首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Aerobic cometabolism of chloroform (CF) and 1,1,1-trichloroethane (1,1,1-TCA) was observed by subsurface microorganisms grown on butane. Studies performed in batch incubated microcosms were screened for CF transformation potential using the following cometabolic substrates: ammonia, methane, propane, butane, propene, octane, isoprene, and phenol. CF transformation was observed in microcosms fed ammonia, methane, propane, and butane. The butane microcosms achieved the most effective transformation. The transformation of CF and 1,1,1-TCA was strongly correlated with butane utilization and oxygen consumption. CF transformation ceased in the absence of butane or when oxygen was depleted to low concentrations in the microcosms. No transformation of carbon tetrachloride was observed. With successive additions of CF and butane to the microcosms, complete transformation of CF was achieved at solution concentrations as high as 1 mg/L. High CF concentrations appeared to inhibit butane utilization. Maximum transformation yield (Ty) of 0.01 mg CF trans-formed/mg of butane consumed, were achieved. The results indicate that a monooxygenase enzyme required for butane utilization is likely responsible for the transformation of CF. Chloride measurements demonstrated that CF was completely dechlorinated. Approximately 70% of the chloride in the transformed 1,1,1 -TCA was released into solution, indicating incomplete dechlorination of 1,1,1-TCA. The results indicate that butane is a promising cometabolic substrate for the transformation of chlorinated methanes, chlorinated ethanes, and potentially chlorinated ethenes.  相似文献   

2.
The transformation of 1,1,1-trichloroethane (1,1,1-TCA) in ioaugmented and non-augmented microcosms was evaluated. The microcosms contained roundwater and aquifer materials from a test site at Moffett Field, Sunnyvale, CA. The initial inoculum for bioaugmentation was a butane-utilizing enrichment from the subsurface of the Hanford DOE site. The non-augmented microcosm required 80 days of incubation before butane-utilization was observed while the augmented microcosms required 3 days. Initially the augmented microcosms were effective in transforming 1,1,1-TCA, but their transformation ability decreased after prolonged incubation. The non-augmented microcosms initially showed limited 1,1,1-TCA transformation but improved with time. After 440 days, both the non-augmented and augmented microcosms had similar transformation yields (0.04 mg 1,1,1-TCA/mg butane) and had similar microbial composition (DNA fingerprints). Subsequent microcosms, when bioaugmented with a Hanford enrichment that was repeatedly grown in 100% mineral media, did not effectively grow or transform 1,1,1-TCA under groundwater nutrient conditions. Microcosm tests to study the effect of mineral media on transformation ability were performed with the Hanford enrichment. Microcosms with 50% mineral media in groundwater most effectively utilized butane and transformed 1,1,1-TCA, while microcosms with groundwater only and microcosms with 5% mineral media in groundwater lost their 1,1,1-TCA transformation ability. DNA fingerprinting indicated shifts in the microbial composition with the different mineral media combinations. Successful bioaugmentation was achieved by enriching butane-utilizers from Moffett Field microcosms that were effective in groundwater with no mineral media added. The results suggest that successful in-situ bioaugmentation might be achieved through the addition of enriched cultures that perform well under subsurface nutrient conditions.  相似文献   

3.
Batch kinetic and inhibition studies were performed for the aerobic cometabolism of 1,1,1-trichloroethane (1,1,1-TCA), 1,1-dichloroethylene (1,1-DCE), and 1,1-dichloroethane (1,1-DCA) by a butane-grown mixed culture. These chlorinated aliphatic hydrocarbons (CAHs) are often found together as cocontaminants in groundwater. The maximum degradation rates (k(max)) and half-saturation coefficients (K(s)) were determined in single compound kinetic tests. The highest k(max) was obtained for butane (2.6 micromol/mg TSS/h) followed by 1,1-DCE (1.3 micromol/mg TSS/h), 1,1-DCA (0.49 micromol/mg TSS/h), and 1,1,1-TCA (0.19 micromol/mg TSS/h), while the order of K(s) from the highest to lowest was 1,1-DCA (19 microM), butane (19 microM), 1,1,1-TCA (12 microM) and 1,1-DCE (1.5 microM). The inhibition types were determined using direct linear plots, while inhibition coefficients (K(ic) and K(iu)) were estimated by nonlinear least squares regression (NLSR) fits to the kinetic model of the identified inhibition type. Two different inhibition types were observed among the compounds. Competitive inhibition among CAHs was indicated from direct linear plots, and the CAHs also competitively inhibited butane utilization. 1,1-DCE was a stronger inhibitor than the other CAHs. Mixed inhibition of 1,1,1-TCA, 1,1-DCA, and 1,1-DCE transformations by butane was observed. Thus, both competitive and mixed inhibitions are important in cometabolism of CAHs by this butane culture. For competitive inhibition between CAHs, the ratio of the K(s) values was a reasonable indicator of competitive inhibition observed. Butane was a strong inhibitor of CAH transformation, having a much lower inhibition coefficient than the K(s) value of butane, while the CAHs were weak inhibitors of butane utilization. Model simulations of reactor systems where both the growth substrate and the CAHs are present indicate that reactor performance is significantly affected by inhibition type and inhibition coefficients. Thus, determining inhibition type and measuring inhibition coefficients is important in designing CAH treatment systems.  相似文献   

