共查询到20条相似文献,搜索用时 10 毫秒
1.
Cytochrome c oxidase (COX) deficiency is the most common cause of Leigh syndrome (LS). COX consists of ten nuclear-encoded and three mtDNA-encoded structural subunits. Although the nucleotide sequences of all 13 genes are known, no mutation was found in nuclear-encoded subunit genes of COX-deficiency patients. Zhu et al. (1998) and Tiranti et al. (1998) found nine mutations in the surfeit 1 (SURF1) gene in LS families with COX deficiency. The mouse surfeit gene cluster consists of six closely spaced housekeeping genes unrelated by sequence homology. Except for the Surf3 gene, the function is still not known. The juxtaposition of at least five of the surfeit genes is conserved between birds and mammals. We identified two novel mutations of SURF1 in a Japanese LS patient with COX deficiency using direct sequencing analysis. Firstly, a 2-bp deletion at nucleotide position 790 (790delAG) in exon 8 was found, which shifts the reading frame such that the mutant protein has a completely different amino acid sequence from codon 264 to the premature stop codon at 290. Secondly, we found a T-to-G transversion at nucleotide 820, resulting in the substitution of tyrosine by aspartic acid at codon 274 (Y274D). We also studied the parents' genes, and found that the Y274D mutation was in his father and the 790delAG mutation was in his mother heterozygously. Therefore, we concluded that the patient was a compound heterozygote with these mutations. These are the first pathogenetic SURF1 mutations identified in a Japanese family. 相似文献
2.
Pecina P Gnaiger E Zeman J Pronicka E Houstek J 《American journal of physiology. Cell physiology》2004,287(5):C1384-C1388
Mutations in the gene SURF1 prevent synthesis of cytochrome-c oxidase (COX)-specific assembly protein and result in a fatal neurological disorder, Leigh syndrome. Because this severe COX deficiency presents with barely detectable changes of cellular respiratory rates under normoxic conditions, we analyzed the respiratory response to low oxygen in cultured fibroblasts harboring SURF1 mutations with high-resolution respirometry. The oxygen kinetics was quantified by the partial pressure of oxygen (PO2) at half-maximal respiration rate (P50) in intact coupled cells and in digitonin-permeabilized uncoupled cells. In both cases, the P50 in patients was elevated 2.1- and 3.3-fold, respectively, indicating decreased affinity of COX for oxygen. These results suggest that at physiologically low intracellular PO2, the depressed oxygen affinity may lead in vivo to limitations of respiration, resulting in impaired energy provision in Leigh syndrome patients. oxygen kinetics; mitochondrial disease 相似文献
3.
4.
Piekutowska-Abramczuk D Popowska E Pronicka E Karczmarewicz E Pronicki M Kmieć T Krajewska-Walasek M 《Journal of applied genetics》2001,42(1):103-108
One of the most frequent forms of Leigh syndrome (LS), a severe neurodegenerative, genetically heterogenous disease, is associated with cytochrome c oxidase (COX) deficiency. No mutations in any of the 13 polypeptide subunits of human COX have been detected in LS patients. Recently, SURF1, a positional candidate gene for LS has been identified on chromosome 9q34. We present the identification of SURF1 mutations in a randomly chosen group of Polish patients with a classical form of LS. Sequence analysis revealed the presence of a novel 704T-->C transition (Met235Thr), and two recurrent dinucleotide deletions (758delCA, 845delCT), as well as one novel polymorphic 573C-->G transversion (Thr191Thr). 845delCT was identified in 66% of all our patients in homozygous or heterozygous form. Our study confirms the recent observations that SURF1 is consistently involved in disorders of the mitochondrial respiratory chain in patients with typical Leigh syndrome. 相似文献
5.
Pequignot MO Desguerre I Dey R Tartari M Zeviani M Agostino A Benelli C Fouque F Prip-Buus C Marchant D Abitbol M Marsac C 《The Journal of biological chemistry》2001,276(18):15326-15329
The gene SURF1 encodes a factor involved in the biogenesis of cytochrome c oxidase, the last complex in the respiratory chain. Mutations of the SURF1 gene result in Leigh syndrome and severe cytochrome c oxidase deficiency. Analysis of seven unrelated patients with cytochrome c oxidase deficiency and typical Leigh syndrome revealed different SURF1 mutations in four of them. Only these four cases had associated demyelinating neuropathy. Three mutations were novel splicing-site mutations that lead to the excision of exon 6. Two different novel heterozygous mutations were found at the same guanine residue at the donor splice site of intron 6; one was a deletion, whereas the other was a transition [588+1G>A]. The third novel splicing-site mutation was a homozygous [516-2_516-1delAG] in intron 5. One patient only had a homozygous polymorphism in the middle of the intron 8 [835+25C>T]. Western blot analysis showed that Surf1 protein was absent in all four patients harboring mutations. Our studies confirm that the SURF1 gene is an important nuclear gene involved in the cytochrome c oxidase deficiency. We also show that Surf1 protein is not implicated in the assembly of other respiratory chain complexes or the pyruvate dehydrogenase complex. 相似文献
6.
