首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Agonist-evoked [Ca2+]i oscillations have been considered a biophysical phenomenon reflecting the regulation of the IP3 receptor by [Ca2+]i. Here we show that [Ca2+]i oscillations are a biochemical phenomenon emanating from regulation of Ca2+ signaling by the regulators of G protein signaling (RGS) proteins. [Ca2+]i oscillations evoked by G protein-coupled receptors require the action of RGS proteins. Inhibition of endogenous RGS protein action disrupted agonist-evoked [Ca2+]i oscillations by a stepwise conversion to a sustained response. Based on these findings and the effect of mutant RGS proteins and anti-RGS protein antibodies on Ca2+ signaling, we propose that RGS proteins within the G protein-coupled receptor complexes provide a biochemical control of [Ca2+]i oscillations.  相似文献   

2.
Homers are scaffolding proteins that bind G protein-coupled receptors (GPCRs), inositol 1,4,5-triphosphate (IP3) receptors (IP3Rs), ryanodine receptors, and TRP channels. However, their role in Ca2+ signaling in vivo is not known. Characterization of Ca2+ signaling in pancreatic acinar cells from Homer2-/- and Homer3-/- mice showed that Homer 3 has no discernible role in Ca2+ signaling in these cells. In contrast, we found that Homer 2 tunes intensity of Ca2+ signaling by GPCRs to regulate the frequency of [Ca2+]i oscillations. Thus, deletion of Homer 2 increased stimulus intensity by increasing the potency for agonists acting on various GPCRs to activate PLCbeta and evoke Ca2+ release and oscillations. This was not due to aberrant localization of IP3Rs in cellular microdomains or IP3R channel activity. Rather, deletion of Homer 2 reduced the effectiveness of exogenous regulators of G proteins signaling proteins (RGS) to inhibit Ca2+ signaling in vivo. Moreover, Homer 2 preferentially bound to PLCbeta in pancreatic acini and brain extracts and stimulated GAP activity of RGS4 and of PLCbeta in an in vitro reconstitution system, with minimal effect on PLCbeta-mediated PIP2 hydrolysis. These findings describe a novel, unexpected function of Homer proteins, demonstrate that RGS proteins and PLCbeta GAP activities are regulated functions, and provide a molecular mechanism for tuning signal intensity generated by GPCRs and, thus, the characteristics of [Ca2+]i oscillations.  相似文献   

3.
Regulators of G protein signaling (RGS) proteins accelerate the GTPase activity of Galpha subunits to determine the duration of the stimulated state and control G protein-coupled receptor-mediated cell signaling. RGS2 is an RGS protein that shows preference toward Galpha(q).To better understand the role of RGS2 in Ca(2+) signaling and Ca(2+) oscillations, we characterized Ca(2+) signaling in cells derived from RGS2(-/-) mice. Deletion of RGS2 modified the kinetic of inositol 1,4,5-trisphosphate (IP(3)) production without affecting the peak level of IP(3), but rather increased the steady-state level of IP(3) at all agonist concentrations. The increased steady-state level of IP(3) led to an increased frequency of [Ca(2+)](i) oscillations. The cells were adapted to deletion of RGS2 by reducing Ca(2+) signaling excitability. Reduced excitability was achieved by adaptation of all transporters to reduce Ca(2+) influx into the cytosol. Thus, IP(3) receptor 1 was down-regulated and IP(3) receptor 3 was up-regulated in RGS2(-/-) cells to reduce the sensitivity for IP(3) to release Ca(2+) from the endoplasmic reticulum to the cytosol. Sarco/endoplasmic reticulum Ca(2+) ATPase 2b was up-regulated to more rapidly remove Ca(2+) from the cytosol of RGS2(-/-) cells. Agonist-stimulated Ca(2+) influx was reduced, and Ca(2+) efflux by plasma membrane Ca(2+) was up-regulated in RGS2(-/-) cells. The result of these adaptive mechanisms was the reduced excitability of Ca(2+) signaling, as reflected by the markedly reduced response of RGS2(-/-) cells to changes in the endoplasmic reticulum Ca(2+) load and to an increase in extracellular Ca(2+). These findings highlight the central role of RGS proteins in [Ca(2+)](i) oscillations and reveal a prominent plasticity and adaptability of the Ca(2+) signaling apparatus.  相似文献   