4.
The influence of trichloroethene (TCE; 0 to 65 mg/liter) and 1,1,1-trichloroethane (1,1,1-TCA; 0 to 103 mg/liter) on methane consumption of a mixed culture of methane-oxidizing bacteria was studied in laboratory batch experiments. Increasing concentrations of TCE or 1,1,1-TCA resulted in decreasing methane consumption. Methane consumption was totally inhibited at a concentration of 13 mg of TCE per liter, while methane consumption was still observed at the upper studied concentration of 103 mg of 1,1,1-TCA per liter. The inhibition of methane consumption by TCE depended on the initial concentration of methane. A model accounting for competitive inhibition between methane and TCE or 1,1,1-TCA was used to simulate methane consumption at various concentrations of TCE or 1,1,1-TCA. The simulations indicated that competitive inhibition may be the mechanism causing the inhibitory effect of TCE on methane consumption, while this does not seem to be the case for 1,1,1-TCA.  相似文献   

5.
Due to its toxicity and persistence in the environment, trichloroethylene (TCE) has become a major soil and groundwater contaminant in many countries. A group of aliphatic- and aromatic-degrading bacteria expressing nonspecific oxygenases have been reported to transform TCE through aerobic cometabolism in the presence of primary substrate such as methane, ammonia, propane, phenol, toluene or cumene. This paper reviews the fundamentals and results of TCE cometabolism from laboratory and field studies. The limitations associated with TCE cometabolism including the causes and effects of substrate and/or inducer utilization rate and depletion, enzyme inhibition and inactivation, and cytotoxicity during TCE oxidation among various TCE-degrading bacteria and enzymes are discussed. In addition, the potential strategies e.g. addition of primary substrate/inducer or external energy substrate, use of a two-stage reactor and application of cell immobilization for sustained TCE degradation are highlighted. The review summarizes important information on TCE cometabolism, which is necessary for developing efficient TCE bioremediation approaches.  相似文献   

6.
A facultative methanotroph, Methylocystis strain SB2, was examined for its ability to degrade chlorinated hydrocarbons when grown on methane or ethanol. Strain SB2 grown on methane degraded vinyl chloride (VC), trans-dichloroethylene (t-DCE), trichloroethylene (TCE), 1,1,1-trichloroethane (1,1,1-TCA), and chloroform (CF), but not dichloromethane (DCM). Growth on methane was reduced in the presence of any chlorinated hydrocarbon. Strain SB2 grown on ethanol degraded VC, t-DCE, and TCE, and 1,1,1-TCA, but not DCM or CF. With the exception of 1,1,1-TCA, the growth of strain SB2 on ethanol was not affected by any individual chlorinated hydrocarbon. No degradation of any chlorinated hydrocarbon was observed when acetylene was added to ethanol-grown cultures, indicating that this degradation was due to particulate methane monooxygenase (pMMO) activity. When mixtures of chlorinated alkanes or alkenes were added to cultures growing on methane or ethanol, chlorinated alkene degradation occurred, but chlorinated alkanes were not, and growth was reduced on both methane and ethanol. Collectively, these data indicate that competitive inhibition of pMMO activity limits methanotrophic growth and pollutant degradation. Facultative methanotrophy may thus be useful to extend the utility of methanotrophs for bioremediation as the use of alternative growth substrates allows for pMMO activity to be focused on pollutant degradation.  相似文献   