A number of missense mutations in subunit I of cytochrome c oxidase (CytcO) have previously been linked to prostate cancer (Petros et al., 2005). To investigate the effects of these mutations at the molecular level, in the present study we prepared four different structural variants of the bacterial Rhodobacter sphaeroides CytcO (cytochrome aa(3)), each carrying one amino-acid residue replacement corresponding to the following substitutions identified in the above-mentioned study: Asn11Ser, Ala122Thr, Ala341Ser and Val380Ile (residues Asn25, Ser168, Ala384 and Val423 in the R. sphaeroides oxidase). This bacterial CytcO displays essentially the same structural and functional characteristics as those of the mitochondrial counterpart. We investigated the overall activity, proton pumping and internal electron- and proton-transfer reactions in the structural variants. The results show that the turnover activities of the mutant CytcOs were reduced by at most a factor of two. All variants pumped protons, but in Ser168Thr, Ala384Ser and Val423Ile we observed slight internal proton leaks. In all structural variants the internal electron equilibrium was slightly shifted away from the catalytic site at high pH (10), resulting in a slower observed ferryl to oxidized transition. Even though the effects of the mutations were relatively modest, the results suggest that they destabilize the proton-gating machinery. Such effects could be manifested in the presence of a transmembrane electrochemical gradient resulting in less efficient energy conservation. This article is part of a Special Issue entitled: Allosteric cooperativity in respiratory proteins. 相似文献
7.
Mutations of SURF-1 in Leigh disease associated with cytochrome c oxidase deficiency. 总被引:22,自引:1,他引:22 下载免费PDF全文
V Tiranti K Hoertnagel R Carrozzo C Galimberti M Munaro M Granatiero L Zelante P Gasparini R Marzella M Rocchi M P Bayona-Bafaluy J A Enriquez G Uziel E Bertini C Dionisi-Vici B Franco T Meitinger M Zeviani 《American journal of human genetics》1998,63(6):1609-1621
Leigh disease associated with cytochrome c oxidase deficiency (LD[COX-]) is one of the most common disorders of the mitochondrial respiratory chain, in infancy and childhood. No mutations in any of the genes encoding the COX-protein subunits have been identified in LD(COX-) patients. Using complementation assays based on the fusion of LD(COX-) cell lines with several rodent/human rho0 hybrids, we demonstrated that the COX phenotype was rescued by the presence of a normal human chromosome 9. Linkage analysis restricted the disease locus to the subtelomeric region of chromosome 9q, within the 7-cM interval between markers D9S1847 and D9S1826. Candidate genes within this region include SURF-1, the yeast homologue (SHY-1) of which encodes a mitochondrial protein necessary for the maintenance of COX activity and respiration. Sequence analysis of SURF-1 revealed mutations in numerous DNA samples from LD(COX-) patients, indicating that this gene is responsible for the major complementation group in this important mitochondrial disorder. 相似文献
8.
Leigh syndrome with cytochrome oxidase (COX) deficiency has been associated with SURF1 mutations. For patient diagnosis, distinction between neutral polymorphisms and pathogenic missense SURF1 mutations in Leigh syndrome is essential. We show that several missense SURF1 mutations did not allow a stable protein to be expressed. Absence of immunologically reactive SURF1 is, therefore, helpful to demonstrate their pathogenicity. In addition, we show that out of two previously described missense mutations housed by the same allele, only one, the T737 C was pathogenic. Indeed, transfection of T737 C mutated SURF1 in SURF1-deficient cells did not restore normal SURF1 stability and COX activity. On the contrary, the G604 C-mutated SURF1 did it and, hence, is a neutral variant. 相似文献
9.
The reactions of horse heart cytochrome c with succinate-cytochrome c reductase and cytochrome oxidase were studied as a function of ionic strength using both spectrophotometric and oxygen electrode assay techniques. The kinetic parameter Vmax/Km for both reactions decreased very rapidly as the ionic strength was increased, indicating that electrostatic interactions were important to the reactions. A new semiempirical relationship for the electrostatic energy of interaction between cytochrome c and its oxidation-reduction partners was developed, in which specific complementary charge-pair interactions between lysine amino groups on cytochrome c and negatively charged carboxylate groups on the other protein are assumed to dominate the interaction. The contribution of individual cytochrome c lysine amino groups to the electrostatic interaction was estimated from the decrease in reaction rate caused by specific modification of the lysine amino groups by reagents that change the charge to 0 or -1. These estimates range from -0.9 kcal/mol for lysines immediately surrounding the heme crevice of cytochrome c to 0 kcal/mol for lysines well removed from the heme crevice region. The semiempirical relationship for the total electrostatic energy of interaction was in quantitative agreement with the experimental ionic strength dependence of the reaction rates when the parameters were based on the specific lysine modification results. The electrostatic energies of interaction between cytochrome c and its reductase and oxidase were nearly the same, providing additional evidence that the two reactions take place at similar sites on cytochrome c. 相似文献
10.
