首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Kim JH  Han JS  Yoon YD 《Tissue & cell》1999,31(6):531-539
We have investigated the effects of ceramide on the progression of cell cycle and on apoptotic cell death in ovarian cultured granulosa cells. Rates of cellular proliferation were measured by immunocytochemical staining for proliferating cell nuclear antigen (PCNA) and flow cytometric cell cycle analysis. We also examined for morphological and biochemical signs of apoptosis. The PCNA expression was downregulated in a dose-dependent manner after treatment with C6-ceramide. Flow cytometric analysis demonstrated that the exposure of granulosa cells to C6-ceramide markedly decreased the population associated with G0/G1 DNA content and the reduction of cell numbers in G0/G1 phase was accompanied by the elevation of the A0 phase. The exposure of granulosa cells to exogenous C6-ceramide induced drastic morphological changes including cytoplasmic- or nuclear condensation and typical apoptotic DNA degradation. We also observed that phorbol 12-myristate 13-acetate, a protein kinase C (PKC) activator, significantly inhibited the ceramide-induced apoptosis. These results suggested that ceramide might block the progression of cell cycle at G0/G1 phase and as a consequence, granulosa cells would be committed to apoptosis. Our findings also indicated that down-regulation of the PKC activity might be involved in the ceramide-induced apoptosis in cultured granulosa cells.  相似文献   

2.
3.
目的:探讨组蛋白去乙酰化酶抑制剂曲古霉素A(TSA)对人膀胱癌T24细胞周期和凋亡的影响。方法:以不同剂量TSA(0.1μM,0.3μM和1μM)处理T24细胞。采用MTT法检测细胞存活率,AnnexinV-PI染色检测细胞凋亡,流式细胞仪检测caspase-3活性,Western blot法检测P21蛋白表达。结果:TSA剂量依赖性降低膀胱癌细胞存活率,促进细胞凋亡,表现为AnnexinV阳性细胞明显增多,同时活化的caspase-3水平增高。TSA还可通过诱导膀胱癌细胞周期阻滞于G2/M期抑制细胞生长,且呈剂量依赖性。结论:TSA通过促进caspase-3激活诱导膀胱癌细胞凋亡,同时诱导细胞阻滞于G2/M期。  相似文献   

4.
Gastric cancer remains a serious threat to public health with high incidence and mortality worldwide. Accumulating evidence demonstrates that long non-coding RNAs (lncRNAs) play important roles in regulating gene expression and are involved in various pathological processes, including gastric cancer. To investigate the possible role of dysregulated lncRNAs in gastric cancer development, we performed lncRNA microarray and identified 3141 significantly differentially expressed lncRNAs in gastric cancer tissues. Next, some of deregulated lncRNAs were validated among about 60 paired gastric cancer specimens such as Linc00261, DKFZP434K028, RPL34-AS1, H19, HOTAIR and Linc00152. Our results found that the decline of DKFZP434K028 and RPL34-AS1, and the increased expression of Linc00152 positively correlated with larger tumor size. The high expression levels of HOTAIR were associated with lymphatic metastasis and poor differentiation. Since the biological roles of Linc00152 are largely unknown in gastric cancer pathogenesis, we assessed its functions by silencing its up-regulation in gastric cancer cells. We found that Linc00152 knockdown could inhibit cell proliferation and colony formation, promote cell cycle arrest at G1 phase, trigger late apoptosis, reduce the epithelial to mesenchymal transition (EMT) program, and suppress cell migration and invasion. Taken together, we delineate the gastric cancer lncRNA signature and demonstrate the oncogenic functions of Linc00152. These findings may have implications for developing lncRNA-based biomarkers for diagnosis and therapeutics for gastric cancer.  相似文献   

5.
Studies have shown that polycystin-1, encoded by PKD1, the major ADPKD, may have a central role in regulating both apoptosis and proliferation, which could prevent the malignant transformation of affected cells. However, as a putative tumor suppressor, direct studies on the possibility that polycystin-1 may play a role in cancer cells' biological properties have not yet been reported. We have demonstrated that the apoptosis of cancer cells was induced by overexpression of polycystin-1. After transfection with polycystin-1, three cancer cell lines, HepG2, A549, and SW480, showed significantly increased apoptosis compared with the respective control groups. This was accompanied by cell cycle arrest at G(0)/G(1) phase, whereas cell proliferation was not significantly affected. Overexpression of polycystin-1 induces apoptosis in cancer cells, at least partially, through Wnt and a caspase-dependent pathway.  相似文献   

