首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The processing of nociceptive input that occurs at the spinal level represents the first stage of effective control over its access to higher regions of the central nervous system. Recent developments in both the anatomy and physiology of nociceptive processing pathways at this level are beginning to yield an integrated understanding of structure and function. Most small afferent axons terminate in the more superficial laminae of dorsal horn, but technical difficulties have, until recently, prevented analysis of the functional properties of identified small fibres. A direct input of nociceptive afferents on to particular dorsal horn neurons is difficult to establish in view of the slow impulse conduction in these fibres and the small size of target neurons in the substantia gelatinosa. The small cells themselves are being analysed for relations between structure and function, using physiological, intracellular staining and immunocytochemical techniques to characterize their properties. They appear to be a highly heterogeneous population with many sub-classes, whether typed according to the transmitter they contain, e.g. enkephalin, to their physiological responses: whether excitatory or inhibitory to nociceptive and other inputs, or to both. The multireceptive neurons that project out of the dorsal horn toward supraspinal regions are, in general, located in deeper laminae and are likely to receive nociceptive information through polysynaptic pathways. The nocireceptive neurons in lamina I, which receive exclusively nociceptive inputs from myelinated and non-myelinated afferents project, at least in part, to thalamic and brain stem regions. Polysynaptic nociceptive pathways in dorsal horn may be subject to different controls from neurons in laminae I and II. Tonic descending inhibition is operative on the former and it is becoming clearly established that descending systems such as those containing noradrenaline, can regulate the access of nociceptive information to higher levels. The mechanisms of such descending controls and the importance of their interaction with segmental control systems, such as those involving the dynorphin opioids, are just beginning to be understood. Many somatosensory neurons in dorsal horn, both the large cells, some of which project supraspinally, and the small cells of superficial laminae, receive convergent nociceptive and non-nociceptive inputs. Although solely nociresponsive neurons are clearly likely to fill a role in the processing and signalling of pain in the conscious central nervous system, the way in which such useful specificity could be conveyed by multireceptive neurons is difficult to appreciate.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
It has become clear that a number of neuropeptides are found in sensory nerves, some of which have been identified in visceral afferents. The best studied peptide is substance P, which has been localized in a population of capsaicin-sensitive visceral afferents. It has been established that there are a varied proportion of substance P-containing afferents in different visceral structures. In general, the peripheral termination of these nerves is around blood vessels. The central terminations of visceral afferents are in laminae I and V in the dorsal horn of the spinal cord. Substance P has been localized in these laminae and appears to be capsaicin-sensitive and therefore of sensory origin. Recently, substance K, which is derived from the same gene as substance P, has been found in visceral structures. Calcitonin gene-related peptide has been found in certain viscera to be contained in capsaicin-sensitive nerves. The contribution that other peptides make to visceral afferent innervation is not known.  相似文献   

3.
The olfactory ensheathing cell (OEC) is a class of glial cell that has been reported to support regeneration in the central nervous system after various types of lesions, including rhizotomy of spinal dorsal roots at thoracic, lumbar and sacral levels. We have therefore carried out a detailed anatomical analysis to assess the efficacy of dorsal horn OEC transplants at promoting regeneration of primary afferents across the dorsal root entry zone (DREZ) at the cervical level in the adult rat. OECs were cultured from adult rat olfactory bulb and immunopurified (90% purity). Regeneration by large diameter afferents and by both peptidergic and non-peptidergic small diameter afferents was assessed using respectively cholera toxin B (CTB) labelling and immunocytochemistry for calcitonin gene-related peptide (CGRP) and the purinoceptor P2X3. Following an extensive (C3-T3) rhizotomy, CGRP and P2X3 immunoreactive axons regenerated across the rhizotomy site as far as the DREZ but there was no evidence of regeneration across the DREZ, except through sites where the OEC transplant was directly grafted into the DREZ. No evidence of regeneration into the dorsal horn by CTB-labelled axons was obtained. In addition, there was little sign of sprouting by intact axons in the vicinity of OEC transplant sites. In contrast to these results in vivo, cocultures of OECs and adult dorsal root ganglion cells showed that OECs stimulate extensive neurite outgrowth. The failure of the OECs to promote regeneration in vivo following cervical rhizotomy is therefore most likely due to factors in the environment of the graft site and/or the method of transplantation.  相似文献   