Sequence conservation from human to prokaryotes of Surf1, a protein involved in cytochrome c oxidase assembly, deficient in Leigh syndrome 总被引:3,自引:0,他引:3
The human SURF1 gene encoding a protein involved in cytochrome c oxidase (COX) assembly, is mutated in most patients presenting Leigh syndrome associated with COX deficiency. Proteins homologous to the human Surf1 have been identified in nine eukaryotes and six prokaryotes using database alignment tools, structure prediction and/or cDNA sequencing. Their sequence comparison revealed a remarkable Surf1 conservation during evolution and put forward at least four highly conserved domains that should be essential for Surf1 function. In Paracoccus denitrificans, the Surf1 homologue is found in the quinol oxidase operon, suggesting that Surf1 is associated with a primitive quinol oxidase which belongs to the same superfamily as cytochrome oxidase. 相似文献
11.
12.
Hirofumi Komaki Yutaka Nishigaki Noriyuki Fuku Hiroko Hosoya Kei Murayama Akira Ohtake Yu-ichi Goto Hiroyuki Wakamoto Yasutoshi Koga Masashi Tanaka 《Biochimica et Biophysica Acta (BBA)/General Subjects》2010
Background
Recently we proposed the therapeutic potential of pyruvate therapy for mitochondrial diseases. Leigh syndrome is a progressive neurodegenerative disorder ascribed to either mitochondrial or nuclear DNA mutations.Methods
In an attempt to circumvent the mitochondrial dysfunction, we orally applied sodium pyruvate and analyzed its effect on an 11-year-old female with Leigh syndrome due to cytochrome c oxidase deficiency accompanied by cardiomyopathy. The patient was administered sodium pyruvate at a maintenance dose of 0.5 g/kg/day and followed up for 1 year.Results
The exercise intolerance was remarkably improved so that she became capable of running. Echocardiography indicated improvements both in the left ventricle ejection fraction and in the fractional shortening. Electrocardiography demonstrated amelioration of the inverted T waves. When the pyruvate administration was interrupted because of a gastrointestinal infection, the serum lactate level became elevated and the serum pyruvate level, decreased, suggesting that the pyruvate administration was effective in decreasing the lactate-to-pyruvate ratio.Conclusions
These data indicate that pyruvate therapy was effective in improving exercise intolerance at least in a patient with cytochrome c oxidase deficiency.General significance
Administration of sodium pyruvate may prove effective for other patients with cytochrome c oxidase deficiency due to mitochondrial or nuclear DNA mutations. 相似文献13.
Cytochrome c oxidase subassemblies in fibroblast cultures from patients carrying mutations in COX10, SCO1, or SURF1 总被引:3,自引:0,他引:3
Cytochrome c oxidase contains two redox-active copper centers (Cu(A) and Cu(B)) and two redox-active heme A moieties. Assembly of the enzyme relies on several assembly factors in addition to the constituent subunits and prosthetic groups. We studied fibroblast cultures from patients carrying mutations in the assembly factors COX10, SCO1, or SURF1. COX10 is involved in heme A biosynthesis. SCO1 is required for formation of the Cu(A) center. The function of SURF1 is unknown. Immunoblot analysis of native gels demonstrated severely decreased levels of holoenzyme in the patient cultures compared with controls. In addition, the blots revealed the presence of five subassemblies: three subassemblies involving the core subunit MTCO1 but apparently no other subunits; a subassembly containing subunits MTCO1, COX4, and COX5A; and a subassembly containing at least subunits MTCO1, MTCO2, MTCO3, COX4, and COX5A. As some of the subassemblies correspond to known assembly intermediates of human cytochrome c oxidase, we think that these subassemblies are probably assembly intermediates that accumulate in patient cells. The MTCO1.COX4.COX5A subassembly was not detected in COX10-deficient cells, which suggests that heme A incorporation into MTCO1 occurs prior to association of MTCO1 with COX4 and COX5A. SCO1-deficient cells contained accumulated levels of the MTCO1.COX4.COX5A subassembly, suggesting that MTCO2 associates with the MTCO1.COX4.COX5A subassembly after the Cu(A) center of MTCO2 is formed. Assembly in SURF1-deficient cells appears to stall at the same stage as in SCO1-deficient cells, pointing to a role for SURF1 in promoting the association of MTCO2 with the MTCO1.COX4.COX5A subassembly. 相似文献
14.