6.
For gastric cancers, the antineoplastic activity of cannabinoids has been investigated in only a few reports and knowledge regarding the mechanisms involved is limited. We have reported previously that treatment of gastric cancer cells with a cannabinoid agonist significantly decreased cell proliferation and induced apoptosis. Here, we evaluated the effects of cannabinoids on various cellular mediators involved in cell cycle arrest in gastric cancer cells. AGS and MKN-1 cell lines were used as human gastric cancer cells and WIN 55,212-2 as a cannabinoid agonist. Cell cycles were analyzed by flow cytometry and western blotting. Treatment with WIN 55,212-2 arrested the cell cycle in the G0/G1 phase. WIN 55,212-2 also upregulated phospho-ERK1/2, induced Kip1/p27 and Cip1/WAF1/p21 expression, decreased cyclin D1 and cyclin E expression, decreased Cdk 2, Cdk 4, and Cdk 6 expression levels, and decreased phospho-Rb and E2F-1 expression. ERK inhibitor decreased the proportion of G0/G1 phase which was induced by WIN 55,212-2. Inhibition of pAKT led to cell cycle arrest in gastric cancer cells. Cell cycle arrest preceded apoptotic response. Thus, this cannabinoid agonist can reduce gastric cancer cell proliferation via G1 phase cell cycle arrest, which is mediated via activation of the MAPK pathway and inhibition of pAKT.  相似文献   

7.
Glioma, the most predominant primary malignant brain tumor, remains uncured due to the absence of effective treatments. Hence, it is imperative to develop successful therapeutic agents. This study aimed to explore the antitumor effects and mechanisms of ivermectin (IVM) in glioma cells in vitro and in vivo. The effects of IVM on cell viability, cell cycle arrest, apoptosis rate, and morphological characteristics were determined respectively by MTT assay/colony formation assay, flow cytometry, and transmission electron microscope. In addition, the expression levels of cycle-related and apoptosis-associated proteins were individually examined by Western blot analysis. Moreover, cell proliferation and apoptosis analyses were carried out by TUNEL, Ki-67, cleaved caspase-3, and cleaved caspase-9 immunostaining assay. Our results demonstrated that IVM has a potential dosage-dependent inhibition effect on the apoptosis rate of glioma cells. Meanwhile, the results also revealed that IVM induced apoptosis by increasing caspase-3 and caspase-9 activity, upregulating the expressions of p53 and Bax, downregulating Bcl-2, activating cleaved caspase-3 and cleaved caspase-9, and blocking cell cycle in G0/G1 phase by downregulating levels of CDK2, CDK4, CDK6, cyclin D1, and cyclin E. These findings suggest that IVM has an inhibition effect on the proliferation of glioma cells by triggering cell cycle arrest and inducing cell apoptosis in vitro and in vivo, and probably represents promising agent for treating glioma.  相似文献   

8.
BackgroundCoumarins occurs naturally across plant kingdoms exhibits significant pharmacological properties and pharmacokinetic activity. The conventional, therapeutic agents are often associated with poor stability, absorption and increased side effects. Therefore, identification of a drug that has little or no-side effect on humans is consequential. Here, we investigated the antiproliferative activity of styrene substituted biscoumarin against various human breast cancer cell lines, such as MCF-7, (ER-) MDA-MB-231 and (AR+) MDA-MB-453. Styrene substituted biscoumarin induced cell death by apoptosis in MDA-MB-231 cell line was analyzed.MethodsAntiproliferative activity of Styrene substituted biscoumarin was performed by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Styrene substituted biscoumarin induced apoptosis was assessed by Hoechst staining, Annexin V-fluorescein isothiocyanate/propidium iodide (Annexin V-FITC/PI) staining and flow cytometric analysis. Migratory and proliferating characteristic of breast cancer cell line MDA-MB-231 was also analyzed by wound healing and colony formation assay. Furthermore, mRNA expression of BAX and BCL-2 were quantified using qRT-PCR and protein expression level analyzed by Western blot.ResultsThe inhibition concentration (IC50) of styrene substituted biscoumarin was assayed against three breast cancer cell lines. The inhibition concentration (IC50) value of styrene substituted biscoumarin toward MDA-MB-231, MDA-MB-453 and MCF-7 cell lines was 5.63, 7.30 and 10.84 μg/ml respectively. Styrene substituted biscoumarin induced apoptosis was detected by Hoechst staining, DAPI/PI analysis and flow-cytometric analysis. The migration and proliferative efficiency of MDA-MB-231 cells were completely arrested upon styrene substituted biscoumarin treatment. Also, mRNA gene expression and protein expression of pro-apoptotic (BAX) and anti-apoptotic (BCL-2) genes were analyzed by qRT-PCR and western blot analysis upon styrene substituted biscoumarin treatment to MDA-MB-231 cells. Our results showed that styrene substituted biscoumarin downregulated BCL-2 gene expression and upregulated BAX gene expression to trigger apoptotic process.ConclusionStyrene substituted biscoumarin could induce apoptosis through intrinsic mitochondrial pathway in breast cancer cell lines, particularly in MDA-MB-231. Our data suggest that styrene substituted biscoumarin may act as a potential chemotherapeutic agent against breast cancer.  相似文献   

