首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evidence from both human and animal studies suggests that gonadal steroids, such as testosterone, exert activational effects on adult spatial behavior. Endogenous testosterone levels decline gradually but variably as men age; it remains to be shown whether these decreases are associated with age-related declines in visuo-spatial performance or constituent abilities indicative of generalized age-related cognitive decline. Ninety-six healthy, community dwelling men aged between 38 and 69 years completed the Vandenberg and Kuse Mental Rotation Test (MRT) together with a battery of tests including processing speed, executive function, perceptual discrimination, working memory, and reaction time measures. Significant main effects of tertiles of calculated free testosterone levels (cEFT) were found on composite measures of processing speed, executive function, and perceptual discrimination ability in a subset of men aged over 50 years in age and crystallized intelligence controlled analyses; higher cEFT levels were associated with poorer performance. Hierarchical multiple regression and path analyses on the whole data set showed that cEFT levels negatively moderated processing speed performance, which in turn predicted both working memory and MRT performance with aging. Together these data suggest that age-related declines in endogenous testosterone levels in healthy middle-to-older aged men are not associated with generalized age-related cognitive decline.  相似文献   

2.
Multiple studies report relationships between circulating androgens and performance on sexually differentiated spatial cognitive tasks in human adults, yet other studies find no such relationships. Relatively small sample sizes are a likely source of some of these discrepancies. The present study thus tests for activational effects of testosterone (T) using a within-participants design by examining relationships between diurnal fluctuations in salivary T and performance on a male-biased spatial cognitive task (Mental Rotation Task) in the largest sample yet collected: 160 women and 177 men. T concentrations were unrelated to within-sex variation in mental rotation performance in both sexes. Further, between-session learning-related changes in performance were unrelated to T levels, and circadian changes in T were unrelated to changes in spatial performance in either sex. These results suggest that circulating T does not contribute substantially to sex differences in spatial ability in young men and women. By elimination, the contribution of androgens to sex differences in human performance on these tasks may be limited to earlier, organizational periods.  相似文献   

3.
Paired associates learning (PAL) has been widely used in aging-related research, suggesting an age-related decline in associative learning. However, there are several cognitive processes (attention, spatial and recognition memory, strategy, and associative learning) involved in PAL. It is unclear which component contributes to the decline in PAL performance associated with age effects. The present study determines whether age effects on associative learning are independent of other cognitive processes involved in PAL. Using a validated computerized cognitive program (CANTAB), we examined cognitive performance of associative learning, spatial and recognition memory, attention and strategy use in 184 Singaporean Chinese adults aged from 21 to 80 years old. Linear regression revealed significant age-related decline in associative learning, spatial and recognition memory, and the level of strategy use. This age-related decline in associative learning remains even after adjusting for attention, spatial and recognition memory, and strategy use. These results show that age effects on associative learning are independent of other cognitive processes involved in PAL.  相似文献   

4.
The precise impact of age-related changes in hormone levels on cognition in men is still unclear due to differing study designs and contradictory findings. This study was undertaken to examine the relationship between endogenous sex hormone levels and cognitive functioning in healthy older men using a comprehensive battery of neuropsychological tests and measurement of serum sex hormone levels. Verbal learning and memory, visual-motor processing, spatial abilities, working memory and attention, and levels of testosterone and estradiol were evaluated in 54 healthy older men. Regression analyses revealed significant curvilinear associations between working memory function and both free and bioavailable testosterone levels, suggesting that an optimal hormone level may exist for maximal performance on tasks of executive/frontal lobe functioning. However, no other relationships were evident between either estradiol or testosterone levels and any of the other cognitive functions evaluated. Hormone assays performed at the end of the study revealed that a considerable portion of the healthy elderly men in our sample met criteria for hypogonadism and suggests that their low hormone levels may have mitigated against discovering other significant hormone-cognition relationships.  相似文献   

