher than during R in H and K groups.Tre remained at control levels inK-E at 15°C, K-E at 25°C, and in H-E groups at 25°C,whereas Tes remained unchanged inK-E at 15°C, in K-R at 15°C, and in all 25°C conditions (P > 0.05). During R and E, themagnitude of Tre change wasgreater (P < 0.05) than themagnitude of Tes change in Sh andH groups, whereas it was not different in the K group(P > 0.05). Total heat flow wasprogressive with water depth. During R at 15 and 25°C, heatproduction was not increased in K and H groups from control level(P > 0.05) but it did increase in Shgroup (P < 0.05). The increase inheat production during E compared with R was smaller(P < 0.05) in Sh (121 ± 7 W/m2 at 15°C and 97 ± 6 W/m2 at 25°C) than in H (156 ± 6 and 126 ± 5 W/m2,respectively) and K groups (155 ± 4 and 165 ± 6 W/m2, respectively). These datasuggest that Tre andTes respond differently duringpartial cold-water immersion. In addition, water levels above knee in15°C and above hip in 25°C cause depression of internal temperatures mainly due to insufficient heat production offsetting heatloss even during light exercise.

  相似文献   

18.
We hypothesized that highextracellular K+ concentration([K+]o)-mediated stimulation ofNa+-K+-Cl cotransporter isoform 1 (NKCC1) may result in a net gain of K+ and Cland thus lead to high-[K+]o-induced swellingand glutamate release. In the current study, relative cell volumechanges were determined in astrocytes. Under 75 mM[K+]o, astrocytes swelled by 20.2 ± 4.9%. This high-[K+]o-mediated swelling wasabolished by the NKCC1 inhibitor bumetanide (10 µM, 1.0 ± 3.1%; P < 0.05). Intracellular36Cl accumulation was increased from acontrol value of 0.39 ± 0.06 to 0.68 ± 0.05 µmol/mgprotein in response to 75 mM [K+]o. Thisincrease was significantly reduced by bumetanide (P < 0.05). Basal intracellular Na+ concentration([Na+]i) was reduced from 19.1 ± 0.8 to16.8 ± 1.9 mM by bumetanide (P < 0.05).[Na+]i decreased to 8.4 ± 1.0 mM under75 mM [K+]o and was further reduced to5.2 ± 1.7 mM by bumetanide. In addition, the recovery rate of[Na+]i on return to 5.8 mM[K+]o was decreased by 40% in the presenceof bumetanide (P < 0.05). Bumetanide inhibitedhigh-[K+]o-induced 14C-labeledD-aspartate release by ~50% (P < 0.05).These results suggest that NKCC1 contributes tohigh-[K+]o-induced astrocyte swelling andglutamate release.

  相似文献   

19.
The present study compared the microdialysis ethanoloutflow-inflow technique for estimating blood flow (BF) in skeletalmuscle of humans with measurements by Doppler ultrasound of femoralartery inflow to the limb(BFFA). The microdialysis probeswere inserted in the vastus lateralis muscle and perfused with a Ringeracetate solution containing ethanol,[2-3H]adenosine (Ado),andD-[14C(U)]glucose.BFFA at rest increased from0.16 ± 0.02 to 1.80 ± 0.26 and 4.86 ± 0.53 l/minwith femoral artery infusion of Ado (AdoFA,i) at 125 and 1,000 µg · min1 · l1thigh volume (low dose and high dose, respectively;P < 0.05) and to 3.79 ± 0.37 and6.13 ± 0.65 l/min during one-legged, dynamic, thigh muscle exercisewithout and with high AdoFA,i,respectively (P < 0.05). The ethanoloutflow-to-inflow ratio (38.3 ± 2.3%) and the probe recoveries(PR) for [2-3H]Ado(35.4 ± 1.6%) and forD-[14C(U)]glucose(15.9 ± 1.1%) did not change withAdoFA,i at rest (P = not significant). During exercisewithout and with AdoFA,i, theethanol outflow-to-inflow ratio decreased(P < 0.05) to a similar level of17.5 ± 3.4 and 20.6 ± 3.2%, respectively(P = not significant), respectively,while the PR increased (P < 0.05) toa similar level (P = not significant)of 55.8 ± 2.8 and 61.2 ± 2.5% for[2-3H]Ado and to 42.8 ± 3.9 and 45.2 ± 5.1% forD-[14C(U)]glucose.Whereas the ethanol outflow-to-inflow ratio and PR correlated inverselyand positively, respectively, to the changes in BF during muscularcontractions, neither of the ratio nor PR correlated tothe AdoFA,i-induced BF increase.Thus the ethanol outflow-to-inflow ratio does not represent skeletalmuscle BF but rather contraction-induced changes in molecular transport in the interstitium or over the microdialysis membrane.

  相似文献   

20.
Zhang, Xue-Qian, Yuk-Chow Ng, Timothy I. Musch, Russell L. Moore, R. Zelis, and Joseph Y. Cheung. Sprint training attenuates myocyte hypertrophy and improvesCa2+ homeostasis in postinfarctionmyocytes. J. Appl. Physiol. 84(2): 544-552, 1998.Myocytes isolated from rat hearts 3 wk aftermyocardial infarction (MI) had decreasedNa+/Ca2+exchange currents(INa/Ca; 3 Na+ out:1Ca2+ in) and sarcoplasmicreticulum (SR)-releasable Ca2+contents. These defects in Ca2+regulation may contribute to abnormal contractility in MI myocytes. Because exercise training elicits positive adaptations in cardiac contractile function and myocardialCa2+ regulation, thepresent study examined whether 6-8 wk ofhigh-intensity sprint training (HIST) would ameliorate some of thecellular maladaptations observed in post-MI rats with limited exerciseactivity (Sed). In MI rats, HIST did not affect citrate synthaseactivities of plantaris muscles but significantly increased thepercentage of cardiac -myosin heavy chain (MHC) isoforms (57.2 ± 1.9 vs. 49.3 ± 3.5 in MI-HIST vs. MI-Sed, respectively;P  0.05). At the single myocytelevel, HIST attenuated cellular hypertrophy observed post-MI, asevidenced by reductions in cell lengths (112 ± 4 vs. 130 ± 5 µm in MI-HIST vs. MI-Sed, respectively;P  0.005) and cell capacitances (212 ± 8 vs. 242 ± 9 pF in MI-HIST vs. MI-Sed, respectively; P  0.015). ReverseINa/Ca wassignificantly lower (P  0.0001) inmyocytes from MI-Sed rats compared with those from rats that were shamoperated and sedentary. HIST significantly increased reverseINa/Ca(P  0.05) without affecting theamount ofNa+/Ca2+exchangers (detected by immunoblotting) in MI myocytes. SR-releasable Ca2+ content, as estimated byintegrating forwardINa/Ca duringcaffeine-induced SR Ca2+ release,was also significantly increased (P  0.02) by HIST in MI myocytes. We conclude that the enhanced cardiacoutput and stroke volume in post-MI rats subjected to HIST aremediated, at least in part, by reversal of cellular maladaptationspost-MI.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号