4.
Sensing and refilling calcium stores in an excitable cell.   总被引:1,自引:0,他引:1  
Inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ mobilization leads to depletion of the endoplasmic reticulum (ER) and an increase in Ca2+ entry. We show here for the gonadotroph, an excitable endocrine cell, that sensing of ER Ca2+ content can occur without the Ca2+ release-activated Ca2+ current (Icrac), but rather through the coupling of IP3-induced Ca2+ oscillations to plasma membrane voltage spikes that gate Ca2+ entry. Thus we demonstrate that capacitative Ca2+ entry is accomplished through Ca(2+)-controlled Ca2+ entry. We develop a comprehensive model, with parameter values constrained by available experimental data, to simulate the spatiotemporal behavior of agonist-induced Ca2+ signals in both the cytosol and ER lumen of gonadotrophs. The model combines two previously developed models, one for ER-mediated Ca2+ oscillations and another for plasma membrane potential-driven Ca2+ oscillations. Simulations show agreement with existing experimental records of store content, cytosolic Ca2+ concentration ([Ca2+]i), and electrical activity, and make a variety of new, experimentally testable predictions. In particular, computations with the model suggest that [Ca2+]i in the vicinity of the plasma membrane acts as a messenger for ER content via Ca(2+)-activated K+ channels and Ca2+ pumps in the plasma membrane. We conclude that, in excitable cells that do not express Icrac, [Ca2+]i profiles provide a sensitive mechanism for regulating net calcium flux through the plasma membrane during both store depletion and refilling.  相似文献   

5.
Herpes simplex virus triggers activation of calcium-signaling pathways   总被引:10,自引:0,他引:10       下载免费PDF全文
The cellular pathways required for herpes simplex virus (HSV) invasion have not been defined. To test the hypothesis that HSV entry triggers activation of Ca2+-signaling pathways, the effects on intracellular calcium concentration ([Ca2+]i) after exposure of cells to HSV were examined. Exposure to virus results in a rapid and transient increase in [Ca2+]i. Pretreatment of cells with pharmacological agents that block release of inositol 1,4,5-triphosphate (IP3)-sensitive endoplasmic reticulum stores abrogates the response. Moreover, treatment of cells with these pharmacological agents inhibits HSV infection and prevents focal adhesion kinase (FAK) phosphorylation, which occurs within 5 min after viral infection. Viruses deleted in glycoprotein L or glycoprotein D, which bind but do not penetrate, fail to induce a [Ca2+]i response or trigger FAK phosphorylation. Together, these results support a model for HSV infection that requires activation of IP3-responsive Ca2+-signaling pathways and that is associated with FAK phosphorylation. Defining the pathway of viral invasion may lead to new targets for anti-viral therapy.  相似文献   

6.
This study explored whether sulforaphane changed basal [Ca2+]i levels in suspended Madin-Darby canine kidney (MDCK) cells by using fura-2 as a Ca(2+)-sensitive fluorescent dye. Sulforaphane at concentrations between 2.5-10 microM increased [Ca2+]i in a concentration-dependent manner. This Ca2+ influx was inhibited by phospholipase A2 inhibitor aristolochic acid but not by Ca2+ channel blockers such as nifedipine, nimodipine, nicardipine, diltiazem, verapamil, econazole and SK&F96365. The Ca2+ signal was abolished by removing extracellular Ca2+. In Ca(2+)-free medium, pretreatment with sulforaphane did not alter the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin-induced Ca2+ release suggesting sulforaphane did not induce slow Ca2+ release from endoplasmic reticulum. At concentrations between 1 and 20 microM, sulforaphane induced concentration-dependent decrease in cell viability which was not affected by pre-chelation of cytosolic Ca2+ with BAPTA/AM. Flow cytometry data suggest that 20 (but not 5 and 10) microM sulforaphane induced significant increase in sub G1 phase indicating involvement of apoptosis. Collectively, in MDCK cells, sulforaphane induced [Ca2+]i rises by causing Ca2+ entry through phospholipase A2-sensitive pathways without inducing Ca2+ release from the endoplasmic reticulum. Sulforaphane also induced Ca(2+)-independent cell death that might involve apoptosis.  相似文献   