5.
Peripheral concentrations of cortisol, growth hormone and testosterone were determined in two experiments which examined the endocrine and behavioral responses of sexually mature Angus bulls to an estrous female (Experiment 1) and to female exposure 5 hours following an adrenocorticotropin (ACTH) injection (Experiment 2). Sexual activity of bulls in Experiment 1 significantly increased levels of cortisol when compared with concentrations before exposure to a female. Administration of ACTH in Experiment 2 consistently elevated levels of cortisol by 30-fold (P<0.01) when compared with pre-ACTH concentrations. This heightened level of cortisol persisted throughout the period of exposure to an estrous cow, although a gradual decline in cortisol concentrations occurred over time (P<0.05). In Experiment 1, growth hormone profiles tended to increase in response to sexual activity (P<0.10), whereas in Experiment 2, growth hormone increased in response to ACTH administration (P<0.01) and to female exposure (P<0.01). Concentrations of testosterone were unaffected (P>0.10) by mating activity in Experiment 1. In Experiment 2, acute suppression (P<0.01) in testosterone concentrations 5 hours after ACTH administration coincided with the exposure period to the estrous female. Frequencies of mounting behavious (penis extension, mounting, intromission and ejaculation) exhibited by ACTH-treated bulls were significantly lower compared with the frequencies two days earlier. Exogenous ACTH administration suppressed reproductive behaviors of bulls and altered secretion of cortisol, growth hormone and testosterone. Furthermore, these data provide evidence that specific mating behaviors of the bull can be influenced by circulating steroids.  相似文献   

6.
To determine if the age-related decline in male sex behavior is correlated with hormonal factors, a longitudinal study was conducted. Sexually experienced males were given mating tests every 2 months from 7 through 27 months of age. To study possible relationships between changes in behavior and alterations in hormone levels, blood samples were taken before and after these bimonthly tests. At 23 months, cross-sectional studies were also conducted comparing results to those obtained in 5-month-old males. Significant changes in mating behavior first appeared at 11 months; mount latency, intromission latency, ejaculation latency, postejaculatory interval, and intercopulatory interval were increased. Similarly, detectable decreases in testosterone (T) also occurred at this age. A significant decline in luteinizing hormone (LH) was not seen until 19 months. Correlational analyses revealed small (r less than or equal to -0.29) but significant negative correlations between T and parameters of mating behavior with age. When each age was examined separately, no significant correlations appeared. Plasma T was not predictive of behavioral performance. At 23 months, cross-sectional studies revealed deficits in mounting and penile reflex behavior but ejaculatory reflex capacity was unimpaired. At 28 months, males were decapitated. Only T levels showed a significant effect of age; estradiol, prolactin, and LH were unaffected when compared to 5-month-old males. The data suggest that although there are small and significant negative correlations between circulating testosterone and parameters of mating behavior with advancing age, it is unlikely that the observed decline in testosterone is the primary cause of the age-induced behavioral deficits. It is likely that the major causal factor(s) involves non-hormone-dependent changes within the CNS.  相似文献   

7.
Coordinating multiple tasks with narrow deadlines is particularly challenging for older adults because of age related decline in cognitive control functions. We tested the hypothesis that multiple task performance reflects age- and gender-related differences in executive functioning and spatial ability. Young and older adults completed a multitasking session with four monitoring tasks as well as separate tasks measuring executive functioning and spatial ability. For both age groups, men exceeded women in multitasking, measured as monitoring accuracy. Individual differences in executive functioning and spatial ability were independent predictors of young adults'' monitoring accuracy, but only spatial ability was related to sex differences. For older adults, age and executive functioning, but not spatial ability, predicted multitasking performance. These results suggest that executive functions contribute to multiple task performance across the adult life span and that reliance on spatial skills for coordinating deadlines is modulated by age.  相似文献   