9.
JNK1/2 proteins belong to the family of stress-activated protein kinases. They play a complex role in growth regulation, inducing either cell death or growth support. In this report, we provide evidence that, in human melanoma cells, JNK inhibition with the small molecule inhibitor SP600125 induces either predominantly a G2/M arrest or apoptosis depending on the cell line. In 1205Lu cells, JNK inhibition induced cell cycle arrest through p53-dependent induction of p21 Cip1/Waf1 expression, while in WM983B cells, induction of apoptosis by JNK inhibition was accompanied by p53, Bad and Bax induction, not p21 Cip1/Waf1. JNK inhibition with the small molecule inhibitor SP600125 slowed growth of all cell lines, although the effect was markedly greater in cells exhibiting high phospho- (P-)JNK1 levels. Specific gene knockdown of JNK1 by means of siRNA oligonucleotides inhibited cell growth only in melanoma cell lines exhibiting high P-JNK1 levels. siRNAs directed against JNK2 did not reduce cell growth in any of the cell lines tested. Together, our findings demonstrate that JNK, and in particular the JNK1 isoform, support the growth of melanoma cells, by controlling either cell cycle progression or apoptosis depending on the cellular context.  相似文献   

10.
The inhibitory effect of buforin IIb on different types of cancer, although not liver cancer, has been demonstrated previously. The aim of the present study was to investigate the effects of buforin IIb on the progression of liver cancer. The human liver cancer cell line HepG2 was treated with purified buforin IIb and the cell activity was determined by MTT, colony formation and transwell assays. The protein expression levels of cyclin-dependent kinases (CDKs) and cyclins were analyzed by western blotting and immunofluorescent cell staining. A tumor growth model was constructed using nude mice, and buforin IIb treatment was administered. The levels of CDK2 and cyclin A in the tumor tissues were detected by western blotting. Buforin IIb treatment depressed cell viability and colony formation and induced apoptosis significantly, and 1.0?µM concentration of buforin IIb was found to be the optimal dosage. The cell cycle was arrested at the G2/M phase following buforin IIb treatment. CDK2 and cyclin A were downregulated by treatment of the cells with 1.0?µM buforin IIb for 24?h. Treatment with buforin IIb also inhibited the migration of liver cancer cells in vitro. Furthermore, 50?nmol buforin IIb injection suppressed HepG2 cell subcutaneous tumor growth in the nude mouse model. Similar to the in vitro results, buforin IIb injection reduced the expression of CDK2 and cyclin A in the tumor tissue. these results demonstrate that buforin IIb inhibited liver cancer cell growth via the regulation of CDK2 and cyclin A expression.  相似文献   

11.
WW domain-containing oxidoreductase (WWOX) has been reported to be a tumor suppressor in multiple cancers, including prostate cancer. WWOX can induce apoptotic responses to inhibit tumor progression, and the other mechanisms of WWOX in tumor suppression have also been reported recently. In this study, we found significant down-regulation of WWOX in prostate cancer specimens and prostate cancer cell lines compared with the normal controls. In addition, an ectopically increased WWOX expression repressed tumor progression both in vitro and in vivo. Interestingly, overexpression of WWOX in 22Rv1 cells led to cell cycle arrest in the G1 phase but did not affect sub-G1 in flow cytometry. GFP-WWOX overexpressed 22Rv1 cells were shown to inhibit cell cycle progression into mitosis under nocodazole treatment in flow cytometry, immunoblotting and GFP fluorescence. Further, cyclin D1 but not apoptosis correlated genes were down-regulated by WWOX both in vitro and in vivo. Restoration of cyclin D1 in the WWOX-overexpressed 22Rv1 cells could abolish the WWOX-mediated tumor repression. In addition, WWOX impair c-Jun-mediated cyclin D1 promoter activity. These results suggest that WWOX inhibits prostate cancer progression through negatively regulating cyclin D1 in cell cycle lead to G1 arrest. In summary, our data reveal a novel mechanism of WWOX in tumor suppression.  相似文献   