7.
Stimulation through the antigen receptor (TCR) of T lymphocytes triggers cytosolic calcium ([Ca2+]i) oscillations that are critically dependent on Ca2+ entry across the plasma membrane. We have investigated the roles of Ca2+ influx and depletion of intracellular Ca2+ stores in the oscillation mechanism, using single-cell Ca2+ imaging techniques and agents that deplete the stores. Thapsigargin (TG; 5-25 nM), cyclopiazonic acid (CPA; 5-20 microM), and tert- butylhydroquinone (tBHQ; 80-200 microM), inhibitors of endoplasmic reticulum Ca(2+)-ATPases, as well as the Ca2+ ionophore ionomycin (5-40 nM), elicit [Ca2+]i oscillations in human T cells. The oscillation frequency is approximately 5 mHz (for ATPase inhibitors) to approximately 10 mHz (for ionomycin) at 22-24 degrees C. The [Ca2+]i oscillations resemble those evoked by TCR ligation in terms of their shape, amplitude, and an absolute dependence on Ca2+ influx. Ca(2+)- ATPase inhibitors and ionomycin induce oscillations only within a narrow range of drug concentrations that are expected to cause partial depletion of intracellular stores. Ca(2+)-induced Ca2+ release does not appear to be significantly involved, as rapid removal of extracellular Ca2+ elicits the same rate of [Ca2+]i decline during the rising and falling phases of the oscillation cycle. Both transmembrane Ca2+ influx and the content of ionomycin-releasable Ca2+ pools fluctuate in oscillating cells. From these data, we propose a model in which [Ca2+]i oscillations in T cells result from the interaction between intracellular Ca2+ stores and depletion-activated Ca2+ channels in the plasma membrane.  相似文献   

8.
The relative contribution of voltage-sensitive Ca2+ channels, Ca(2+)-ATPases, and Ca2+ release from intracellular stores to spontaneous oscillations in cytosolic free Ca2+ concentration ([Ca2+]i) observed in secretory cells is not well characterized owing to a lack of specific inhibitors for a novel thapsigargin (Tg)-insensitive Ca(2+)-ATPase expressed in these cells. We show that spontaneous [Ca2+]i oscillations in GH3 cells were unaffected by Ca2+ depletion in inositol-1,4,5-trisphosphate (IP3)-sensitive Ca2+ stores by the treatment of Tg, but could be initiated by application of caffeine. Moreover, we demonstrate for the first time that these spontaneous [Ca2+]i oscillations were highly temperature dependent. Decreasing the temperature from 22 to 17 degrees C resulted in an increase in the frequency, a reduction in the amplitude, and large inhibition of [Ca2+]i oscillations. Furthermore, the rate of ATP-dependent 45Ca2+ uptake into GH3-derived microsomes was greatly reduced at 17 degrees C. The effect of decreased temperatures on extracellular Ca2+ influx was minor because the frequency and amplitude of spontaneous action potentials, which activate L-type Ca2+ channels, was relatively unchanged at 17 degrees C. These results suggest that in GH3 secretory cells, Ca2+ influx via L-type Ca2+ channels initiates spontaneous [Ca2+]i oscillations, which are then maintained by the combined activity of Ca(2+)-ATPase and Ca(2+)-induced Ca2+ release from Tg/IP3-insensitive intracellular stores.  相似文献   

9.
Fertilization in all species studied to date induces an increase in the intracellular concentration of free calcium ions ([Ca2+]i) within the egg. In mammals, this [Ca2+]i signal is delivered in the form of long-lasting [Ca2+]i oscillations that begin shortly after fusion of the gametes and persist beyond the time of completion of meiosis. While not fully elucidated, recent evidence supports the notion that the sperm delivers into the ooplasm a trigger of oscillations, the so-called sperm factor (SF). The recent discovery that mammalian sperm harbor a specific phospholipase C (PLC), PLCzeta has consolidated this view. The fertilizing sperm, and presumably PLCzeta promote Ca2+ release in eggs via the production of inositol 1,4,5-trisphosphate (IP3), which binds and gates its receptor, the type-1 IP3 receptor, located on the endoplasmic reticulum, the Ca2+ store of the cell. Repetitive Ca2+ release in this manner results in a positive cumulative effect on downstream signaling molecules that are responsible for the completion of all the events comprising egg activation. This review will discuss recent advances in our understanding of how [Ca2+]i oscillations are initiated and regulated in mammals, highlight areas of discrepancies, and emphasize the need to better characterize the downstream molecular cascades that are dependent on [Ca2+]i oscillations and that may impact embryo development.  相似文献   

