首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Inhibition of one Leishmania subspecies by exometabolites of another subspecies, a phenomenon not previously reported, is suggested by our recent observations in cell cloning experiments with Leishmania mexicana mexicana and Leishmania mexicana amazonensis. Clones were identified using the technique of schizodeme analysis. The phenomenon observed is clearly relevant to studies of parasite isolation, leishmanial metabolism, cross-immunity and chemotherapy.  相似文献   

3.
Sphingolipids (SLs) play critical roles in eukaryotic cells in the formation of lipid rafts, membrane trafficking, and signal transduction. Here we created a SL null mutant in the protozoan parasite Leishmania major through targeted deletion of the key de novo biosynthetic enzyme serine palmitoyltransferase subunit 2 (SPT2). Although SLs are typically essential, spt2- Leishmania were viable, yet were completely deficient in de novo sphingolipid synthesis, and lacked inositol phosphorylceramides and other SLs. Remarkably, spt2- parasites maintained 'lipid rafts' as defined by Triton X-100 detergent resistant membrane formation. Upon entry to stationary phase spt2- failed to differentiate to infective metacyclic parasites and died instead. Death occurred not by apoptosis or changes in metacyclic gene expression, but from catastrophic problems leading to accumulation of small vesicles characteristic of the multivesicular body/multivesicular tubule network. Stage specificity may reflect changes in membrane structure as well as elevated demands in vesicular trafficking required for parasite remodeling during differentiation. We suggest that SL-deficient Leishmania provide a useful biological setting for tests of essential SL enzymes in other organisms where SL perturbation is lethal.  相似文献   

4.
Leishmania parasites are responsible for a diverse collection of diseases of humans and other animals. Cysteine proteases are putative virulence factors of leishmania parasites. There are differences in the susceptibility of specific stages in different Leishmania species to cysteine protease inhibitors. Here, we establish a key role of cysteine proteases in growth, viability, and pathogenicity of Leishmania tropica by using a specific cysteine protease inhibitor (N-Pip-F-hF-VS Phenyl). Reduction or arrest of promastigote growth occurred at inhibitor concentration of 5 and 100 microM, respectively. This shows an essential role for cysteine proteases in viability and growth of L. tropica promastigotes. It confirms that the promastigote stage of L. tropica more closely resembles that of Leishmania major than that of Leishmania mexicana, which is refractory to this inhibitor. Pathogenicity of L. tropica amastigotes in mice, as assessed by footpad swelling, was also reduced by treatment with the cysteine protease inhibitor. This suggests that cysteine proteases are essential for pathogenicity of L. tropica amastigote in mammalian host, similar to both L. major and L. mexicana.  相似文献   

5.
In this paper, the effects of 3 natural sesquiterpene lactones, i.e., helenalin (Hln), mexicanin (Mxc), and dehydroleucodine (DhL), were evaluated using cultured Leishmania mexicana promastigotes. It was observed that the compounds inhibited the in vitro growth of the parasites at relatively low concentrations. The effect was rapid and irreversible with an estimated IC50 of 2-4 microM, while all the lactones were more effective than ketoconazole. Moreover, these compounds exhibited low cytotoxicity for mammalian cells. Hln induced strong vacuolization of the parasite cytoplasm, although pericellular microtubules were preserved. The 3 lactones induced DNA fragmentation as judged by the high labeling with the fluorescent TUNEL method, which was confirmed by electrophoresis on agarose gels. The ability of the parasites to invade Vero cells was also decreased by exposure to low concentrations of the compounds. We conclude that these compounds can affect the parasite's life cycle, possibly through multiple mechanisms. Identification of the molecular targets of these natural products and their effects on amastigotes should be determined to evaluate the possible therapeutic use of the compounds against leishmaniasis.  相似文献   