12.
WW domain-containing oxidoreductase (WWOX) has been reported to be a tumor suppressor in multiple cancers, including prostate cancer. WWOX can induce apoptotic responses to inhibit tumor progression, and the other mechanisms of WWOX in tumor suppression have also been reported recently. In this study, we found significant down-regulation of WWOX in prostate cancer specimens and prostate cancer cell lines compared with the normal controls. In addition, an ectopically increased WWOX expression repressed tumor progression both in vitro and in vivo. Interestingly, overexpression of WWOX in 22Rv1 cells led to cell cycle arrest in the G1 phase but did not affect sub-G1 in flow cytometry. GFP-WWOX overexpressed 22Rv1 cells were shown to inhibit cell cycle progression into mitosis under nocodazole treatment in flow cytometry, immunoblotting and GFP fluorescence. Further, cyclin D1 but not apoptosis correlated genes were down-regulated by WWOX both in vitro and in vivo. Restoration of cyclin D1 in the WWOX-overexpressed 22Rv1 cells could abolish the WWOX-mediated tumor repression. In addition, WWOX impair c-Jun-mediated cyclin D1 promoter activity. These results suggest that WWOX inhibits prostate cancer progression through negatively regulating cyclin D1 in cell cycle lead to G1 arrest. In summary, our data reveal a novel mechanism of WWOX in tumor suppression.  相似文献   

13.
Acyldepsipeptides are a group of potent antibiotics discovered in the secondary metabolites of Streptomyces species. However, besides the function of antibiotics, no other activities have been reported about these important compounds so far. In the course of searching the natural products as chemotherapeutic agents for renal cell carcinoma, we found that ADEP1, a major metabolic component of Streptomyces hawaiiensis NRRL 15010, could effectively inhibit the growth of 786-O, 769-P, and ACHN renal carcinoma cells in MTT assay. Flow cytometric analysis demonstrated that ADEP1 could block the cell cycle arrested at G1 phase. Moreover, it was found that ADEP1 down-regulated the expressions of cyclin D1, CDK4 and PCNA and inhibited activity of MAPK–ERK pathway by detection of decreased expression of phosphorylated ERK1/2 and c-Fos in 786-O and 769-P cells by Western blotting. To our knowledge, this is the first report concerning to the antitumor activities of acyldepsipeptides. Based on these results, ADEP1 may become a promising lead compound to be developed a novel chemotherapeutic agent for treatment of renal carcinoma.  相似文献   

14.
Folate deficiency contributes to impaired adult hippocampal neurogenesis, yet the mechanisms remain unclear. Here we use HT-22 hippocampal neuron cells as model to investigate the effect of folate deprivation (FD) on cell proliferation and apoptosis, and to elucidate the underlying mechanism. FD caused cell cycle arrest at G0/G1 phase and increased the rate of apoptosis, which was associated with disrupted expression of folate transport and methyl transfer genes. FOLR1 and SLC46A1 were (P < 0.01) down-regulated, while SLC19A1 was up-regulated (P < 0.01) in FD group. FD cells exhibited significantly (P < 0.05) higher protein content of BHMT, MAT2b and DNMT3a, as well as increased SAM/SAH concentrations and global DNA hypermethylation. The expression of the total and all the 3 classes of IGF-1 mRNA variants was significantly (P < 0.01) down-regulated and IGF-1 concentration was decreased (P < 0.05) in the culture media. IGF-1 signaling pathway was also compromised with diminished activation (P < 0.05) of STAT3, AKT and mTOR. CpG hypermethylation was detected in the promoter regions of IGF-1 and FOLR1 genes, while higher SLC19A1 mRNA corresponded to hypomethylation of its promoter. IGF-1 supplementation in FD media significantly abolished FD-induced decrease in cell viability. However, IGF-1 had limited effect in rescuing the cell phenotype when added 24 h after FD. Taken together, down-regulation of IGF-1 expression and signaling is involved in FD-induced cell cycle arrest and apoptosis in HT-22 hippocampal neuron cells, which is associated with an abnormal activation of methyl transfer pathway and hypermethylation of IGF-1 gene promoter.  相似文献   