7.
The degradation kinetics of ten halogenated hydrocarbons by Methylomicrobium album BG8 expressing particulate methane monooxygenase (pMMO) and the inhibitory effects of these compounds on microbial growth and whole-cell pMMO activity were measured. When M. album BG8 was grown with methane, growth was completely inhibited by dichloromethane (DCM), bromoform (BF), chloroform (CF), vinyl chloride (VC), 1,1-dichloroethylene (1,1-DCE), and cis-dichloroethylene (cis-DCE). Trichloroethylene (TCE) partially inhibited growth on methane, while dibromomethane (DBM), trans-dichloroethylene (trans-DCE), and 1,1,1-trichloroethane (1,1,1-TCA) had no effect. If the cells were grown with methanol, DCM, BF, CF, and 1,1-DCE completely inhibited growth, while VC, trans-DCE, TCE, and 1,1,1-TCA partially inhibited growth. Both DBM and cis-DCE had no effect on growth with methanol. Whole-cell pMMO activity was also affected by these compounds, with all but 1,1,1-TCA, DCM, and DBM reducing activity by more than 25%. DCM, DBM, VC, trans-DCE, cis-DCE, 1,1-DCE, and TCE were degraded and followed Michaelis-Menten kinetics. CF, BF, and 1,1,1-TCA were not measurably degraded. These results suggested that the products of DCM, TCE, VC, and 1,1-DCE inactivated multiple enzymatic processes, while trans-DCE oxidation products were also toxic but to a lesser extent. cis-DCE toxicity, however, appeared to be localized to pMMO. Finally, DBM and 1,1,1-TCA were not inhibitory, and CF and BF were themselves toxic to M. album BG8. Based on these results, the compounds could be separated into four general categories, namely (1) biodegradable with minimal inactivation, (2) biodegradable with substantial inactivation, (3) not biodegradable with minimal inactivation, and (4) not biodegradable but substantial inactivation of cell activity. Received: 17 June 1999 / Accepted: 3 September 1999  相似文献   

8.
Research was conducted to determine the effect of chemical oxidation on subsurface microbiology and cometabolic biodegradation capacity in a trichloroethene (TCE)/perchloroethene (PCE)-contaminated aquifer previously treated with Fenton's reagent. Groundwater pH declined from 5 to 2.4 immediately after the treatment, and subsequently rose to a range of 3.4 to 4.0 after 17 months. Limited microbial growth and TCE degradation were detected in the treated zone (pH 3.37 and TCE 5 to 21 mg/L) with carbon addition (i.e., methane and phenol). Methane addition resulted in the enrichment of yeast and fungi in microcosms at low pH. In contrast, methane addition to groundwater from the control well (pH 4.9 and TCE ca. 0.7 mg/L) stimulated methanotrophic growth, indicated by methane consumption, fluorescent antibody analysis, phospholipid-based markers, and rDNA probes. TCE degradation was measured in the control microcosms, but only when phenol was added. Although higher TCE concentrations in the treated zone might have inhibited TCE cometabolism, these results also indicate that low groundwater pH resulting from the chemical oxidation process (pH 3.37 versus 4.9) inhibited TCE degradation. Methanotrophic growth and TCE biodegradation may be possible as pH increases both in the treated zone and at the leading edge of plume, as long as the local soil is able to buffer the groundwater pH. Moreover, the Fenton's reagent process could be designed to operate at a higher pH (e.g., ≥ 4.5) and/or lower hydrogen peroxide concentration to minimize detrimental effects, providing an optimal environment to couple advanced oxidation processes with bioremediation technologies.  相似文献   