4.
1.) Peripheral tissues injury produces long lasting sensory and motor disturbances in man that present as the post-injury hypersensitivity syndrome with a reduction in the threshold required to elicit either pain or the flexion withdrawal reflex and an exaggeration of the normal response to suprathreshold stimuli. 2.) Two mechanisms contribute to these changes; sensitization of the peripheral terminals of high threshold primary afferents and an increase in the excitability of the spinal cord; a phenomenon known as central sensitization. 3.) Central sensitization has previously been shown by our laboratory to be the consequence of activity in unmyelinated primary afferents. Brief (20 s) C-fibre strength conditioning stimuli have the capacity to produce both a prolonged heterosynaptic facilitation of the flexion reflex and an alteration in the response properties of dorsal horn neurones, that long outlast the conditioning stimulus. 4.) In the adult decerebrate-spinal rat preparation we have, using intracellular recordings of dorsal horn neurones, examined the time course of the central effects of different types of orthodromic inputs. The hemisected spinal cord preparation isolated from 12-14 day rat pups has been used to see whether prolonged alterations in dorsal horn properties induced by orthodromic inputs can be studied in vitro. 5.) Single stimuli applied to a cutaneous nerve at graded strengths to successively recruit A beta, A delta and C-afferents produce, in the majority of neurones recorded in the deep dorsal horn in vivo, a series of post synaptic potentials that last from between ten and several hundred milliseconds. 6.) Repeated low frequency stimulation of C but not A-afferent fibres results in a pattern of progressive response increment or windup in a proportion of dorsal horn neurones. In some of the neurones the windup is associated with a depolarization that outlasts the stimulus period for tens of seconds. 7.) Application of the chemical irritant mustard oil to the skin activates chemosensitive C-afferent fibres for 1-3 minutes. Such a conditioning stimulus results however in an expansion in the size and an alteration in the response properties of the receptive fields of dorsal horn neurones that lasts for tens of minutes. 8.) In dorsal horn neurones recorded intracellularly in the isolated hemisected spinal cord, both intrinsic membrane properties and the orthodromic responses to primary afferent input can be studied. Repeated stimulation of a dorsal root produces in some neurones a prolonged heterosynaptic facilitation with both an augmentation of the response to the conditioning root (homosynaptic potentiation) and to adjacent test roots (heterosynaptic potentiation).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
It has been thought that spinal dorsal horn neurons receive convergent inputs from not only somatosensory but also visceral pathways. For instance, the referred pain is presumed to be due to the convergence of sensory inputs from cardiac and shoulder receptive fields. However, precise investigation has not been made from dorsal horn neurons yet, because of difficulty in studying the pathways from those regions by means of conventional electrophysiology. The purpose of this study is to clarify the convergent inputs to single dorsal horn neurons from wide receptive fields using an in vivo patch-clamp recording technique from the superficial spinal dorsal horn and an intracellular recording from dorsal root ganglion neurons that keep physiological connections with the peripheral sites. Identified dorsal root ganglion neurons received an input from a quite small area, about 1 x 1 mm in width of the skin. In contrast, substantia gelatinosa neurons in the spinal cord received inputs from an unexpectedly wide area of the skin. Previous extracellular recordings have, however, revealed that substantia gelatinosa neurons have small receptive field. This discrepancy is probably due mainly to an availability of the in vivo patch-clamp method to analyze sub-threshold synaptic responses. In contrast, the extracellular recording technique allows us to analyze predominantly the firing frequency of neurons. Thus, the in vivo patch-clamp recordings from dorsal horn neurons and the intracellular recordings from DRG neurons will be useful for well understanding the sensory processing in the spinal cord.  相似文献   

