首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method to determine intrinsic binding constants of lysozyme with substrate analogues such as N-acetyl-D-glucosamine dimer and trimer is proposed. The method is based on the competitive interaction of an anionic azo dye with substrate analogues for lysozyme. There are two binding sites for substrate analogues and dyes, respectively, on lysozyme. One binding mode of the substrate analogues to subsites D-F on lysozyme was non-competitive, and another binding mode to subsites A-C was competitive with the dye. From the binding constants obtained it is suggested that the binding of the substrate analogues to subsite D on lysozyme is weaker than the binding to the other subsites.  相似文献   

2.
An array of 12 new saphenamycin analogues modified at the benzoate moiety was synthesized on solid support. Synthesis commenced with a chemoselective anchoring of saphenic acid through the carboxyl group to a 2-chlorotrityl functionalized polystyrene resin. The secondary alcohol was acylated in parallel with a series of differently substituted benzoic acid derivatives. Treatment with TFA-CH(2)Cl(2) (5:995) released the expected saphenamycin analogues into solution. These new analogues were purified, characterized and screened for antimicrobial activity against Bacillus subtilis and Proteus mirabilis. Eight analogues exhibited MIC values against B. subtilis ranging from 0.07 to 3.93 microg/mL, comparable to the activities of previously reported saphenamycin analogues.  相似文献   

3.
gamma-Glutamyltransferase activity was studied in extracts of the cnidarian Hydra attenuata. The binding of gamma-glutamyl peptide analogues to the enzyme was studied by observing their effects on heat denaturation and their inhibition of p-nitroaniline release from gamma-glutamyl p-nitroanilide. Neither position-1 analogues, in which the gamma-glutamyl moiety was changed to a beta-aspartyl (beta-Asp-Abu-Gly) or an alpha-glutamyl (Glu-Abu-Gly) linkage, nor glutamate protected the enzyme against inactivation at 58 degrees C. GSH (reduced glutathione), gamma-Glu-Abu-Gly and gamma-Glu-Met on the other hand did prevent heat denaturation. GSH and analogues of GSH were competitive inhibitors of p-nitroaniline release, but those analogues in which glycine was replaced by 2-aminoisobutyrate, phenylalanine, leucine or tyrosine had Ki values that were approximately five times those of analogues with the cysteine residue replaced.  相似文献   

4.
The action of T4 polynucleotide kinase, T4 DNA polymerase, E. coli DNA polymerase I, snake venom phosphodiesterase (VPDE) and S1 nuclease on analogues of oligothymidilates with p-s-C5' bonds and the ability of these analogues to prime the replication of poly (dA) by T4 DNA polymerase were studied. These analogues were shown to be substrates for all these enzymes. Substitution of these analogues for corresponding oligothymidilates in the reaction mixtures resulted in drop in rates of enzymic reactions. This drop in reactions rates was not significant when these oligonucleotides were phosphorylated with T4 polynucleotide kinase or used as a primers, however in comparison with oligothymidilates these analogues were found to be considerably more resistant to nucleolytic hydrolysis. Some possible applications of these analogues are discussed.  相似文献   

5.
Glucagon-like peptide-1 (GLP-1) stimulates insulin secretion and improves glycemic control in type 2 diabetes. In serum the peptide is degraded by dipeptidyl peptidase IV (DPP IV). The resulting short biological half-time limits the therapeutic use of GLP-1. Therefore, various GLP-1 analogues with alterations in cleavage positions were synthesized. GLP-1-receptor binding was investigated in RINm5F cells. Biological activity of the GLP-1 analogues was investigated in vitro by measuring cAMP production in RINm5F cells. GLP-1 analogues with modifications in position 2 were not cleaved by DPP IV and showed receptor affinity and in vitro biological activity comparable to native GLP-1. Analogues with alterations in positions 2 and 8, 2 and 9 or 8 and 9 showed a significant decrease in receptor affinity and biological activity. In vivo biological activity was tested in pigs. GLP-1 analogues were administered subcutaneously followed by an intravenous bolus injection of glucose. Plasma glucose and insulin were monitored over 4 h. Compared to native GLP-1, analogues with an altered position 2 showed similar or increased potency and biological half-time. Other GLP-1 analogues were less active. Despite the lack of degradation of these GLP-1 analogues by DPP IV in vitro, their biological action is as short as that of GLP-1, except for desamino-GLP-1, indicating that other degradation enzymes are important in vivo. Alterations of GLP-1 in positions 8 or 9 result in a loss of biological activity without extending biological half-time.  相似文献   