9.
The physiological consequences of trichloroethylene (TCE) transformation by three butane oxidizers were examined. Pseudomonas butanovora, Mycobacterium vaccae, and Nocardioides sp. CF8 utilize distinctly different butane monooxygenases (BMOs) to initiate degradation of the recalcitrant TCE molecule. Although the primary toxic event resulting from TCE cometabolism by these three strains was loss of BMO activity, species differences were observed. P. butanovora and Nocardioides sp. CF8 maintained only 4% residual BMO activity following exposure to 165 μM TCE for 90 min and 180 min, respectively. In contrast, M. vaccae maintained 34% residual activity even after exposure to 165 μM TCE for 300 min. Culture viability was reduced 83% in P. butanovora, but was unaffected in the other two species. Transformation of 530 nmol of TCE by P. butanovora (1.0 mg total protein) did not affect the viability of BMO-deficient P. butanovora cells, whereas transformation of 482 nmol of TCE by toluene-grown Burkholderia cepacia G4 caused 87% of BMO-deficient P. butanovora cells to lose viability. Together, these results contrast with those previously reported for other bacteria carrying out TCE cometabolism and demonstrate the range of cellular toxicities associated with TCE cometabolism.  相似文献   

10.
A combined method for determining inhibition type, kinetic parameters, and inhibition coefficients is developed and presented. The method was validated by applying it to data obtained from batch kinetics of the aerobic cometabolism of 1,1,1-trichloroethane (1,1,1-TCA) by a butane-grown mixed culture. The maximum degradation rates (k(max)) and half-saturation coefficients (K(s)) were independently determined in single compound tests, and compared with those obtained from inhibition tests. The inhibition type was determined using direct linear plots at various substrate and inhibitor concentrations. Kinetic parameters (k(max) and K(s)) and inhibition coefficients (K(ic) and K(iu)) were determined by nonlinear least squares regression (NLSR) fits of the inhibition model determined from the direct linear plots. Initial guesses of the kinetic parameters for NLSR were determined from linearized inhibition equations that were derived from the correlations between apparent maximum degradation rates (k(app)(max)) and/or the apparent half-saturation coefficient (K(app)(s)) and the k(max), K(s), and inhibitor concentration (I(L)) for each inhibition equation. Two different inhibition types were indicated from the direct linear plots: competitive inhibition of 1,1,1-TCA on butane degradation, and mixed inhibition of 1,1,1-TCA transformation by butane. Good agreement was achieved between independently measured k(max) and K(s) values and those obtained from both NLSR and the linearized inhibition equations. The initial guesses of all the kinetic parameters determined from linear plots were in the range of the values estimated from NLSR analysis. Overall the results show that use of the direct linear plot method to identify the inhibition type, coupled with initial guesses from linearized plots for NLSR analysis, results in an accurate method for determining inhibition types and coefficients. Detailed studies with pure cultures and purified enzymes are needed to further demonstrate the utility of this method.  相似文献   

11.
A model for cometabolism is verified experimentally for a defined methanotrophic mixed culture. The model includes the effects of cell growth, endogenous cell decay, product toxicity, and competitive inhibition with the assumption that cometabolic transformation rates are enhanced by reducing power obtained from oxidation of growth substrates. A theoretical transformation yield is used to quantify the enhancement resulting from growth substrate oxidation. A systematic method for evaluating model parameters independently is described. The applicability of the model is evaluated by comparing experimental data for methanotrophic cometabolism of TCE with model predictions from independently measured model parameters. Propagation of errors is used to quantify errors in parameter estimates and in the final prediction. The model successfully predicts TCE transformation and methane utilization for a wide range of concentrations of TCE (0.5 to 9 mg/L) and methane (0.05 to 6 mg/L). (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 492-501, 1997.  相似文献   

12.
Mixed butane-utilizing cultures were obtained through sequential batch enrichment under 6% (vol/vol) butane in air using one sediment and four different soil samples with varying histories of contamination as inocula. Subsamples of each environmental sample were subjected to one of three pretreatments prior to inoculation: saturation with 30% ethanol, a 15-min exposure to 60°C, or no treatment. Thirteen of the 14 mixed cultures that were obtained appeared to cometabolize trichloroethylene (TCE) while growing at the expense of butane. All 13 caused a loss of at least one-third of TCE from initial aqueous levels between 4 and 25?µg/ml during 6 days of growth on butane provided at initial aqueous concentrations between 90 and 160?µg/ml. Two cultures cometabolized essentially all the available TCE during this test. One culture, which was obtained from an ethanol-pretreated inoculum, vigorously consumed butane while leaving TCE levels essentially unchanged. However, two other mixed cultures originally derived from the same environmental sample as the ineffective culture were moderately active in TCE cometabolism. Thus, TCE-cometabolizing butane oxidizers appeared to be present in all five of the environmental samples used in these studies.  相似文献   