6.
Temporal summation of second pain and long-lasting tactile-evoked aftersensations are examples of sensory phenomenons that cannot be explained on the basis of responses of primary afferents. Two distinct classes of monkey spinothalamic tract neurons have responses to controlled natural stimuli that parallel and thus could account for the above phenomenons. One class, termed wide-dynamic-range, receives excitatory effects from sensitive mechanoreceptive afferents and from various nociceptive afferents including Adelta and C mechanothermal nociceptive afferents. Another class, termed nociceptive-specific, receives excitatory effects exclusively from primary nociceptive afferents. Both classes respond with an early and late response to a single noxious heat pulse (peak temperature = 51 C). The late response, unlike C nociceptive afferents but like second pain, summates in magnitude with each successive heat pulse. Gentle moving tactile stimuli evoke long-lasting (20-56 sec) after-discharges only in wide dynamic range neurons, and are similar in duration to the tactile after-sensation evoked by similar stimuli. Both the after-discharges and after-sensations can be abruptly terminated by rubbing the affected region. Temporal summation of second pain and cutaneous after-sensations are at least partly subserved by spinal cord mechanisms within the dorsal horn and are manifested in the output of spinothalamic tract neurons.  相似文献   

7.
In experiments on 5-30-day rat puppies, studies have been made of the effect of L-DOPA (100 mg/kg, intraperitoneally) on the activity of interneurones of the dorsal horn of the spinal cord as revealed from the parameters of potentials of the dorsal surface of the spinal cord. The specific pattern of reaction in 5-day animals is manifested in a succession of inhibitory inhibition and increase in the activity of neurones monosynaptically activated by low-threshold afferents. Both the amplitude and duration of polysynaptic components of the potentials of the dorsal surface are rather high. From the 7th day, deep and stable inhibition is observed which is accompanied by a decrease in the amplitude of all components of the potential of the dorsal surface. At later stages of ontogenesis, a decrease is observed in the inhibitory effect of L-DOPA on the activity of interneurones which monosynaptically contact with low- and especially high-threshold afferents; in contrast to earlier stages, but similar to adult animals, evident inhibition was revealed in the activity of interneurones which have polysynaptic contacts with high-threshold afferents and afferents of flexor reflex. Thus, within the first weeks of postnatal life, basic qualitative changes are observed in the pattern of the reaction of interneurones of the dorsal horn to exogenic catecholamines.  相似文献   

8.
Transient receptor potential melastatin 8 (TRPM8) ion channels mediate the detection of noxious and innocuous cold and are expressed by primary sensory neurons, but little is known about the processing of the TRPM8-mediated cold information within the trigeminal sensory nuclei (TSN) and the spinal dorsal horn (DH). To address this issue, we characterized TRPM8-positive (+) neurons in the trigeminal ganglion and investigated the distribution of TRPM8+ axons and terminals, and their synaptic organization in the TSN and in the DH using light and electron microscopic immunohistochemistry in transgenic mice expressing a genetically encoded axonal tracer in TRPM8+ neurons. TRPM8 was expressed in a fraction of small myelinated primary afferent fibers (23.7%) and unmyelinated fibers (76.3%), suggesting that TRPM8-mediated cold is conveyed via C and Aδ afferents. TRPM8+ axons were observed in all TSN, but at different densities in the dorsal and ventral areas of the rostral TSN, which dominantly receive sensory afferents from intra- and peri-oral structures and from the face, respectively. While synaptic boutons arising from Aδ and non-peptidergic C afferents usually receive many axoaxonic contacts and form complex synaptic arrangements, TRPM8+ boutons arising from afferents of the same classes of fibers showed a unique synaptic connectivity; simple synapses with one or two dendrites and sparse axoaxonic contacts. These findings suggest that TRPM8-mediated cold is conveyed via a specific subset of C and Aδ afferent neurons and is processed in a unique manner and differently in the TSN and DH.  相似文献   

9.
In male rats, the dorsal penile nerve (DPN) conveys sensory information from the genitals to the lumbosacral spinal segments of the spinal cord. DPN is the afferent limb of a reflex loop that supports reflexive erections, and that includes a network of spinal interneurons and autonomic and somatic motoneurons to the penis and perineal striated muscles. Autonomic efferent pathways to the penis relay in the major pelvic ganglion (MPG). Glutamate (Glu) is a likely candidate as a neurotransmitter of reflexive erections. Both AMPA and NMDA glutamatergic receptor subunits are present in the lumbosacral spinal cord, and AMPA and NMDA receptor antagonists block reflexive erections. In the present study, we used tract-tracing experiments combined with immunohistochemical and immunocytochemical techniques to ascertain the presence of Glu at two different levels of the network controlling reflexive erections. DPN afferents were localized in the dorsal horn of the lumbosacral cord and displayed the characteristics of either C-fibers or Aδ fibers. DPN terminals (some of them glutamatergic) were mainly distributed in the medial edge of the dorsal horn in the L6 spinal segment. GluR1 subunits were present in some DPN afferents, suggesting that they could be autoreceptors. DPN fibers were also present in the MPG, as were Glu terminals and GluR4 subunits. The results reveal the presence of Glu in DPN fibers and terminals and suggest that both the spinal cord and the MPG use glutamatergic transmission to control reflexive erections. This work was supported by grant no. 5R01MH059811–03 from the NIH and by an institutional grant from the Institut National de la Recherche Agronomique.  相似文献   

10.