6.
Lipophosphoglycan (LPG) was isolated from the culture supernatant of Leishmania mexicana promastigotes and its structure elucidated by a combination of 1H NMR, fast atom bombardment mass spectrometry, methylation analysis, and chemical and enzymatic modifications. It consists of the repeating phosphorylated oligosaccharides PO4-6Gal beta 1-4Man alpha 1- and PO4-6[Glc beta 1-3]Gal beta 1-4Man alpha 1-, which are linked together in linear chains by phosphodiester linkages. Each chain of repeat units is linked to a phosphosaccharide core with the structure PO4-6Gal alpha 1-6Gal alpha 1-3Galf beta 1- 3[Glc alpha 1-PO4-6]Man alpha 1-3Man alpha 1-4GlcNH2 alpha 1-6 myo-inositol, where the myo-inositol residue forms the head group of a lyso-alkylphosphatidylinositol moiety. The nonreducing terminus of the repeat chains appear to be capped with the neutral oligosaccharides Man alpha 1-2Man, Man alpha 1-2Man alpha 1-2Man, or Man alpha 1-2[Gal beta 1-4]Man. Cellular LPG, isolated from promastigotes, has a very similar structure to the culture supernatant LPG. However, it differs from culture supernatant LPG in the average number of phosphorylated oligosaccharide repeat units (20 versus 28) and in alkyl chain composition. Although culture supernatant LPG contained predominantly C24:0 alkyl chains, cellular LPG contained approximately equal amounts of C24:0 and C26:0 alkyl chains. It is suggested that culture supernatant LPG is passively shed from promastigotes and that it may contribute significantly, but not exclusively, to the "excreted factor" used for serotyping Leishmania spp. Comparison of L. mexicana LPG with the LPGs of Leishmania major and Leishmania donovani indicate that these molecules are highly conserved but that species-specific differences occur in the phosphorylated oligosaccharide repeat branches and in the relative abundance of the neutral cap structures.  相似文献   

7.
Four distinct bands of cysteine proteinase activity were detected when stationary-phase populations of Leishmania mexicana mexicana were subjected to gelatin-SDS-PAGE. The highest mobility band contained at least three isoforms separable by mono Q anion exchange chromatography. These high mobility activities were distinct from all the major amastigote enzymes. Stationary-phase promastigote populations also contained two acid-activable precursor forms of the promastigote-specific band. It is suggested that these promastigote-specific activities occur in the infective metacyclic stage of the parasite and may have a role in parasite survival upon inoculation into a mammal.  相似文献   

8.
Studies on the decarboxylation of ornithine in Leishmania mexicana have shown that this activity corresponds to a true ornithine decarboxylase rather than to an oxidative decarboxylation or aminotransferase reaction, both of which also give rise to the release of CO2. The stoichiometric relationship between substrate and products has indicated that extracts of L. mexicana were able to catalyse the formation of an unknown compound besides putrescine and CO2. The addition of cycloheximide to cultures of L. mexicana allowed us to demonstrate that ornithine decarboxylase degradation in vivo was extremely slow in this parasite. This remarkable stability of the enzyme is only comparable to that found in Trypanosoma brucei and contrasts with the high turnover rate of ornithine decarboxylases of different mammalian cells.  相似文献   

9.
Leishmania mexicana mexicana cultured promastigotes were fractionated by isopycnic centrifugation on linear sucrose gradients. Guanine, hypoxanthine and xanthine phosphoribosyltransferase activities were found to be associated with glycosomes, whereas adenine phosphoribosyltransferase was cytosolic. 3'- and 5'-nucleotidases and IMP dehydrogenase were shown to be particulate, the former two possibly being associated with the plasma membrane, IMP dehydrogenase with the endoplasmic reticulum. Nucleosidases and deaminases were found to be cytosolic. The results demonstrate that intracellular separation of enzymes could play a part in the regulation of the parasite's purine metabolism.  相似文献   

10.
11.
The main cysteine proteinases of the amastigote form of Leishmania mexicana mexicana were partially purified by gel filtration and ion exchange chromatography. The latter procedure resulted in the separation of some individual cysteine proteinases, as demonstrated by gelatin-sodium dodecyl sulphatepolyacrylamide gel electrophoresis. Fractions containing the partially purified proteinases rapidly hydrolysed L-leucine methyl ester to leucine. The activity towards this compound co-eluted with and resembled the parasite's cysteine proteinase activity. The results suggest that amastigotes of L.m.mexicana are susceptible to L-leucine methyl ester because this compound is rapidly hydrolysed by cysteine proteinases that occur in abundance in the megasomes of this stage.  相似文献   

12.
13.
Amastigotes and cultured promastigotes of Leishmania mexicana mexicana and L. m. amazonensis, cultured promastigotes of L. donovani and L. tarentolae, and the culture forms of Crithidia fasciculata, Herpetomonas muscarum muscarum and H. m. ingenoplastis all possessed four phosphoribosyltransferase (PRTase) activities: adenine PRTase, hypoxanthine PRTase, guanine PRTase and xanthine PRTase. The enzymes of L. m. mexicana required divalent cations for activity; Mn2+ or Co2+ produced maximal activity in most cases. Hypoxanthine PRTase, guanine PRTase and xanthine PRTase from all organisms were sedimentable in part, suggesting that they may occur within glycosomes. The enzymes of L. m. mexicana cultured promastigotes were inhibited by a range of purine analogues.  相似文献   