8.
Rising life expectancies coupled with an increasing awareness of age-related cognitive decline have led to the unwarranted use of psychopharmaceuticals, including acetylcholinesterase inhibitors (AChEIs), by significant numbers of healthy older individuals. This trend has developed despite very limited data regarding the effectiveness of such drugs on non-clinical groups and recent work indicates that AChEIs can have negative cognitive effects in healthy populations. For the first time, we use a combination of EEG and simultaneous EEG/fMRI to examine the effects of a commonly prescribed AChEI (donepezil) on cognition in healthy older participants. The short- and long-term impact of donepezil was assessed using two double-blind, placebo-controlled trials. In both cases, we utilised cognitive (paired associates learning (CPAL)) and electrophysiological measures (resting EEG power) that have demonstrated high-sensitivity to age-related cognitive decline. Experiment 1 tested the effects of 5 mg/per day dosage on cognitive and EEG markers at 6-hour, 2-week and 4-week follow-ups. In experiment 2, the same markers were further scrutinised using simultaneous EEG/fMRI after a single 5 mg dose. Experiment 1 found significant negative effects of donepezil on CPAL and resting Alpha and Beta band power. Experiment 2 replicated these results and found additional drug-related increases in the Delta band. EEG/fMRI analyses revealed that these oscillatory differences were associated with activity differences in the left hippocampus (Delta), right frontal-parietal network (Alpha), and default-mode network (Beta). We demonstrate the utility of simple cognitive and EEG measures in evaluating drug responses after acute and chronic donepezil administration. The presentation of previously established markers of age-related cognitive decline indicates that AChEIs can impair cognitive function in healthy older individuals. To our knowledge this is the first study to identify the precise neuroanatomical origins of EEG drug markers using simultaneous EEG/fMRI. The results of this study may be useful for evaluating novel drugs for cognitive enhancement.  相似文献   

9.
Age-related cognitive decline is a serious health concern in our aging society. Decreased cognitive function observed during healthy brain aging is most likely caused by changes in brain connectivity and synaptic dysfunction in particular brain regions. Here we show that aged C57BL/6J wild-type mice have hippocampus-dependent spatial memory impairments. To identify the molecular mechanisms that are relevant to these memory deficits, we investigated the temporal profile of mouse hippocampal synaptic proteome changes at 20, 40, 50, 60, 70, 80, 90, and 100 weeks of age. Extracellular matrix proteins were the only group of proteins that showed robust and progressive up-regulation over time. This was confirmed by immunoblotting and histochemical analysis, which indicated that the increased levels of hippocampal extracellular matrix might limit synaptic plasticity as a potential cause of age-related cognitive decline. In addition, we observed that stochasticity in synaptic protein expression increased with age, in particular for proteins that were previously linked with various neurodegenerative diseases, whereas low variance in expression was observed for proteins that play a basal role in neuronal function and synaptic neurotransmission. Together, our findings show that both specific changes and increased variance in synaptic protein expression are associated with aging and may underlie reduced synaptic plasticity and impaired cognitive performance in old age.As the proportion of aged individuals in our population continues to grow, we are faced with an increase in age-related health problems. Brain aging invariably leads to functional decline and impairments in cognitive function and motor skills, which can seriously affect quality of life. A better understanding of the neurobiological mechanisms underlying age-related cognitive decline is crucial to facilitate maintenance of cognitive health in the elderly and to reveal potential causes of highly prevalent age-related forms of dementia, in particular Alzheimer disease, in which cognitive decline is severely impaired by yet unknown mechanisms.Several studies showed that normal brain aging is associated with subtle morphological and functional alterations in specific neuronal circuits (1, 2) and that reduced cognitive function with increasing age is likely due to synaptic dysfunction (3). Increasing evidence supports the idea that alterations in hippocampal activity are correlated with deficits in learning and memory in healthy aging humans (4, 5). In addition, rodent models of healthy aging demonstrate strong correlations between impaired performance in learning and memory tests and disturbed hippocampal network activity (6, 7). Electrophysiological studies provide additional evidence that age-related disturbances in the hippocampus involve changes in the principal cellular features of learning and memory, synaptic long-term potentiation and long-term depression (8, 9). Together, these observations suggest that a decline in hippocampal synaptic efficacy and plasticity plays a critical role in age-dependent cognitive impairment.Aging is also the primary risk factor for Alzheimer disease, which clinically manifests as severe and accelerated age-dependent cognitive decline (10). Genetic causes of familial early-onset Alzheimer disease all point to a key role in disease etiology for increased brain levels of the protein amyloid-β (11). Familial Alzheimer disease, however, is rare, and it is likely that increased amyloid-β levels in sporadic Alzheimer disease result from age-dependent and/or genetically determined alterations in the expression of other genes or proteins (12, 13). Thus, the identification of molecular mechanisms of normal brain aging might also contribute to our understanding of cognitive decline under pathological conditions, in particular in Alzheimer disease.Although the exact mechanisms underlying brain aging remain to be fully determined, they likely include changes at the molecular, cellular, and neuronal-network levels. In particular, characterization of alterations in the molecular composition and dynamics of hippocampal synapses could potentially reveal important aspects of the underlying mechanisms of brain aging. Age-related changes in global hippocampal gene and protein expression have been investigated previously (14, 15), but these studies were not geared to identify the specific synaptic molecular substrates of brain aging. Here, we made use of iTRAQ1 technology and high-coverage mass spectrometry to study the effects of aging on the proteomic composition of mouse hippocampal synaptosomes. We investigated the synaptic proteomes of individual mice at 20, 40, 50, 60, 70, 80, 90, and 100 weeks of age. Our findings show that both specific changes and increased variance in synaptic protein expression are associated with age-related cognitive decline.  相似文献   