Background

The complex neuronal circuitry of the dorsal horn of the spinal cord is as yet poorly understood. However, defining the circuits underlying the transmission of information from primary afferents to higher levels is critical to our understanding of sensory processing. In this study, we have examined phosphodiesterase 1C (Pde1c) BAC transgenic mice in which a green fluorescent protein (GFP) reporter gene reflects Pde1c expression in sensory neuron subpopulations in the dorsal root ganglia and spinal cord.

Results

Using double labeling immunofluorescence, we demonstrate GFP expression in specific subpopulations of primary sensory neurons and a distinct neuronal expression pattern within the spinal cord dorsal horn. In the dorsal root ganglia, their distribution is restricted to those subpopulations of primary sensory neurons that give rise to unmyelinated C fibers (neurofilament 200 negative). A small proportion of both non-peptidergic (IB4-binding) and peptidergic (CGRP immunoreactive) subclasses expressed GFP. However, GFP expression was more common in the non-peptidergic than the peptidergic subclass. GFP was also expressed in a subpopulation of the primary sensory neurons immunoreactive for the vanilloid receptor TRPV1 and the ATP-gated ion channel P2X3. In the spinal cord dorsal horn, GFP positive neurons were largely restricted to lamina I and to a lesser extent lamina II, but surprisingly did not coexpress markers for key neuronal populations present in the superficial dorsal horn.

Conclusion

The expression of GFP in subclasses of nociceptors and also in dorsal horn regions densely innervated by nociceptors suggests that Pde1c marks a unique subpopulation of nociceptive sensory neurons.  相似文献   

11.
Capsaicin receptors are expressed in primary sensory neurons and excited by heat and protons. We examined the inflammation-induced changes of the level of VR1 capsaicin receptor mRNA in sensory neurons and the sensitivity of primary afferents to capsaicin. Carrageenan treatment induced axonal transport of VR1 mRNA, but not that of preprotachykinin mRNA, from the dorsal root ganglia to central and peripheral axon terminals. The sensitivity of central terminals to capsaicin, which was estimated by measuring the capsaicin-evoked release of glutamate from the dorsal horn, was increased by peripheral inflammation, and such an increase was suppressed by inhibiting the RNA translation in the dorsal horn with cycloheximide and an intrathecal injection of VR1 antisense oligonucleotides. Thus, peripheral inflammation induces the axonal transport of VR1 mRNA, which may be involved in the hypersensitivity of primary afferents to capsaicin and the production of inflammatory hyperalgesia.  相似文献   

12.
In decerebrate paralyzed cats, we examined the effects of two central motor commands (fictive locomotion and scratching) on the discharge of dorsal horn neurons receiving input from group III and IV tibial nerve afferents. We recorded the impulse activity of 74 dorsal horn neurons, each of which received group III input from the tibial nerve. Electrical stimulation of the mesencephalic locomotor region (MLR), which evoked fictive static contraction or fictive locomotion, inhibited the discharge of 44 of the 64 dorsal horn neurons tested. The mean depth from the dorsal surface of the spinal cord of the 44 neurons whose discharge was inhibited by MLR stimulation was 1.77 +/- 0.04 mm. Fictive scratching, evoked by topical application of bicuculline to the cervical spinal cord and irritation of the ear, inhibited the discharge of 22 of the 29 dorsal horn neurons tested. Fourteen of the twenty-two neurons whose discharge was inhibited by fictive scratching were found to be inhibited by MLR stimulation as well. The mean depth from the dorsal surface of the cord of the 22 neurons whose discharge was inhibited by fictive scratching was 1.77 +/- 0.06 mm. Stimulation of the MLR or the elicitation of fictive scratching had no effect on the activity of 22 dorsal horn neurons receiving input from group III and IV tibial nerve afferents. The mean depth from the dorsal surface of the cord was 1.17 +/- 0.07 mm, a value that was significantly (P < 0.05) less than that for the neurons whose discharge was inhibited by either MLR stimulation or fictive scratching. We conclude that centrally evoked motor commands can inhibit the discharge of dorsal horn neurons receiving thin fiber input from the periphery.  相似文献   