6.
The 26 amino acid hemolytic melittin peptide was converted into a gene transfer peptide that binds to DNA and polymerized through disulfide bond formation. Melittin analogues were synthesized by the addition of one to four Lys repeats at either the C- or the N-subterminal end along with terminal Cys residues. Melittin analogues were able to bind and polymerize on plasmids resulting in the formation of DNA condensates. In the absence of DNA, melittin analogues retained their red blood cell hemolytic potency but were inactive when bound to plasmid DNA. The in vitro gene transfer efficiency mediated by poly-melittin analogues was equivalent to PEI in HepG2 cells. Attempts to truncate portions of either of the two melittin alpha-helices resulted in concurrent loss of hemolytic potency and gene transfer efficiency. The results demonstrate the ability to transform melittin into a gene transfer peptide by transiently masking its membrane lytic activity by the addition of Lys and Cys residues to promote DNA binding and polymerization.  相似文献   

7.
New indolicidin analogues with potent antibacterial activity.   总被引:2,自引:0,他引:2  
Indolicidin is a 13-residue antimicrobial peptide amide, ILPWKWPWWPWRR-NH2, isolated from the cytoplasmic granules of bovine neutrophils. Indolicidin is active against a wide range of microorganisms and has also been shown to be haemolytic and cytotoxic towards erythrocytes and human T lymphocytes. The aim of the present paper is two-fold. First, we examine the importance of tryptophan in the antibacterial activity of indolicidin. We prepared five peptide analogues with the format ILPXKXPXXPXRR-NH2 in which Trp-residues 4,6,8,9,11 were replaced in all positions with X = a single non-natural building block; N-substituted glycine residue or nonproteinogenic amino acid. The analogues were tested for antibacterial activity against both Staphylococcus aureus American type culture collection (ATCC) 25923 and Escherichia coli ATCC 25922. We found that tryptophan is not essential in the antibacterial activity of indolicidin, and even more active analogues were obtained by replacing tryptophan with non-natural aromatic amino acids. Using this knowledge, we then investigated a new principle for improving the antibacterial activity of small peptides. Our approach involves changing the hydrophobicity of the peptide by modifying the N-terminus with a hydrophobic non-natural building block. We prepared 22 analogues of indolicidin and [Phe(4,6,8,9,11)] indolicidin, 11 of each, carrying a hydrophobic non-natural building block attached to the N-terminus. Several active antibacterial analogues were identified. Finally, the cytotoxicity of the analogues against sheep erythrocytes was assessed in a haemolytic activity assay. The results presented here suggest that modified analogues of antibacterial peptides, containing non-natural building blocks, are promising lead structures for developing future therapeutics.  相似文献   