10.

Background

Sex steroids can positively affect the brain and from this it would follow that high levels of sex steroids could be associated with better cognitive function in older men and women.

Methods

This Healthy Ageing Study sample comprised of 521 older participants (51% women) without dementia at baseline, with an age range from 64 to 94 years. Testosterone and sex hormone binding globulin were measured using the automated Immulite 2000 and analyzed in association with baseline memory, global cognitive function and decline (assessed using the Mini-Mental Status Examination or MMSE) and controlling for potential confounds such as age, education, vascular disease, smoking, diabetes, thyroid function, and body mass index.

Results

In healthy older men and women, optimal levels of testosterone were associated with better MMSE scores at baseline. Follow-up analyses indicated that in men, low testosterone levels (OR = .94, 95% CI = .88 to 1.00) were a risk factor for a sharp cognitive decline after 2 years, perhaps indicative of dementia. Associations were independent of covariates and baseline MMSE. Conversely, women at risk for a sharp drop in cognitive function showed some evidence for higher calculated free testosterone levels at baseline.

Conclusions

Results replicate earlier cross-sectional findings that high levels of sex steroids are not associated with better cognitive function in older people. In men, age accelerated endocrinological change could be associated with dementia pathology.

General significance

These data do not support increasing testosterone levels to prevent cognitive decline in men and women over 65 years of age.  相似文献   

11.
Physiological β-amyloid autoantibodies (Aβ-autoantibodies) are currently investigated as potential diagnostic and therapeutic tools for Alzheimer's disease (AD). In previous studies, their determination in serum and cerebrospinal fluid (CSF) using indirect ELISA has provided controversial results, which may be due to the presence of preformed Aβ antigen-antibody immune complexes. Based on the epitope specificity of the Aβ-autoantibodies, recently elucidated in our laboratory, we developed (a) a sandwich ELISA for the determination of circulating Aβ-IgG immune complexes and (b) an indirect ELISA for the determination of free Aβ-autoantibodies. This methodology was applied to the analysis of serum samples from healthy individuals within the age range of 18 to 89 years. Neuropsychological examination of the participants in this study indicated non-pathological, age-related cognitive decline, revealed especially by tests of visual memory and executive function, as well as speed-related tasks. The ELISA serum determinations showed significantly higher levels of Aβ-IgG immune complexes compared to free Aβ-autoantibodies, while no correlation with age or cognitive performance of the participants was found.  相似文献   

12.
Serum levels of luteinizing hormone (LH), testosterone, dehydroepiandrosterone sulfate (DHAS), androstenedione and cortisol were determined in multiple samples from 86 sooty mangabeys of varying ages (0-17 years). Testosterone, androstenedione, DHAS and cortisol were measured by radioimmunoassay; LH was determined by in vitro bioassay. Serum LH concentrations were elevated in neonates (less than 6 months) and in animals older than 72 months of age. The higher LH levels were associated with increased circulating concentrations of testosterone in males but not females. The pubertal rise in serum testosterone at approximately 55-60 months of age in males was coincident with rapid body growth. No pubertal growth spurt was observed in females. Serum levels of androstenedione and DHAS were highest during early postnatal life (less than 6 months) with androstenedione exceeding 600 ng/dl in males and 250 micrograms/dl in females, but declined rapidly in both sexes to a baseline of 150 ng/dl by 19 months of age. Serum androstenedione did not fluctuate significantly in adult animals. The pattern of age-related changes in serum DHAS paralleled those of serum androstenedione, whereas serum cortisol values did not change significantly with age. Developmental changes in serum LH, testosterone and body weight suggest that the sooty mangabey matures substantially later than the rhesus monkey. The pattern of serum gonadal and adrenal steroids during sexual maturation is similar to that seen in the baboon with no evidence of an adrenarche.  相似文献   