13.
The changes of preprogalanin mRNA levels in the superficial dorsal horn neurons (laminae I and II) of the trigeminal nucleus caudalis in response to orofacial pain induced by the injection of 5% formalin into the lips of rats was investigated and compared to those of preproenkephalin A mRNA and preprodynorphin mRNA in the same region by means of in situ hybridization histochemistry. Rapid and marked increases of preprogalanin and preprodynorphin mRNA were observed on the side of the injection, but the increase of preproenkephalin A mRNA level was less pronounced than that of the other two mRNAs, indicating that these peptides have different roles in the dorsal horn analgesic mechanism and that galanin, in addition to opioid peptides, may have a highly specific role in this mechanism.  相似文献   

14.
15.
Sensory input from peripheral nerves to the dorsal horn of the spinal cord is mediated by a variety of agents released by the central terminals of dorsal root ganglion (DRG) neurons. These include, but are not limited to, amino acids, especially glutamate, peptides and purines. The unraveling of the mechanisms of synaptic transmission by central terminals of DRG neurons has to take into account various ways in which the message from the periphery can be modulated at the level of the first central synapse. These include postsynaptic and presynaptic mechanisms. Homomeric and heteromeric complexes of receptor subunits for the different transmitters released by DRG neurons and interneurons, clustered at the postsynaptic site of central synapses, can be expressed in different combinations and their rate of insertion into the postsynaptic membrane is activity-regulated. Inhibitory mechanisms are an important part of central modulation, especially via presynaptic inhibition, currently believed to involve GABA released by inhibitory intrinsic neurons. Recent work has established the occurrence of another way by which sensory input can be modulated, i.e. the expression of presynaptic ionotropic and metabotropic receptors in central terminals of DRG neurons. Microscopic evidence for the expression, in these terminals, of various subunits of ionotropic glutamate receptors documents the selective expression of glutamate receptors in functionally different DRG afferents. Electrophysiological and pharmacological data suggest that activation of presynaptic ionotropic glutamate receptors in central terminals of DRG neurons may result in inhibition of release of glutamate by the same terminals. Glutamate activating presynaptic receptors may spill over from the same or adjacent synapses, or may be released by processes of astroglial cells surrounding synaptic terminals. The wide expression of presynaptic ionotropic glutamate receptors, especially in superficial laminae of the dorsal horn, where Adelta- and C fibers terminate, provides an additional or alternative mechanism, besides GABA-mediated presynaptic inhibition, for the modulation of glutamate release by these fibers. Since, however, presynaptic ionotropic glutamate receptors are also expressed in terminals of GABAergic intrinsic interneurons, a decrease of GABA release resulting from activation of these receptors in the same laminae, may also play a role in central sensitization and hyperalgesia.  相似文献   

16.
The transient receptor potential vanilloid receptor 1 (TRPV1) is expressed on primary afferent terminals and spinal dorsal horn neurons. However, the neurochemical phenotypes and functions of TRPV1-expressing post-synaptic neurons in the spinal cord are not clear. In this study, we tested the hypothesis that TRPV1-expressing dorsal horn neurons are glutamatergic. Immunocytochemical labeling revealed that TRPV1 and vesicular glutamate transporter-2 were colocalized in dorsal horn neurons and their terminals in the rat spinal cord. Resiniferatoxin (RTX) treatment or dorsal rhizotomy ablated TRPV1-expressing primary afferents but did not affect TRPV1- and vesicular glutamate transporter-2-expressing dorsal horn neurons. Capsaicin significantly increased the frequency of glutamatergic spontaneous excitatory post-synaptic currents and miniature excitatory post-synaptic currents in almost all the lamina II neurons tested in control rats. In RTX-treated or dorsal rhizotomized rats, capsaicin still increased the frequency of spontaneous excitatory post-synaptic currents and miniature excitatory post-synaptic currents in the majority of neurons examined, and this effect was abolished by a TRPV1 blocker or by non-NMDA receptor antagonist. In RTX-treated or in dorsal rhizotomized rats, capsaicin also produced an inward current in a subpopulation of lamina II neurons. However, capsaicin had no effect on GABAergic and glycinergic spontaneous inhibitory post-synaptic currents of lamina II neurons in RTX-treated or dorsal rhizotomized rats. Collectively, our study provides new histological and functional evidence that TRPV1-expressing dorsal horn neurons in the spinal cord are glutamatergic and that they mediate excitatory synaptic transmission. This finding is important to our understanding of the circuitry and phenotypes of intrinsic dorsal horn neurons in the spinal cord.  相似文献   

