首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
生长激素受体的研究进展   总被引:10,自引:0,他引:10  
生长激素(GH)在促进动物生长、发育等代谢过程中起着重要作用,GH发挥生理作用的第一步是与靶细胞膜表面的生长激素受体(CHR)结合。现已基本阐明了CHR的结构及由CHR介导的信号转导途径,对GHR基因表达调节的机制也有了一定的了解。GHR是由约620个氨基酸组成的单链跨膜糖蛋白,其胞外区、跨膜区及胞区内分别由约245、25及350个氨基酸组成。由GHR介导的信号转导途径主要有:①酪氨酸激酶系统;②蛋白激酶C途径;③胰岛素受体底物途径。营养状况及GH等内分泌因子对GHR的表达也有调节作用。  相似文献   

3.
Melanoma is the most aggressive skin cancer. Its aggressiveness is most commonly attributed to ERK pathway mutations leading to constitutive signaling. Though initial tumor regression results from targeting this pathway, resistance often emerges. Interestingly, interrogation of the NCI-60 database indicates high growth hormone receptor (GHR) expression in melanoma cell lines. To further characterize melanoma, we tested responsiveness to human growth hormone (GH). GH treatment resulted in GHR signaling and increased invasion and migration, which was inhibited by a GHR monoclonal antibody (mAb) antagonist in WM35, SK-MEL 5, SK-MEL 28 and SK-MEL 119 cell lines. We also detected GH in the conditioned medium (CM) of human melanoma cell lines. GHR, JAK2 and STAT5 were basally phosphorylated in these cell lines, consistent with autocrine/paracrine GH production. Together, our results suggest that melanomas are enriched in GHR and produce GH that acts in an autocrine/paracrine manner. We suggest that GHR may constitute a therapeutic target in melanoma.  相似文献   

4.
The objective of this study was to determine if a functional heterodimer of prolactin receptor (PRLR) and growth hormone receptor (GHR) can be formed in humans. A novel ligand was designed that is composed of a GHR antagonist (B2036) and a PRLR antagonist (G129R) fused in tandem (B2036-G129R). Because both B2036 and G129R are binding site 2 inactive antagonists, the B2036-G129R fusion protein, in theory contains only two functional binding site 1s: one for GHR and one for PRLR. We examined the behavior of this chimeric ligand in cell lines known to express GHR, PRLR, or both receptors. The data presented show that B2036-G129R is inactive in IM-9 cells that express only GHR or Nb2 cells that express PRLR. In T-47D cells that coexpress PRLR and GHR, B2036-G129R activates JAK2/STAT5 signaling. These findings provide evidence that B2036-G129R is able to activate signal transduction through a heterodimer of PRLR and GHR in humans.  相似文献   

5.
GH receptor (GHR) is a single membrane-spanning glycoprotein dimer that binds GH in its extracellular domain (ECD). GH activates the GHR intracellular domain (ICD)-associated tyrosine kinase, JAK2, which causes intracellular signaling. We previously found that plasma membrane (PM)-associated GHR was dramatically enriched in the lipid raft (LR) component of the membrane and that localization of GHR within PM regions may regulate GH signaling by influencing the profile of pathway activation. In this study, we examined determinants of LR localization of the GHR using a reconstitution system which lacks endogenous JAK2 and GHR. By non-detergent extraction and multistep fractionation, we found that GHR was highly enriched in the LR fraction independent of JAK2 expression. Various GHR mutants were examined in transfectants harboring JAK2. LR concentration was observed for a GHR in which the native transmembrane domain (TMD) is replaced by that of the unrelated LDL receptor and for a GHR that lacks its ICD. Thus, LR association requires neither the TMD nor the ICD. Similarly, a GHR that lacks the ECD, except for the membrane-proximal ECD stem region, was only minimally LR-concentrated. Mutants with internal stem deletions in the context of the full-length receptor were LR-concentrated similar to the wild-type. A GHR lacking ECD subdomain 1 reached the PM and was LR-concentrated, while one lacking ECD subdomain 2, also reached the PM, but was not LR-concentrated. These data suggest LR targeting resides in ECD subdomain 2, a region relatively uninvolved in GH binding.  相似文献   