8.
Polyamine metabolism is intimately linked to the physiological state of the cell. Low polyamines levels promote growth cessation, while increased concentrations are often associated with rapid proliferation or cancer. Delicately balanced biosynthesis, catabolism, uptake and excretion are very important for maintaining the intracellular polyamine homeostasis, and deregulated polyamine metabolism is associated with imbalanced metabolic red/ox state. Although many cellular targets of polyamines have been described, the precise molecular mechanisms in these interactions are largely unknown. Polyamines are readily interconvertible which complicate studies on the functions of the individual polyamines. Thus, non-metabolizable polyamine analogues, like carbon-methylated analogues, are needed to circumvent that problem. This review focuses on methylated putrescine, spermidine and spermine analogues in which at least one hydrogen atom attached to polyamine carbon backbone has been replaced by a methyl group. These analogues allow the regulation of both metabolic and catabolic fates of the parent molecule. Substituting the natural polyamines with methylated analogue(s) offers means to study either the functions of an individual polyamine or the effects of altered polyamine metabolism on cell physiology. In general, gem-dimethylated analogues are considered to be non-metabolizable by polyamine catabolizing enzymes spermidine/spermine-N 1-acetyltransferase and acetylpolyamine oxidase and they support short-term cellular proliferation in many experimental models. Monomethylation renders the analogues chiral, offering some advantage over gem-dimethylated analogues in the specific regulation of polyamine metabolism. Thus, methylated polyamine analogues are practical tools to meet existing biological challenges in solving the physiological functions of polyamines.  相似文献   

9.
The effects of ten amiloride analogues on Na+-H+ exchange in rabbit kidney medulla microsomes have been examined. Most of the analogues appeared to inhibit Na+ uptake into the microsomes more effectively than did amiloride either in the presence or absence of a pH gradient. However, the analogues were also capable of stimulating Na+ efflux from the microsomes at concentrations somewhat higher than the concentrations at which they inhibited Na+ influx. The concentrations at which the analogues stimulated Na+ efflux were about 2-4-times higher than the concentrations at which they blocked influx. This suggested that the two processes were related. The analogues that stimulated efflux most effectively (the 5-N-benzyl-amino analogue of amiloride and the 5-N-butyl-N-methylamino analogue) were shown to induce completely reversible effects. These analogues did not stimulate L-[3H]glucose efflux from medulla microsomes which ruled out nonspecific vesicle destruction or reversible detergent effects. These analogues also induced Na+ efflux from microsomes in the presence of high concentrations of added buffer, which ruled out weak-base uncoupling effects. The possibility exists that these analogues are carried into the microsomes via the Na+-H+ exchange protein and that this permits them to both block Na+ influx into the microsomes and stimulate Na+ efflux as well.  相似文献   

10.
The review deals with interactions of the key enzymes of the protein biosynthesis-aminoacyl-tRNA synthetases (EC 6.1.1.) with amino acids and their analogues, considering the contribution of different groups in the process of specific complex formation and catalysis. The important role of alpha-amino group of amino acid in the enzyme recognition has been revealed. Modification of the carboxylic group does not change significantly the analogues complex formation with aminoacyl-tRNA synthetases. However this group is essential for amino acid rearrangement in the specific complex with the enzyme. The structural organization of the enzyme binding sites specific for amino acids and the enzyme interaction with the analogues of aminoacyladenylates are discussed.  相似文献   

11.
TRH analogues containing C-terminal tioamide group and norvaline ([Nva2, Prot3] TRH) or norleucine ([Nle2, Prot3] TRH) in position 2 were synthesized and tested for hormonal and central nervous system (CNS) activities. Receptor binding studies revealed that the analogues neither bind to pituitary nor to brain TRH receptors. Accordingly, no TSH releasing activity was recorded. However, both analogues significantly affected sleeping time and breathing frequency. Dissociation of endocrine effects from those on the CNS of [Prot3] TRH was achieved with the replacement of histidine2 by aliphatic amino acids. The presence of central histidine is not essential for the analogues to be active on the CNS.  相似文献   

12.
生长抑素受体介导的放射性核素治疗(peptide receptor radionuclide therapy,PRRT)是用于不能手术治疗或有远处转移的胃、肠和胰腺等神经内分泌肿瘤病人的一种新型治疗方法,本文旨在综述近年来不同核素标记生长抑素类似物的临床评价及相关研究。  相似文献   

13.
A series of novel heterocyclic analogues have been synthesized and evaluated for their ability to inhibit phenylalanyl-t-RNA synthetases and act as antibacterial agents. Several analogues have good antibacterial activity against Staphylococcus aureus.  相似文献   