13.
《Process Biochemistry》2007,42(8):1218-1228
The aerobic cometabolic chloroform (CF) degradation by butane-growing biomasses was investigated in slurry microcosms. The lag-time for the onset of butane utilization by the indigenous biomass of the studied sandy soil was less than 2 weeks in all the experimental conditions tested. The shortest lags were obtained in the absence of CF. The lag-time for the onset of CF depletion was strongly affected by temperature, with no CF degradation after several weeks in the tests conducted at 15 °C. Bioaugmentation treatments performed with two types of butane-utilizing inocula led to a marked decrease of the butane lag-time, even at the smallest concentration of augmented bacteria tested (3.5 × 103 CFU/mLaq. phase). Tests of prolonged CF degradation in the absence of butane were satisfactorily simulated with a Monod-type kinetic model. Estimates of the minimum butane/CF molar ratio required to sustain CF cometabolism varied from 2.0 to 3.1.  相似文献   

14.
The degradation of trichloroethylene (TCE), chloroform (CF), and 1,2-dichloroethane (1,2-DCA) by four aerobic mixed cultures (methane, propane, toluene, and phenol oxidizers) grown under similar chemostat conditions was measured. Methane and propane oxidizers were capable of degrading both saturated and unsaturated chlorinated organics (TCE, CF, and 1,2-DCA). Toluene and phenol oxidizers degraded TCE but were not able to degrade CF, 1,2-DCA, or other saturated organics. None of the cultures tested were able to degrade perchloroethylene (PCE) or carbon tetrachloride (CC(4)). For the four cultures tested, degradation of each of the chlorinated organics resulted in cell inactivation due to product toxicity. In all cases, the toxic products were rapidly depleted, leaving no toxic residues in solution. Among the four tested cultures, the resting cells of methane oxidizers exhibited the highest transformation capacities (T(c)) for TCE, CF, and 1,2-DCA. The T(c) for each chlorinated organic was observed to be inversely proportional to the chlorine carbon ratio (Cl/C). The addition of low concentrations of growth substrate or some catabolic intermediates enhanced TCE transformation capacities and degradation rates, presumably due to the regeneration of reducing energy (NADH); however, addition of higher concentrations of most amendments reduced TCE transformation capacities and degradation rates. Reducing energy limitations and amendment toxicity may significantly affect T(c) measurements, causing a masking of the toxicity associated with chlorinated organic degradation. (c) 1995 John Wiley & Sons, Inc.  相似文献   

15.
This study investigated the biotransformation pathways of 1,1,2,2-tetrachloroethane (1,1,2,2-TeCA) in the presence of chloroethenes (i.e. tetrachloroethene, PCE; trichloroethene, TCE) in anaerobic microcosms constructed with subsurface soil and groundwater from a contaminated site. When amended with yeast extract, lactate, butyrate, or H2 and acetate, 1,1,2,2-TeCA was initially dechlorinated via both hydrogenolysis to 1,1,2-trichloroethane (1,1,2-TCA) (major pathway) and dichloroelimination to dichloroethenes (DCEs) (minor pathway), with both reactions occurring under sulfidogenic conditions. In the presence of only H2, the hydrogenolysis of 1,1,2,2-TeCA to 1,1,2-TCA apparently required the presence of acetate to occur. Once formed, 1,1,2-TCA was degraded predominantly via dichloroelimination to vinyl chloride (VC). Ultimately, chloroethanes were converted to chloroethenes (mainly VC and DCEs) which persisted in the microcosms for very long periods along with PCE and TCE originally present in the groundwater. Hydrogenolysis of chloroethenes occurred only after highly reducing methanogenic conditions were established. However, substantial conversion to ethene (ETH) was observed only in microcosms amended with yeast extract (200 mg/l), suggesting that groundwater lacked some nutritional factors which were likely provided to dechlorinating microorganisms by this complex organic substrate. Bioaugmentation with an H2-utilizing PCE-dechlorinating Dehalococcoides spp. -containing culture resulted in the conversion of 1,1,2,2-TeCA, PCE and TCE to ETH and VC. No chloroethanes accumulated during degradation suggesting that 1,1,2,2-TeCA was degraded through initial dichloroelimination into DCEs and then typical hydrogenolysis into ETH and VC.  相似文献   