10.
In human breast cancer cells, the effect of the widely prescribed estrogen diethylstilbestrol (DES) on intracellular Ca2+ concentrations ([Ca2+]i) and cell viability was explored by using fura-2 and trypan blue exclusion, respectively. DES caused a rise in [Ca2+]i in a concentration-dependent manner (EC50 = 15 microM). DES-induced [Ca2+]i rise was reduced by 80 % by removal of extracellular Ca2+. DES-induced Mn(2+)-associated quench of intracellular fura-2 fluorescence also suggests that DES induced extracellular Ca2+ influx. In Ca(2+)-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+)-ATPase, caused a monophasic [Ca2+]i rise, after which the increasing effect of DES on [Ca2+]i was greatly inhibited. Conversely, pretreatment with DES to deplete intracellular Ca2+ stores totally prevented thapsigargin from releasing more Ca2+, whereas ionomycin added afterward still released some Ca2+. These findings suggest that in human breast cancer cells, DES increases [Ca2+]i by stimulating extracellular Ca2+ influx and also by causing intracellular Ca2+ release from the endoplasmic reticulum. Acute trypan blue exclusion studies suggest that 10-20 NM DES killed cells in a time-dependent manner.  相似文献   

11.
Transmission of cytosolic [Ca2+] ([Ca2+]c) oscillations into the mitochondrial matrix is thought to be supported by local calcium control between IP3 receptor Ca2+ channels (IP3R) and mitochondria, but study of the coupling mechanisms has been difficult. We established a permeabilized cell model in which the Ca2+ coupling between endoplasmic reticulum (ER) and mitochondria is retained, and mitochondrial [Ca2+] ([Ca2+]m) can be monitored by fluorescence imaging. We demonstrate that maximal activation of mitochondrial Ca2+ uptake is evoked by IP3-induced perimitochondrial [Ca2+] elevations, which appear to reach values >20-fold higher than the global increases of [Ca2+]c. Incremental doses of IP3 elicited [Ca2+]m elevations that followed the quantal pattern of Ca2+ mobilization, even at the level of individual mitochondria. In contrast, gradual increases of IP3 evoked relatively small [Ca2+]m responses despite eliciting similar [Ca2+]c increases. We conclude that each mitochondrial Ca2+ uptake site faces multiple IP3R, a concurrent activation of which is required for optimal activation of mitochondrial Ca2+ uptake. This architecture explains why calcium oscillations evoked by synchronized periodic activation of IP3R are particularly effective in establishing dynamic control over mitochondrial metabolism. Furthermore, our data reveal fundamental functional similarities between ER-mitochondrial Ca2+ coupling and synaptic transmission.  相似文献   

12.
Cytosolic Ca(2+) ([Ca(2+)](i)) oscillations may be generated by the inositol 1,4,5-trisphosphate receptor (IP(3)R) driven through cycles of activation/inactivation by local Ca(2+) feedback. Consequently, modulation of the local Ca(2+) gradients influences IP(3)R excitability as well as the duration and amplitude of the [Ca(2+)](i) oscillations. In the present work, we demonstrate that the immunosuppressant cyclosporin A (CSA) reduces the frequency of IP(3)-dependent [Ca(2+)](i) oscillations in intact hepatocytes, apparently by altering the local Ca(2+) gradients. Permeabilized cell experiments demonstrated that CSA lowers the apparent IP(3) sensitivity for Ca(2+) release from intracellular stores. These effects on IP(3)-dependent [Ca(2+)](i) signals could not be attributed to changes in calcineurin activity, altered ryanodine receptor function, or impaired Ca(2+) fluxes across the plasma membrane. However, CSA enhanced the removal of cytosolic Ca(2+) by sarco-endoplasmic reticulum Ca(2+)-ATPase (SERCA), lowering basal and inter-spike [Ca(2+)](i). In addition, CSA stimulated a stable rise in the mitochondrial membrane potential (DeltaPsi(m)), presumably by inhibiting the mitochondrial permeability transition pore, and this was associated with increased Ca(2+) uptake and retention by the mitochondria during a rise in [Ca(2+)](i). We suggest that CSA suppresses local Ca(2+) feedback by enhancing mitochondrial and endoplasmic reticulum Ca(2+) uptake, these actions of CSA underlie the lower IP(3) sensitivity found in permeabilized cells and the impaired IP(3)-dependent [Ca(2+)](i) signals in intact cells. Thus, CSA binding proteins (cyclophilins) appear to fine tune agonist-induced [Ca(2+)](i) signals, which, in turn, may adjust the output of downstream Ca(2+)-sensitive pathways.  相似文献   