6.
Sepsis results in hepatic "growth hormone (GH) resistance" with reductions in plasma IGF-I despite a two- to fourfold increase in circulating GH. In this study, we examine the effects of IL-1 on GH receptor (GHR) expression, GH signaling (via the JAK/STAT and MAPK pathways), and the induction of gene expression [IGF-I mRNA and serine protease inhibitor (Spi) 2.1] by GH in CWSV-1 hepatocytes. Incubation of cells with IL-1beta (10 ng/ml, 24 h) had no effect on the relative abundance of GHR or signaling proteins JAK2, STAT5b, and ERK1/2 in cell lysates. Baseline phosphorylation of GHR, JAK2, STAT5b, and ERK1/2 was minimal. After GH stimulation, tyrosine phosphorylation of GHR, JAK2, STAT5b, and ERK1/2 increased 2- to 10-fold. However, neither the time course nor the magnitude of GHR, JAK2, and ERK1/2 phosphorylation by GH were significantly altered by IL-1. The GH-induced translocation of STAT5b to the nucleus was not prevented by IL-1. Although phosphorylated STAT5 in nuclear extracts from GH + IL-1 cells was decreased by 24% (vs. controls) 15 min after GH stimulation, this did not result in reduced STAT5-DNA binding activity. Pretreatment with IL-1 did not significantly decrease IGF-I mRNA stability. We conclude that IL-1 only minimally affects the time course of JAK2/STAT5 and MAPK signaling by GH. Therefore, an inhibitory effect of IL-1 on IGF-I and Spi 2.1 mRNA synthesis by GH represents the most likely mechanism for IL-1-mediated GH resistance.  相似文献   

7.
8.
9.
Growth hormone (GH) plays an important role in regulation of animal growth, metabolism and lactation[1]. Numerous studies have shown that exogenous somatotropin (ST) can increase average daily weight gain, improve feed efficiency, stimulate protein deposition and muscle growth and decrease lipid accretion rate[1]. The original somatomedin hypothesis suggested that the effect of GH on postnatal growth was mediated by insulin-like growth hormone factor 1 (IGF-I) which was thought to be deriv…  相似文献   

10.
11.
12.
豚鼠生长激素受体cDNA的克隆   总被引:1,自引:1,他引:0  
报道了豚鼠肝生长激素受体(GHR)的cRNA克隆和编码区序列。它由1899bp组成,编码610个氨基酸。此外,还报道豚鼠GHR的结构特征和同源性比较的结果。  相似文献   

13.
Growth hormone (GH) regulates body growth and metabolism. GH exerts its biological action by stimulating JAK2, a GH receptor (GHR)-associated tyrosine kinase. Activated JAK2 phosphorylates itself and GHR, thus initiating multiple signaling pathways. In this work, we demonstrate that platelet-derived growth factor (PDGF) and lysophosphatidic acid (LPA) down-regulate GH signaling via a protein kinase C (PKC)-dependent pathway. PDGF substantially reduces tyrosyl phosphorylation of JAK2 induced by GH but not interferon-gamma or leukemia inhibitory factor. PDGF, but not epidermal growth factor, decreases tyrosyl phosphorylation of GHR (by approximately 90%) and the amount of both total cellular GHR (by approximately 80%) and GH binding (by approximately 70%). The inhibitory effect of PDGF on GH-induced tyrosyl phosphorylation of JAK2 and GHR is abolished by depletion of 4beta-phorbol 12-myristate 13-acetate (PMA)-sensitive PKCs with chronic PMA treatment and is severely inhibited by GF109203X, an inhibitor of PKCs. In contrast, extracellular signal-regulated kinases 1 and 2 and phosphatidylinositol 3-kinase appear not to be involved in this inhibitory effect of PDGF. LPA, a known activator of PKC, also inhibits GH-induced tyrosyl phosphorylation of JAK2 and GHR and reduces the number of GHR. We propose that ligands that activate PKC, including PDGF, LPA, and PMA, down-regulate GH signaling by decreasing the number of cell surface GHR through promoting GHR internalization and degradation and/or cleavage of membrane GHR and release of the extracellular domain of GHR.  相似文献   

14.
The growth hormone (GH) receptor (GHR) binds GH in its extracellular domain and transduces activating signals via its cytoplasmic domain. Both GH-induced GHR dimerization and JAK2 tyrosine kinase activation are critical in initiation of GH signaling. We previously described a rapid GH-induced disulfide linkage of GHRs in human IM-9 cells. In this study, three GH-induced phenomena (GHR dimerization, GHR disulfide linkage, and enhanced GHR-JAK2 association) were examined biochemically and immunologically. By using the GH antagonist, G120K, and an antibody recognizing a dimerization-sensitive GHR epitope, we demonstrated that GH-induced GHR disulfide linkage reflects GH-induced GHR dimerization. GH, not G120K, promoted both GHR disulfide linkage and enhanced association with JAK2. Measures that diminished GH-dependent JAK2 and GHR tyrosine phosphorylation diminished neither GH-induced GHR disulfide linkage nor GH-enhanced GHR-JAK2 association. By using both transient and stable expression systems, we determined that cysteine 241 (an unpaired extracellular cysteine) was critical for GH-induced GHR disulfide linkage; however, GH-induced GHR dimerization, GHR-JAK2 interaction, and GHR, JAK2, and STAT5 tyrosine phosphorylation still proceeded when this cysteine residue was mutated. We conclude GH-induced GHR disulfide linkage is not required for GHR dimerization, and activation and GH-enhanced GHR-JAK2 association depends more on GHR dimerization than on GHR and/or JAK2 tyrosine phosphorylation.  相似文献   