14.
Synthesis of chalcone analogues with increased antileishmanial activity   总被引:1,自引:0,他引:1  
Eighteen analogues of an active natural chalcone were synthesized using xanthoxyline and some derivatives, and these analogues were tested for selective activity against both promastigotes and intracellular amastigotes of Leishmania amazonensis in vitro. Three analogues (10, 12, and 19) containing nitro, fluorine or bromine groups, respectively, displayed increased selective activity against the parasites as compared with the natural chalcone. The nitrosylated chalcone 10 was also tested intralesionally in infected mice and was found to be as effective as Pentostan reference drug at a dose 100 times higher than that of the chalcone in controlling both the lesion growth and the parasite burden.  相似文献   

15.
Cholera is an infectious disease caused by cholera toxin (CT) protein of bacterium Vibrio cholerae. A sequence of sialic acid (N-acetylneuraminic acid, NeuNAc or Neu5Ac) analogues modified in its C-5 position is modelled using molecular modelling techniques and docked against the CT followed by molecular dynamics simulations. Docking results suggest better binding affinity of NeuNAc analogue towards the binding site of CT. The NeuNAc analogues interact with the active site residues GLU:11, TYR:12, HIS:13, GLY:33, LYS:34, GLU:51, GLN:56, HIE:57, ILE:58, GLN:61, TRP:88, ASN:90 and LYS:91 through intermolecular hydrogen bonding. Analogues N-glycolyl-NeuNAc, N-Pentanoyl-NeuNAc and N-Propanoyl-NeuNAc show the least XPGscore (docking score) of ?9.90, ?9.16, and ?8.91, respectively, and glide energy of ?45.99, ?42.14 and ?41.66 kcal/mol, respectively. Stable nature of CT-N-glycolyl-NeuNAc, CT-N-Pentanoyl-NeuNAc and CT-N-Propanoyl-NeuNAc complexes was verified through molecular dynamics simulations, each for 40 ns using the software Desmond. All the nine NeuNAc analogues show better score for drug-like properties, so could be considered as suitable candidates for drug development for cholera infection. To improve the enhanced binding mode of NeuNAc analogues towards CT, the nine NeuNAc analogues are conjugated with Zn nanoclusters through ethylene glycol (EG) as carriers. The NeuNAc analogues conjugated with EG-Zn nanoclusters show better binding energy towards CT than the unconjugated nine NeuNAc analogues. The electronic structural optimization of EG-Zn nanoclusters was carried out for optimizing their performance as better delivery vehicles for NeuNAc analogues through density functional theory calculations. These sialic acid analogues may be considered as novel leads for the design of drug against cholera and the EG-Zn nanocluster may be a suitable carrier for sialic acid analogues.  相似文献   

16.
To construct nuclease-resistant oligonucleotides, we designed novel carbocyclic L-nucleoside analogues (1-4) whose glycosyl conformation is fixed at chi = 180 degrees by an oxygen-bridge between the base and the cyclopentane ring. We have already achieved the racemic synthesis of these analogues. In this study, we succeeded in synthesizing an optically active form of these analogues. The properties of oligonucleotides containing them will be shown.  相似文献   

17.
Current data on rapid and long-acting insulin analogues in the paediatric age group is limited. While several studies indicate a benefit in reducing hypoglycaemia, particularly at night, with rapid or long-acting insulin analogue treatment, the effect on long-term glycaemic control remains controversial. The continuous glucose monitoring system offers a new option for tailoring treatment with insulin analogues to achieve optimal glycaemia. In 29 adolescents with diabetes this approach confirmed the non-inferiority of postprandial rapid-acting analogue administration compared to preprandial regular insulin, but revealed significant mealtime differences, with increased analogue requirement at breakfast and dinner. Although rapid- and long-acting insulin analogues may offer potential benefits for problems frequently encountered in paediatric diabetology, their value for the individual child still has to be tested in long-term observations in daily clinical practice.  相似文献   