13.
The micromeres, the first cells to be specified in sea urchin embryos, are generated by unequal cleavage at the fourth cell division. The micromeres differentiate autonomously to form spicules and dispatch signals to induce endomesoderm in the neighbouring macromeres cells in the embryo. Using a calcium indicator Fura-2/AM and a mixture of dextran conjugated Oregon green-BAPTA 488 and Rhodamine red, the intracellular calcium ion concentration ([Ca2+]i) was studied in embryos at the 16-cell stage. [Ca2+]i was characteristically elevated in the micromeres during furrowing at the 4th cleavage. Subsequently, Ca2+ oscillated for about 10 min in the micromeres, resulting in episodic high levels of [Ca2+]i. High [Ca2+]i regions were associated with regional localizations of the endoplasmic reticulum (ER), though not with ER accumulated at the vegetal pole of the micromeres during the 4th division. Pharmacological studies, using a blocker of IP3-mediated Ca2+ release (Xestospongin), a store-operated Ca2+ entry inhibitor (2 aminoethoxydiphenyl borate (2-APB)) and an inhibitor of stretch-dependent ion channels (gadolinium), suggest that the high [Ca2+]i and oscillations in the micromeres are triggered by calcium influx caused by the activation of stretch-dependent calcium channels, followed by the release of calcium ions from the endoplasmic reticulum. On the basis of these new findings, a possible mechanism for autonomous formation of the micromeres is discussed.  相似文献   

14.
The functional confirmation of availability of Ca2+ transport initially-active systems in the embryo cells of loach Misgurnus fossilis L. has been obtained. Using thapsigargin, the specific inhibitor of endoplasmic reticulum of Ca2+, Mg(2+)-ATPase, this enzyme activity was divided into thapsigargin-sensitive (actually endoplasmic reticulum Ca2+, Mg(2+)-ATPase) and thapsigargin-insensitive (plasma membrane Ca2+, Mg(2+)-ATPase) constituents. The Ca(2+)-independent Mg(2+)-dependent ATPase activity makes above 39.7% of the common Ca2+, Mg(2+)-ATPase activity of embryo loach. The periodic changes of Ca2+, Mg(2+)-ATPase activity (except for the changes of plasma membrane Ca2+, Mg(2+)-ATPase activity) were found out, which coincide with periodic [Ca2+]i oscillations during the synchronous divisions of loach blastomers embryos.  相似文献   

15.
A rise in cytoplasmic [Ca2+] due to store-operated Ca2+ entry (SOCE) triggers a plethora of responses, both acute and long term. This leads to the important question of how this initial signal is decoded to regulate specific cellular functions. It is now clearly established that local [Ca2+] at the site of SOCE can vary significantly from the global [Ca2+] in the cytosol. Such Ca2+ microdomains are generated by the assembly of key Ca2+ signaling proteins within the domains. For example, GPCR, IP 3 receptors, TRPC3 channels, the plasma membrane Ca2+ pump and the endoplasmic reticulum (ER) Ca2+ pump have all been found to be assembled in a complex and all of them contribute to the Ca2+ signal. Recent studies have revealed that two other critical components of SOCE, STIM1 and Orai1, are also recruited to these regions. Thus, the entire machinery for activation and regulation of SOCE is compartmentalized in specific cellular domains which facilitates the specificity and rate of protein-protein interactions that are required for activation of the channels. In the case of TRPC1-SOC channels, it appears that specific lipid domains, lipid raft domains (LRDs), in the plasma membrane, as well as cholesterol-binding scaffolding proteins such as caveolin-1 (Cav-1), are involved in assembly of the TRPC channel complexes. Thus, plasma membrane proteins and lipid domains as well as ER proteins contribute to the SOCE-Ca2+ signaling microdomain and modulation of the Ca2+ signals per se. Of further interest is that modulation of Ca2+ signals, i.e. amplitude and/or frequency, can result in regulation of specific cellular functions. The emerging data reveal a dynamic Ca2+ signaling complex composed of TRPC1/Orai1/STIM1 that is physiologically consistent with the dynamic nature of the Ca2+ signal that is generated. This review will focus on the recent studies which demonstrate critical aspects of the TRPC1 channelosome that are involved in the regulation of TRPC1 function and TRPC1-SOC-generated Ca2+ signals.  相似文献   