15.
Sixteen Large White × Landrace castrated male pigs were allotted into treatment and control group. The treatment group was injected intramuscularly with recombinant porcine growth hormone (rpGH, 4 mg d−1) and the control group with vehicle for 28 days. Animals were slaughtered 4 h after final injection for liver, longissimus dorsi (LD) muscle and blood sampling. Serum concentration of insulin-like growth factor 1 (IGF-I) and leptin were determined by RIA. The total RNA was extracted from tissues to measure the abundance of growth hormone receptor (GHR), IGF-I mRNA by RT-PCR with 18S rRNA internal standard. Results showed that rpGH enhanced the average daily weight gain by 26.1% (P < 0.05), the serum IGF-I concentration by 70.94% (P < 0.01), decreased serum leptin by 34.8% (P < 0.01). The relative abundance of GHR and IGF-I mRNA in liver were increased by 24.45% (P < 0.05) and 45.30% (P < 0.01), respectively, but no difference of GHR (P > 0.05) and IGF-I mRNA (P > 0.05) in LD between GH treated and control group was found. These results suggest that rpGH can up-regulate hepatic GHR and IGF-I gene expression and improve animal growth. However the effect of rpGH on GHR and IGF-I gene expression are tissue-specific.  相似文献   

16.
17.
18.
GH and IGF-I are critical regulators of growth and metabolism. GH interacts with the GH receptor (GHR), a cytokine superfamily receptor, to activate the cytoplasmic tyrosine kinase, Janus kinase 2 (JAK2), and initiate intracellular signaling cascades. IGF-I, produced in part in response to GH, binds to the heterotetrameric IGF-I receptor (IGF-IR), which is an intrinsic tyrosine kinase growth factor receptor that triggers proliferation, antiapoptosis, and other biological actions. Previous in vitro and overexpression studies have suggested that JAKs may interact with IGF-IR and that IGF-I stimulation may activate JAKs. In this study, we explore interactions between GHR-JAK2 and IGF-IR signaling pathway elements utilizing the GH and IGF-I-responsive 3T3-F442A and 3T3-L1 preadipocyte cell lines, which endogenously express both the GHR and IGF-IR. We find that GH induces formation of a complex that includes GHR, JAK2, and IGF-IR in these preadipocytes. The assembly of this complex in intact cells is rapid, GH concentration dependent, and can be prevented by a GH antagonist, G120K. However, it is not inhibited by the kinase inhibitor, staurosporine, which markedly inhibits GHR tyrosine phosphorylation. Moreover, complex formation does not appear dependent on GH-induced activation of the ERK or phosphatidylinositol 3-kinase signaling pathways or on the tyrosine phosphorylation of GHR, JAK2, or IGF-IR. These results suggest that GH-induced formation of the GHR-JAK2-IGF-IR complex is governed instead by GH-dependent conformational change(s) in the GHR and/or JAK2. We further demonstrate that GH and IGF-I can synergize in acute aspects of signaling and that IGF-I enhances GH-induced assembly of conformationally active GHRs. These findings suggest the existence of previously unappreciated relationships between these two hormones.  相似文献   

19.
Growth hormone (GH) initiates many of its growth-promoting actions by binding to GH receptors (GHR) and stimulating the synthesis and secretion of insulin-like growth factor-1 (IGF-1) from the liver and other sites. In this study, we used hepatocytes isolated from rainbow trout as a model system in which to determine the molecular signaling events of GH in fish. GH directly stimulated the phosphorylation of ERK, protein kinase B (Akt), a downstream target of phosphatidylinositol 3-kinase (PI3K), JAK2, and STAT5 in hepatocytes incubated in vitro. Activation of ERK, Akt, JAK2, and STAT5 was rapid, occurring within 5-10 min, and was concentration dependent. GH-induced ERK activation was completely blocked by the ERK pathway inhibitor, U0126, and the JAK2 inhibitor, 1,2,3,4,5,6-hexabromocyclohexane (Hex), and was partially blocked by the PI3K inhibitor LY294002. GH-stimulated Akt activation was completely blocked by LY294002 and Hex, but was not affected by U0126; whereas, STAT5 activation by GH was blocked only by Hex, and was not affected by either U0126 or LY294002. GH stimulated hepatic expression of IGF-1 mRNA as well as the secretion of IGF-1, effects that were partially or completely blocked by U0126, LY294002, and Hex. These results indicate that GHR linkage to the ERK, PI3K/Akt, or STAT pathways in trout liver cells requires activation of JAK2, and that GH-stimulated IGF-1 synthesis and secretion is mediated through the ERK, PI3K/Akt, and JAK-STAT pathways.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号