17.
Krishtal  O.  Ostrovskaya  O.  Moroz  L. 《Neurophysiology》2003,35(3-4):208-216
Acid-sensing ion channels (ASIC) are involved in a variety of sensory functions, including mechanoreception, nociception, and perception of acid taste, thus being considerably involved in the control of smooth musculature. It is suggested that FMRFa-related peptides can be endogenous regulators of these channels, primarily by modulating the rate of ASIC desensitization. Here we present two our findings. (I) The effect is strongly pH-dependent: The lower the pH used to activate ASIC, the greater the modulatory effect of RFa-related peptides, and (ii) in the small (nociceptive), but not in the large (mechanoceptive) primary somatosensory neurons, RFa-related peptides shift steady-state desensitization toward more acidic levels. We suggest that the pH dependence of the modulatory action of RFa-related peptides can be associated with the presence of positively charged arginine residues and their possible interactions with histidine residues in ASIC. The second effect should result in strongly increased phasic activity of nociceptors under conditions of moderate ischemia. Our results show that the RFa-related peptides are capable of changing the sensitivity of nociceptors to protons, as well as the temporal pattern of their activity. Short neuropeptides are usually the products of proteolysis of larger prohormone molecules. Interestingly, chronic pain is accompanied by a significant activation of proteases in dorsal root ganglion neurons, and RFa peptides have been found in the spinal dorsal horn of mammals. They may play a role in the modulation of the mammalian sensory inputs.  相似文献   

18.
Bombesin (BN), substance P-(SP) and somatostatin (SRIF) were measured in individual laminae of the cervical, thoracic and lumbar (L) spinal cord of control cats, and in the L6 segment of cats receiving a spinal hemisection (L2) or deafferentation via dorsal rhizotomy at L6, 7, S1. The interlaminar distribution of BN, SP, and SRIF was remarkably similar. Highest concentrations were found in the superficial dorsal horn, and progressively less was found proceeding ventrally. Some intersegmental variations in peptide concentration within a single lamina were found. Dorsal rhizotomy caused a significant decline in BN, SP and SRIF in lamina I-III, therefore all three peptides appear to be contained in dorsal root ganglion cells. Evidence is presented for the existence of ascending BN and SP projections originating in lamina I-III and VII, for a descending SRIF pathway terminating in lamina VIII, and for an ascending BN path in lamina VIII. Dorsal root afferents to lamina VIII influence levels of BN, SP and SRIF.  相似文献   

19.
Gross MK  Dottori M  Goulding M 《Neuron》2002,34(4):535-549
  相似文献   

20.
Yoshida Y  Han B  Mendelsohn M  Jessell TM 《Neuron》2006,52(5):775-788
As different classes of sensory neurons project into the CNS, their axons segregate and establish distinct trajectories and target zones. One striking instance of axonal segregation is the projection of sensory neurons into the spinal cord, where proprioceptive axons avoid the superficial dorsal horn-the target zone of many cutaneous afferent fibers. PlexinA1 is a proprioceptive sensory axon-specific receptor for sema6C and sema6D, which are expressed in a dynamic pattern in the dorsal horn. The loss of plexinA1 signaling causes the shafts of proprioceptive axons to invade the superficial dorsal horn, disrupting the organization of cutaneous afferents. This disruptive influence appears to involve the intermediary action of oligodendrocytes, which accompany displaced proprioceptive axon shafts into the dorsal horn. Our findings reveal a dedicated program of axonal shaft positioning in the mammalian CNS and establish a role for plexinA1-mediated axonal exclusion in organizing the projection pattern of spinal sensory afferents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号