14.
Two previously isolated DNA polymerases from the parasitic protozoan Leishmania mexicana were further characterized by exposure to inhibitors of mammalian DNA polymerases. DNA polymerase A, a high molecular mass enzyme, and DNA polymerase B, a beta-like DNA polymerase were compared to each other and to their mammalian counterparts regarding pH optimum, utilization of templates, and response to various inhibitors and ionic strengths. The results suggest that the DNA polymerases from L. mexicana differ from the host enzymes and may offer a target for chemotherapeutic intervention.  相似文献   

15.
The generation of homozygous null mutants for the crk1 cdc2-related kinase of Leishmania mexicana was attempted using targeted gene disruption. Promastigote mutants heterozygous for crk1 were readily isolated with a hyg -targeting fragment, but attempts to create null mutants by second-round transfections with a ble -targeting fragment yielded two classes of mutant, neither of which was null. First, the transfected fragment formed an episome; second, the cloned transfectants were found to contain wild-type crk1 alleles as well as hyg and ble integrations. DNA- content analysis revealed that these mutants were triploid or tetraploid. Plasticity in chromosome number following targeting has been proposed as a means by which Leishmania avoids deletion of essential genes. These data support this theory and implicate crk1 as an essential gene, validating CRK1 as a potential drug target. L. mexicana transfected with a Trypanosoma brucei homologue, tbcrk1 , was shown to be viable in an lmmcrk1 null background, thus showing complementation of function between these trypanosomatid genes. The expression of crk1 was further manipulated by engineering a six-histidine tag at the C-terminus of the kinase, allowing purification of the active complex by affinity selection on Ni2+–nitriloacetic acid (NTA) agarose.  相似文献   

16.
Two genes encoding functional RNase H (EC 3.1.26.4) were isolated from a gram-positive bacterium, Bacillus subtilis 168. Two DNA clones exhibiting RNase H activities both in vivo and in vitro were obtained from a B. subtilis DNA library. One (28.2 kDa) revealed high similarity to Escherichia coli RNase HII, encoded by the rnhB gene. The other (33.9 kDa) was designated rnhC and encodes B. subtilis RNase HIII. The B. subtilis genome has an rnhA homologue, the product of which has not yet shown RNase H activity. Analyses of all three B. subtilis genes revealed that rnhB and rnhC cannot be simultaneously inactivated. This observation indicated that in B. subtilis both the rnhB and rnhC products are involved in certain essential cellular processes that are different from those suggested by E. coli rnh mutation studies. Sequence conservation between the rnhB and rnhC genes implies that both originated from a single ancestral RNase H gene. The roles of bacterial RNase H may be indicated by the single rnhC homologue in the small genome of Mycoplasma species.  相似文献   

17.
18.
19.
1. The antitumor drug lonidamine inhibited growth of promastigotes of Leishmania mexicana in axenic culture. 2. Fifty percent inhibition was attained at 0.42 mM, and was reflected mainly in an increase in lag time, with less effect on final cell yield. 3. The drug was leishmanistatic, since when a non-growing culture in the presence of 0.5 mM lonidamine was centrifuged and the cells resuspended in fresh medium, growth started and reached the control value. 4. Both coupled and FCCP-uncoupled respiration of intact promastigotes were inhibited by lonidamine; 50% inhibition was attained at 0.5 and 0.4 mM, respectively. 5. The results suggested that the mechanism of inhibition of growth of L. mexicana is, as proposed in the case of Trypanosoma cruzi epimastigotes and Trypanosoma brucei procyclic trypomastigotes, through inhibition of the energy metabolism.  相似文献   

20.
The major surface proteins of the parasitic protozoon Leishmania mexicana are anchored to the plasma membrane by glycosylphosphatidylinositol (GPI) anchors. We have cloned the L. mexicana GPI8 gene that encodes the catalytic component of the GPI:protein transamidase complex that adds GPI anchors to nascent cell surface proteins in the endoplasmic reticulum. Mutants lacking GPI8 (DeltaGPI8) do not express detectable levels of GPI-anchored proteins and accumulate two putative protein-anchor precursors. However, the synthesis and cellular levels of other non-protein-linked GPIs, including lipophosphoglycan and a major class of free GPIs, are not affected in the DeltaGPI8 mutant. Significantly, the DeltaGPI8 mutant displays normal growth in liquid culture, is capable of differentiating into replicating amastigotes within macrophages in vitro, and is infective to mice. These data suggest that GPI-anchored surface proteins are not essential to L. mexicana for its entry into and survival within mammalian host cells in vitro or in vivo and provide further support for the notion that free GPIs are essential for parasite growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号