16.
1,1,1-Trichloroethane (1,1,1-TCA) is a common groundwater pollutant as a result of improper disposal and accidental spills. It is often found as a cocontaminant with trichloroethene (TCE) and inhibits some TCE-degrading microorganisms. 1,1,1-TCA removal is therefore required for effective bioremediation of sites contaminated with mixed chlorinated organics. This study characterized MS, a 1,1,1-TCA-degrading, anaerobic, mixed microbial culture derived from a 1,1,1-TCA-contaminated site in the northeastern United States. MS reductively dechlorinated 1,1,1-TCA to 1,1-dichloroethane (1,1-DCA) and then to monochloroethane (CA) but not further. Cloning of bacterial 16S rRNA genes revealed among other organisms the presence of a Dehalobacter sp. and a Desulfovibrio sp., which are both phylogenetically related to known dehalorespiring strains. Monitoring of these populations with species-specific quantitative PCR during degradation of 1,1,1-TCA and 1,1-DCA showed that Dehalobacter proliferated during dechlorination. Dehalobacter growth was dechlorination dependent, whereas Desulfovibrio growth was dechlorination independent. Experiments were also performed to test whether MS could enhance TCE degradation in the presence of inhibiting levels of 1,1,1-TCA. Dechlorination of cis-dichloroethene (cDCE) and vinyl chloride (VC) in KB-1, a chloroethene-degrading culture used for bioaugmentation, was inhibited with 1,1,1-TCA present. When KB-1 and MS were coinoculated, degradation of cDCE and VC to ethene proceeded as soon as the 1,1,1-TCA was dechlorinated to 1,1-DCA by MS. This demonstrated the potential application of the MS and KB-1 cultures for cobioaugmentation of sites cocontaminated with 1,1,1-TCA and TCE.  相似文献   

17.
The rates of methane utilization and trichloroethylene (TCE) cometabolism by a methanotrophic mixed culture were characterized in batch and pseudo-steady-state studies. Procedures for determination of the rate coefficients and their uncertainties by fitting a numerical model to experimental data are described. The model consisted of a system of differential equations for the rates of Monod kinetics, cell growth on methane and inactivation due to TCE transformation product toxicity, gas/liquid mass transfer of methane and TCE, and the rate of passive losses of TCE. The maximum specific rate of methane utilization (k(CH(4) )) was determined by fitting the numerical model to batch experimental data, with the initial concentration of active methane-oxidizing cells (X(0) (a)) also used as a model fitting parameter. The best estimate of k(CH(4) ) was 2.2 g CH(4)/g cells-d with excess copper available, with a single-parameter 95% confidence interval of 2.0-2.4 mg/mg-d. The joint 95% confidence region for k(CH(4) ) and X(0) (a) is presented graphically. The half-velocity coefficient (K(S,CH(4) )) was 0.07 mg CH(4)/L with excess copper available and 0.47 mg CH(4)/L under copper limitation, with 95% confidence intervals of 0.02-0.11 and 0.35-0.59 mg/L, respectively. Unique values of the TCE rate coefficients k(TCE) and K(S,TCE) could not be determined because they were found to be highly correlated in the model fitting analysis. However, the ratio k(TCE)/K(S,TCE) and the TCE transformation capacity (T(C)) were well defined, with values of 0.35 L/mg-day and 0.21 g TCE/g active cells, respectively, for cells transforming TCE in the absence of methane or supplemental formate. The single-parameter 95% confidence intervals for k(TCE)/K(S,TCE) and T(C) were 0.27-0.43 L/mg-d and 0.18-0.24 g TCE/g active cells, respectively. The joint 95% confidence regions for k(TCE)/K(S,TCE) and T(C) are presented graphically. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 53: 320-331, 1997.  相似文献   