13.
ABSTRACT

Aging is a major risk factor for both normal and pathological cognitive decline. However, individuals vary in their rate of age-related decline. We developed an easily interpretable composite measure of cognitive age, and related both the level of cognitive age and cognitive slope to sociodemographic, genetic, and disease indicators and examined its prediction of dementia transition. Using a sample of 19,594 participants from the Health and Retirement Study, cognitive age was derived from a set of performance tests administered at each wave. Our findings reveal different conclusions as they relate to levels versus slopes of cognitive age, with more pronounced differences by sex and race/ethnicity for absolute levels of cognitive decline rather than for rates of declines. We also find that both level and slope of cognitive age are inversely related to education, as well as increased for persons with APOE ?4 and/or diabetes. Finally, results show that the slope in cognitive age predicts subsequent dementia among non-demented older adults. Overall, our study suggests that this measure is applicable to cross-sectional and longitudinal studies on cognitive aging, decline, and dementia with the goal of better understanding individual differences in cognitive decline.  相似文献   

14.
Typically studies of the effects of aging on cognitive-motor performance emphasize changes in elderly populations. Although some research is directly concerned with when age-related decline actually begins, studies are often based on relatively simple reaction time tasks, making it impossible to gauge the impact of experience in compensating for this decline in a real world task. The present study investigates age-related changes in cognitive motor performance through adolescence and adulthood in a complex real world task, the real-time strategy video game StarCraft 2. In this paper we analyze the influence of age on performance using a dataset of 3,305 players, aged 16-44, collected by Thompson, Blair, Chen & Henrey [1]. Using a piecewise regression analysis, we find that age-related slowing of within-game, self-initiated response times begins at 24 years of age. We find no evidence for the common belief expertise should attenuate domain-specific cognitive decline. Domain-specific response time declines appear to persist regardless of skill level. A second analysis of dual-task performance finds no evidence of a corresponding age-related decline. Finally, an exploratory analyses of other age-related differences suggests that older participants may have been compensating for a loss in response speed through the use of game mechanics that reduce cognitive load.  相似文献   

15.
Gonadal steroid hormones enhance cognitive performance, particularly spatial and vocal learning, in mammals and birds. However, it is unknown whether problem‐solving ability is similarly regulated. We propose that androgens, such as testosterone and 5α‐dihydrotestosterone, play a role in mediating problem‐solving behavior as well. As a test, male white‐crowned sparrows (Zonotrichia leucophrys gambelii) were either castrated and administered a blank (Blank‐castrate) or testosterone‐filled implant (T‐castrate) or were sham operated and were exposed to a novel feeder, which they had to open to receive a food reward, in two trials. Testosterone treatment affected neither a neophobic response nor problem‐solving performance. However, T‐castrates were more persistent in manipulating the feeder than Blank‐castrates or Shams. Furthermore, their persistence correlated positively with circulating levels of both testosterone and 5α‐dihydrotestosterone. We suggest that a positive correlation between sex steroids and persistence in foraging and problem‐solving contexts may lead to an adaptive increase in resource acquisition in the breeding season. Given the overall low success on the problem‐solving test, we cannot confidently conclude that androgens do not play a role in mediating problem‐solving behavior. However, unlike in mammals, it seems these hormones do not significantly influence neophobia in foraging contexts in birds.  相似文献   

16.
Significant advances have been made in our understanding of the hormone, leptin and its CNS actions in recent years. It is now evident that leptin has a multitude of brain functions, that extend beyond its established role in the hypothalamic control of energy balance. Additional brain regions including the hippocampus are important targets for leptin, with a high density of leptin receptors (LepRs) expressed in specific hippocampal regions and localised to CA1 synapses. Extensive evidence indicates that leptin has pro-cognitive actions, as it rapidly modifies synaptic efficacy at excitatory Schaffer collateral (SC)-CA1 and temporoammonic (TA)-CA1 synapses and enhances performance in hippocampal-dependent memory tasks. There is a functional decline in hippocampal responsiveness to leptin with age, with significant reductions in the modulatory effects of leptin at SC-CA1 and TA-CA1 synapses in aged, compared to adult hippocampus. As leptin has pro-cognitive effects, this decline in leptin sensitivity is likely to have negative consequences for cognitive function during the aging process. Here we review how evaluation of the hippocampal actions of leptin has improved our knowledge of the regulatory brain functions of leptin in health and provided significant insight into the impact of leptin in age-related neurodegenerative disorders linked to cognitive decline.  相似文献   