16.
The oocytes of most mammalian species, including mouse and human, are fertilized in metaphase of the second meiotic division. A fertilizing spermatozoon introduces an oocyte-activating factor, phospholipase C zeta, triggering oscillations of the cytoplasmic concentration of free calcium ions ([Ca(2+)](i)) in the oocyte. [Ca(2+)](i) oscillations are essential for the activation of the embryonic development. They trigger processes such as resumption and completion of meiosis, establishment of the block to polyspermy and recruitment of maternal mRNAs necessary for the activation of the embryo genome. Moreover, it has been recently shown that [Ca(2+)](i) oscillations may also influence the development of the embryo. The ability to generate [Ca(2+)](i) oscillations develops in mammalian oocytes during meiotic maturation and requires several cytoplasmic changes, including: 1/ reorganization of endoplasmic reticulum, the main stockpile of calcium in the oocyte, 2/ increase in the number of 1,4,5-inositol triphosphate (IP(3)) receptors, 3/ changes in their biochemical properties (e.g.: sensitivity to IP3), and possibly both 4/ an increase in the concentration of Ca(2+) ions stored in endoplasmic reticulum (ER) and 5/ redistribution of Ca(2+)-binding ER proteins. The aim of this review is to present the state of current knowledge about these processes.  相似文献   

17.
The G protein-coupled Ca(2+)-sensing receptor (CaR) is an allosteric protein that responds to two different agonists, Ca(2+) and aromatic amino acids, with the production of sinusoidal or transient oscillations in intracellular Ca(2+) concentration ([Ca(2+)](i)). Here, we examined whether these differing patterns of [Ca(2+)](i) oscillations produced by the CaR are mediated by separate signal transduction pathways. Using real time imaging of changes in phosphatidylinositol 4,5-biphosphate hydrolysis and generation of inositol 1,4,5-trisphosphate in single cells, we found that stimulation of CaR by an increase in the extracellular Ca(2+) concentration ([Ca(2+)](o)) leads to periodic synthesis of inositol 1,4,5-trisphosphate, whereas l-phenylalanine stimulation of the CaR does not induce any detectable change in the level this second messenger. Furthermore, we identified a novel pathway that mediates transient [Ca(2+)](i) oscillations produced by the CaR in response to l-phenylalanine, which requires the organization of the actin cytoskeleton and involves the small GTPase Rho, heterotrimeric proteins of the G(12) subfamily, the C-terminal region of the CaR, and the scaffolding protein filamin-A. Our model envisages that Ca(2+) or amino acids stabilize unique CaR conformations that favor coupling to different G proteins and subsequent activation of distinct downstream signaling pathways.  相似文献   

18.
Huang JK  Jan CR 《Life sciences》2001,68(9):997-1004
Linoleamide is an endogenous lipid that has been shown to induce sleep in cats, rats and humans. However, its physiological function remains unclear. In this study the effect of linoleamide on cytosolic free Ca2+ concentrations ([Ca2+]i) in Madin Darby canine kidney (MDCK) tubular cells was examined, by using fura-2 as a Ca2+ probe. In a concentration-dependent manner, linoleamide induced increases in [Ca2+]i between 10-500 microM with an EC50 of 20 microM. The signal comprised a slow rise and a persistent phase, and was a result of internal Ca2+ release and external Ca2+ influx because it was partly inhibited by external Ca2+ removal. In Ca2+-free medium, depletion of the endoplasmic reticulum Ca2+ store with 1 microM thapsigargin abolished 100 microM linoleamide-induced internal Ca2+ release, and conversely, pretreatment with linoleamide prevented thapsigargin from releasing internal Ca2+. This demonstrates that the internal source of linoleamide-induced [Ca2+]i increase is located in the endoplasmic reticulum. This discharge of internal Ca2+ caused capacitative Ca2+ entry because after incubation with 100 microM linoleamide in Ca2+-free medium for 8 min readmission of 3 mM CaCl2 induced increases in [Ca2+]i. After the formation of inositol-1,4,5-trisphosphate (IP3) was blocked by the phospholipase C inhibitor U73122 (1 microM), linoleamide still induced an increase in [Ca2+]i but the shape of the increase was altered. Similar results were found for another sleep-inducing lipid 9,10-octadecenoamide. Together, the present study shows that the endogenous sleep-inducing lipid linoleamide was able to cause significant increases in [Ca2+]i in renal tubular cells, by releasing the endoplasmic reticulum Ca2+ store and triggering capacitative Ca2+ entry in a manner independent of IP3.  相似文献   