18.
Two short analogues of 3-phosphoglycerate, -OOC-CHOH-CH2-O-PO32-, phosphonolactate, (-OOC-CHOH-CH2-PO32-) and arsonolactate (-OOC-CHOH-CH2-AsO32-) have been tested with 3-phosphoglycerate kinase. None of these served as substrate for the kinase reaction, unlike the previously studied [Orr, G. A. & Knowles, J. R. (1974) Biochem. J. 141, 721-723] analogues -OOC-CHOH-CH2-CH2-PO32- and -OOC-CHOH-CH2-CH2-AsO32-, which are isosteric with 3-phosphoglycerate. Thus, a decrease in the substrate size and the accompanying stereochemical changes cannot be tolerated by the catalytic mechanism. Instead, both analogues acted as relatively poor competitive inhibitors with respect to both 3-phosphoglycerate and MgATP. AT pH 8.5 and 20 degrees C, the inhibitory constants (Ki) of phosphonolactate and arsnolactate against both substrates are 17 +/- 5 mM and 30 +/- 7 mM, respectively. Surprisingly, however, both analogues proved to be more effective than either 3-phosphoglycerate or its isosteric analogues in protecting the enzyme against modification of its fast-reacting thiols. This comparison suggests that the shorter analogues bind differently, and that the catalytic mechanism demands a precise fitting of the -CH2-O-PO32- segment of the substrate.  相似文献   

19.
Biogenic polyamines, putrescine, spermidine, and spermine, are ubiquitous cellular cations and exert multiple biological functions. Polyamine analogues mimic biogenic polyamines at macromolecular level but are unable to substitute for natural polyamines and maintain cell proliferation, indicating biomedical applications. The mechanistic differences in DNA binding mode between natural and synthetic polyamines have not been explored. The aim of this study was to examine the interaction of calf thymus DNA with three polyamine analogues, 1,11-diamino-4,8-diazaundecane (333), 3,7,11,15-tetrazaheptadecane x 4 HCl (BE-333), and 3,7,11,15,19-pentazahenicosane x 5 HCl (BE-3333), using FTIR, UV-visible, and CD spectroscopy. Polyamine analogues bind with guanine and backbone PO2 group as major targets in DNA, whereas biogenic polyamines bind to major and minor grooves as well as to phosphate groups. Weaker interaction with DNA was observed for analogues with respect to biogenic polyamines, with K(333) = 1.90 (+/-0.5) x 10(4) M(-1), K(BE-333) = 6.4 (+/-1.7) x 10(4) M(-1), K(BE-3333) = 4.7 (+/-1.4) x 10(4) M(-1) compared to K(Spm) = 2.3 (+/-1.1) x 10(5) M(-1), K(Spd) = 1.4 (+/-0.6) x 10(5) M(-1), and K(Put) = 1.02 (+/-0.5) x 10(5) M(-1). A partial B- to A-DNA transition was also provoked by analogues. These data suggest distinct differences in the binding of natural and synthetic polyamines with DNA.  相似文献   

20.
Acetolactate synthase (ALS) is the first common enzyme in the biosynthesis of L-leucine, L-isoleucine, and L-valine. Triazolopyrimidine sulfonamide (TP) is a mixed-type inhibitor of ALS with respect to both pyruvate and thiamine pyrophosphate. In this study, we synthesized new substituted quinoline-linked TP analogues and several TP analogues which contained either unsubstituted aminoquinolines or amino isoquinolines. In addition, we examined the interactions of both the wild-type and the sulfonylurea-resistant recombinant tobacco ALS enzymes in a highly pure and active form with the quinoline-linked TP analogues, respectively. The wild-type tobacco ALS was extremely sensitive to inhibition by the quinoline-linked TP analogues. In contrast, the mutant tobacco ALS was insensitive to both the quinoline-linked triazolopyrimidine and the sulfonylurea herbicides. The results indicate that the ability of the quinoline-linked TP analogues to inhibit ALS is highly sensitive to substitution at the ortho position (C-7) and to the position of the ring nitrogen around the sulfonamide functionality (C-8).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号