17.
Reduced androgen levels in aged men and women might be risk factors for age-related cognitive decline and Alzheimer's disease (AD). Ongoing clinical trials are designed to evaluate the potential benefit of estrogen in women and of testosterone in men. In this review, we discuss the potential beneficial effects of androgens and androgen receptors (ARs) in males and females. In addition, we discuss the hypothesis that AR interacts with apolipoprotein (apoE)4, encoded by epsilon4 and a risk factor for age-related cognitive decline and AD, and the potential consequences of this interaction.  相似文献   

18.
A non-selective antihistamine, dimebon, has recently emerged as a potential treatment for Alzheimer’s disease and Huntington’s disease. Dimebon exerts several effects in addition to its anti-histaminergic effect, and of particular interest is its ability to enhance cognitive function in several models. The mechanism underlying this is unknown though it has been suggested that it may be associated with its anti-cholinergic action. Dimebon has also been reported to be neuroprotective, perhaps as a result of its ability to stabilize mitochondria. We considered that these effects might impact on the well-described age-related impairment in spatial learning and therefore examined the effect of repeated administration of dimebon on performance of young and aged animals in the Morris water maze. Whereas a clear age-related deficit was observed, dimebon failed to exert any effect on performance. Similarly, dimebon exerted no effect on the age-related increase in hippocampal expression of several markers of microglial and astroglial activation. We conclude that, despite its cognitive enhancing effects in some models, dimebon failed to modulate the deficit in spatial learning in aged rats and the evidence suggests that the drug does not possess anti-inflammatory properties.  相似文献   

19.
Impairment of cognitive functions including hippocampus-dependent spatial learning and memory affects nearly half of the aged population. Age-related cognitive decline is associated with synaptic dysfunction that occurs in the absence of neuronal cell loss, suggesting that impaired neuronal signaling and plasticity may underlie age-related deficits of cognitive function. Expression of myelin-associated inhibitors (MAIs) of synaptic plasticity, including the ligands myelin-associated glycoprotein, neurite outgrowth inhibitor A, and oligodendrocyte myelin glycoprotein, and their common receptor, Nogo-66 receptor, was examined in hippocampal synaptosomes and Cornu ammonis area (CA)1, CA3 and dentate gyrus subregions derived from adult (12-13 months) and aged (26-28 months) Fischer 344 × Brown Norway rats. Rats were behaviorally phenotyped by Morris water maze testing and classified as aged cognitively intact (n = 7-8) or aged cognitively impaired (n = 7-10) relative to adults (n = 5-7). MAI protein expression was induced in cognitively impaired, but not cognitively intact, aged rats and correlated with cognitive performance in individual rats. Immunohistochemical experiments demonstrated that up-regulation of MAIs occurs, in part, in hippocampal neuronal axons and somata. While a number of pathways and processes are altered with brain aging, we report a coordinated induction of myelin-associated inhibitors of functional and structural plasticity only in cognitively impaired aged rats. Induction of MAIs may decrease stimulus-induced synaptic strengthening and structural remodeling, ultimately impairing synaptic mechanisms of spatial learning and memory and resulting in cognitive decline.  相似文献   

20.
The aim of this study was to evaluate motor control activity (active vs. passive condition) with regards to wayfinding and spatial learning difficulties in large-scale spaces for older adults. We compared virtual reality (VR)-based wayfinding and spatial memory (survey and route knowledge) performances between 30 younger and 30 older adults. A significant effect of age was obtained on the wayfinding performances but not on the spatial memory performances. Specifically, the active condition deteriorated the survey measure in all of the participants and increased the age-related differences in the wayfinding performances. Importantly, the age-related differences in the wayfinding performances, after an active condition, were further mediated by the executive measures. All of the results relative to a detrimental effect of motor activity are discussed in terms of a dual task effect as well as executive decline associated with aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号