15.
16.
Impaired proton pumping in cytochrome c oxidase upon structural alteration of the D pathway 总被引:1,自引:0,他引:1
Lepp H Salomonsson L Zhu JP Gennis RB Brzezinski P 《Biochimica et biophysica acta》2008,1777(7-8):897-903
Cytochrome c oxidase is a membrane-bound enzyme, which catalyses the one-electron oxidation of four molecules of cytochrome c and the four-electron reduction of O(2) to water. Electron transfer through the enzyme is coupled to proton pumping across the membrane. Protons that are pumped as well as those that are used for O(2) reduction are transferred though a specific intraprotein (D) pathway. Results from earlier studies have shown that replacement of residue Asn139 by an Asp, at the beginning of the D pathway, results in blocking proton pumping without slowing uptake of substrate protons used for O(2) reduction. Furthermore, introduction of the acidic residue results in an increase of the apparent pK(a) of E286, an internal proton donor to the catalytic site, from 9.4 to ~11. In this study we have investigated intramolecular electron and proton transfer in a mutant cytochrome c oxidase in which a neutral residue, Thr, was introduced at the 139 site. The mutation results in uncoupling of proton pumping from O(2) reduction, but a decrease in the apparent pK(a) of E286 from 9.4 to 7.6. The data provide insights into the mechanism by which cytochrome c oxidase pumps protons and the structural elements involved in this process. 相似文献
17.
Transfer of electron from quinol to cytochrome c is an integral part of catalytic cycle of cytochrome bc1. It is a multi-step reaction involving: i) electron transfer from quinol bound at the catalytic Qo site to the Rieske iron-sulfur ([2Fe-2S]) cluster, ii) large-scale movement of a domain containing [2Fe-2S] cluster (ISP-HD) towards cytochrome c1, iii) reduction of cytochrome c1 by reduced [2Fe-2S] cluster, iv) reduction of cytochrome c by cytochrome c1.In this work, to examine this multi-step reaction we introduced various types of barriers for electron transfer within the chain of [2Fe-2S] cluster, cytochrome c1 and cytochrome c. The barriers included: impediment in the motion of ISP-HD, uphill electron transfer from [2Fe-2S] cluster to heme c1 of cytochrome c1, and impediment in the catalytic quinol oxidation. The barriers were introduced separately or in various combinations and their effects on enzymatic activity of cytochrome bc1 were compared. This analysis revealed significant degree of functional flexibility allowing the cofactor chains to accommodate certain structural and/or redox potential changes without losing overall electron and proton transfers capabilities. In some cases inhibitory effects compensated one another to improve/restore the function. The results support an equilibrium model in which a random oscillation of ISP-HD between the Qo site and cytochrome c1 helps maintaining redox equilibrium between all cofactors of the chain. We propose a new concept in which independence of the dynamics of the Qo site substrate and the motion of ISP-HD is one of the elements supporting this equilibrium and also is a potential factor limiting the overall catalytic rate. 相似文献
18.
Pulsed cytochrome c oxidase 总被引:1,自引:0,他引:1
G Antonini M Brunori A Colosimo F Malatesta P Sarti 《Journal of inorganic biochemistry》1985,23(3-4):289-293
The identification of two functionally distinct states, called pulsed and resting, has led to a number of investigations on the conformational variants of the enzyme. However, the catalytic properties of cytochrome oxidase may depend on a number of experimental conditions related to the solvent as well as to the protocol followed to determine the turnover number of the enzyme. This paper reports results which illustrate that the steady-state differences between pulsed and resting oxidase may, or may not, be detected depending on experimental conditions. 相似文献
19.
《The International journal of biochemistry》1984,16(10):1059-1064
- 1.1. The pyridoxal phosphate (PLP) modification of the lysine amino groups in cytochrome c causes decrease in the reaction rate with cytochrome c oxidase.
- 2.2. The rate constants for (PLP);-cyt. c, PLP(Lys 86)-cyt. c, PLP(Lys 79)-cyt. c and native cytochrome c (at pH 7.4, 1=0.02) are 3.6 × 10−3'sec-', 5.5 × 10−3, 5.2 × 10−3-'sec−1 and 9.8 × 10−3sec−1, respectively.
- 3.3. In spite of the same positive charge of singly PLP-cytochromes c the reaction between PLP(Lys 86)-cyt. c and cyt. c oxidase exhibits the ionic strength dependence that differs from those of the PLP(Lys 79)-cyt. c.
- 4.4. The rate constants at zero and infinite ionic strength for PLP(Lys 86)-cyt. c is 2-fold less than that for PLP(Lys 79)-cyt. c.
- 5.5. The positively charged cytochrome c lysines 86 and 79 form two from four or five predicted complementary charge interactions with carboxyl groups on cytochrome c oxidase.