18.
1,1,1-trichloroethane (1,1,1-TCA) is a common groundwater pollutant as a result of improper disposal and accidental spills. It is often found as a cocontaminant with trichloroethene (TCE) and inhibits some TCE-degrading microorganisms. 1,1,1-TCA removal is therefore required for effective bioremediation of sites contaminated with mixed chlorinated organics. This study characterized MS, a 1,1,1-TCA-degrading, anaerobic, mixed microbial culture derived from a 1,1,1-TCA-contaminated site in the northeastern United States. MS reductively dechlorinated 1,1,1-TCA to 1,1-dichloroethane (1,1-DCA) and then to monochloroethane (CA) but not further. Cloning of bacterial 16S rRNA genes revealed among other organisms the presence of a Dehalobacter sp. and a Desulfovibrio sp., which are both phylogenetically related to known dehalorespiring strains. Monitoring of these populations with species-specific quantitative PCR during degradation of 1,1,1-TCA and 1,1-DCA showed that Dehalobacter proliferated during dechlorination. Dehalobacter growth was dechlorination dependent, whereas Desulfovibrio growth was dechlorination independent. Experiments were also performed to test whether MS could enhance TCE degradation in the presence of inhibiting levels of 1,1,1-TCA. Dechlorination of cis-dichloroethene (cDCE) and vinyl chloride (VC) in KB-1, a chloroethene-degrading culture used for bioaugmentation, was inhibited with 1,1,1-TCA present. When KB-1 and MS were coinoculated, degradation of cDCE and VC to ethene proceeded as soon as the 1,1,1-TCA was dechlorinated to 1,1-DCA by MS. This demonstrated the potential application of the MS and KB-1 cultures for cobioaugmentation of sites cocontaminated with 1,1,1-TCA and TCE.  相似文献   

19.
The objective of this research was to evaluate several factors affecting the performance of a two-stage treatment system employing methane-oxidizing bacteria for trichloroethylene (TCE) biodegradation. The system consists of a completely mixed growth reactor and a plug-flow transformation reactor in which the TCE is cometabolized. Laboratory studies were conducted with continuous growth reactors and batch experiments simulating transformation reactor conditions. Performance was characterized in terms of TCE transformation capacity (T(C), g TCE/g cells), transformation yield (T(Y), g TCE/g CH(4)), and the rate coefficient ratio k(TCE)/K(S,TCE) (L/mg-d). The growth reactor variables studied were solids retention time (SRT) and nutrient nitrogen (N) concentration. Formate and methane were evaluated as potential transformation reactor amendments. Comparison of cultures from 2- and 8-day SRT (nitrogen-limited) growth reactors indicated that there was no significant effect of growth reactor SRT or nitrogen availability on T(C) or T(Y), but N-limited conditions yielded higher k(TCE)/K(S,TCE). The TCE cometabolic activity of the 8-day SRT, N-limited growth reactor culture varied significantly during a 7-year period of operation. The T(C) and T(Y) of the resting cells increased gradually to levels a factor of 2 higher than the initial values. The reasons for this increase are unknown. Formate addition to the transformation reactor gave higher T(C) and T(Y) for 2-day SRT growth reactor conditions and significantly lower T(C), T(Y), and k(TCE)/K(S,TCE) for 8-day SRT N-limited conditions. Methane addition to the transformation reactor inhibited TCE cometabolism at low TCE concentrations and enhanced TCE cometabolism at high TCE concentrations, indicating that the TCE cometabolism in the presence of methane does not follow simple competitive inhibition kinetics. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 650-659, 1997.  相似文献   

20.
A process of chloroform (CF) aerobic cometabolic biodegradation by a butane-growing consortium was studied for 354 days in a 2-m continuous-flow sand-filled reactor. The study was aimed at (a) investigating the oxygen/substrate pulsed injection as a tool to control the clogging of the porous medium, to attain a wide bioreactive zone and to reduce substrate inhibition on CF cometabolism; (b) developing a reliable model of CF cometabolism in porous media. While the continuous supply of butane rapidly led to the clogging of the porous medium due to excessive biomass growth, the testing of six types of oxygen/substrate pulsed feeding led to the identification of a feeding schedule capable to prevent aquifer clogging and to lead to the development of a long bioreactive zone and to satisfactory CF degradation performances. The tested model of aerobic cometabolism allowed a suitable interpretation of the experimental data as long as the ratio of CF degraded to butane consumed was ≤0.27 mgCF mgbutane?1. A long-term 1-D simulation of the best-performing schedule of pulsed oxygen/substrate supply extended to a 30-m aquifer length resulted in a 20-m bioreactive zone and in a 96% CF removal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号