19.
Oscillations of free intracellular Ca2+ concentration ([Ca2+]i) are known to occur in many cell types during physiological cell signaling. To identify the basis for the oscillations, we measured both [Ca2+]i and extracellular Ca2+ concentration ([Ca2+]o) to follow the fate of Ca2+ during stimulation of [Ca2+]i oscillations in pancreatic acinar cells. [Ca2+]i oscillations were initiated by either t-butyloxycarbonyl-Tyr(SO3)-Nle-Gly-Tyr-Nle-Asp-2-phenylethyl ester (CCK-J), which mobilized Ca2+ from the inositol 1,4,5-trisphosphate (IP3)-insensitive pool, or low concentration of cholecystokinin octapeptide (CCK-OP), which mobilized Ca2+ from the IP3-sensitive internal pool. Little Ca2+ efflux occurred during the oscillations triggered by CCK-J or CCK-OP in spite of a large average increase in [Ca2+]i. When internal store Ca2+ pumps were inhibited with thapsigargin (Tg) during [Ca2+]i oscillations, a rapid Ca2+ efflux occurred similar to that measured in intensely stimulated, nonoscillatory cells. Tg also stimulated 45Ca efflux from internal pools of cells stimulated with CCK-J or a low concentration of CCK-OP. Hence, a large fraction of the Ca2+ released during each spike is reincorporated by the internal store Ca2+ pumps. Surprisingly, when the increase in [Ca2+]i during stimulation of oscillations was prevented by loading the cells with 1,2-bis(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid, a persistent activation of Ca2+ release and Ca2+ efflux occurred. This was reflected as a persistent increase in [Ca2+]o in cells suspended at low [Ca2+]o or persistent efflux of 45Ca from internal stores of cells maintained at high [Ca2+]o. Since agonist-stimulated Ca2+ release evidently remains activated when [Ca2+]i is highly buffered, the primary mechanism determining Ca2+ oscillations must include an inhibition of Ca2+ release by [Ca2+]i. Loading the cells with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid had no apparent effect on the levels or kinetics of IP3 formation in agonist-stimulated cells. This suggests that [Ca2+]i regulated the oscillation by inhibition of Ca2+ release independent of its possible effects on cellular levels of IP3.  相似文献   

20.
Opuntia ficus indica (prickly pear) polyphenolic compounds (OFPC) triggered an increase in [Ca2+]i in human Jurkat T-cell lines. Furthermore, OFPC-induced rise in [Ca2+]i was significantly curtailed in calcium-free buffer (0% Ca2+) as compared to that in 100% Ca2+ medium. Preincubation of cells with tyrphostin A9, an inhibitor of Ca2+ release-activated Ca2+ (CRAC) channels, significantly diminished the OFPC-induced sustained response on the increases in [Ca2+]i. Lanthanum and nifedipine, the respective inhibitors of voltage-dependent and L-type calcium channels, failed to curtail significantly the OFPC-induced calcium response. As OFPC still stimulated increases in [Ca2+]i in 0% Ca2+ medium, the role of intracellular calcium was investigated. Hence, addition of thapsigargin (TG), an inhibitor of Ca2+-ATPase of the endoplasmic reticulum (ER), during the OFPC-induced peak response exerted an additive effect, indicating that the mechanism of action of these two agents are different. Furthermore, U73122, an inhibitor of IP3 production, completely abolished increases in [Ca2+]i, induced by OFPC, suggesting that these polyphenols induce the production of IP3 that recruits calcium from ER pool. Polyphenolic compounds do act extracellularly as addition of fatty acid-free bovine serum albumin (BSA) significantly diminished the rise in [Ca2+]i evoked by the formers. OFPC also induced plasma membrane hyperpolarisation which was reversed by addition of BSA. OFPC were found to curtail the expression of IL-2 mRNA and T-cell blastogenesis. Together these results suggest that OFPC induce increases in [Ca2+]i via ER pool and opening of CRAC channels, and exert immunosuppressive effects in Jurkat T-cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号