15.
BACKGROUND: The prostate androgen-regulated (PAR) gene is ubiquitously overexpressed in prostate cancer (PCa) cells and is involved in proliferation of PCa. However, the mechanism by which the modulation of PAR gene expression elicits its biological effects on PCa cells is not well documented. Here, we investigate the mechanism of PAR depletion inhibiting PCa cell growth. METHODS: PAR expression was depleted by small interfering RNA (siRNA) and its subsequent effects on proliferation of PC3 cells were determined by the trypan blue exclusion assay. Flow cytometric analysis provided the evidence for the progression of cell cycle and the induction of apoptosis which was further confirmed by the observation of cleavage of poly(ADP-ribose) polymerase. Western blot analysis was performed to investigate the involvement of critical molecular events known to regulate the cell cycle and the apoptotic machinery. RESULTS: siRNA transfection results in a dose-dependent inhibition of cell growth in PC3 cells by causing G2/M phase cell cycle arrest and apoptosis. The G2/M arrest by PAR depletion was associated with decreased levels of cyclin B1, pCdc2 (Tyr15), Cdc2 and Cdc25C. PAR depletion also was found to result in inhibition of procaspases 9, 8, 6 and 3 with significant increase in the ratio of Bax : Bcl-2. CONCLUSIONS: Our data indicate that PAR depletion induces G2/M arrest via the Cdc25C-Cdc2/cyclin B1 pathway. Furthermore, the results of the present study point toward involvement of pathways mediated by both caspase 8 and caspase 9 in apoptosis induction by PAR depletion.  相似文献   

16.

Background

The effective therapies for oral cancer patients of stage III and IV are generally surgical excision and radiation combined with adjuvant chemotherapy using 5-Fu and Cisplatin. However, the five-year survival rate is still less than 30% in Taiwan. Therefore, evaluation of effective drugs for oral cancer treatment is an important issue. Many studies indicated that aurora kinases (A, B and C) were potential targets for cancer therapies. Reversine was proved to be a novel aurora kinases inhibitor with lower toxicity recently. In this study, the potentiality for reversine as an anticancer agent in oral squamous cell carcinoma (OSCC) was evaluated.

Methods

Effects of reversine on cell growth, cell cycle progress, apoptosis, and autophagy were evaluated mainly by cell counting, flow cytometry, immunoblot, and immunofluorescence.

Results

The results demonstrated that reversine significantly suppressed the proliferation of two OSCC cell lines (OC2 and OCSL) and markedly rendered cell cycle arrest at G2/M stage. Reversine also induced cell death via both caspase-dependent and -independent apoptosis. In addition, reversine could inhibit Akt/mTORC1 signaling pathway, accounting for its ability to induce autophagy.

Conclusions

Taken together, reversine suppresses growth of OSCC via multiple mechanisms, which may be a unique advantage for developing novel therapeutic regimens for treatment of oral cancer in the future.  相似文献   

17.
Lithium, a therapeutic agent for bipolar disorder, can induce G2/M arrest in various cells, but the mechanism is unclear. In this article, we demonstrated that lithium arrested hepatocellular carcinoma cell SMMC-7721 at G2/M checkpoint by inducing the phosphorylation of cdc2 (Tyr-15). This effect was p53 independent and not concerned with the inhibition of glycogen synthase kinase-3 and inositol monophosphatase, two well-documented targets of lithium. Checkpoint kinase 1 (Chk1), a critical enzyme in DNA damage-induced G2/M arrest, was at least partially responsible for the lithium action. The lithium-induced phosphorylation of cdc2 and G2/M arrest was abrogated largely by SB218078, a potent Chk1 inhibitor, as well as by Chk1 siRNA or the over-expression of kinase dead Chk1. Furthermore, lithium-induced cdc25C phosphorylation in 7721 cells and in vitro kinase assay showed that the activity of Chk1 was enhanced after lithium treatment. Interestingly, the increase of Chk1 activity by lithium may be independent of ataxia telangiectasia mutated (ATM)/ATM and Rad3-related (ATR) kinase. This is because no elevated phosphorylation on Chk1 (Ser-317 and Ser-345) was observed after lithium treatment. Moreover, caffeine, a known ATM/ATR kinase inhibitor, relieved the phosphorylation of cdc2 (Tyr-15) by hydroxyurea, but not that by lithium. Our study's results revealed the role of Chk1 in lithium-induced G2/M arrest. Given that Chk1 has been proposed to be a novel tumor suppressor, we suggest that the effect of lithium on Chk1 and cell cycle is useful in tumor prevention and therapy.  相似文献   

18.
赵建元  丁寄葳  米泽云  周金明  魏涛  岑山 《遗传》2015,37(5):480-486
人免疫缺陷病毒(HIV-1)急性感染过程中,病毒的遗传多样性显著减少,往往只有一株或几株病毒可以建立有效感染,这种病毒被称为初始传播病毒(Transmitted/Founder virus)。病毒蛋白R(Vpr)是HIV-1的辅助蛋白之一,在病毒复制过程中起重要作用。研究初始传播病毒Vpr基因遗传变异与生物学特征对于阐明病毒建立感染的关键环节具有重要意义。文章利用流式细胞术分析了C亚型HIV-1初始传播病毒株与慢性感染株MJ4的 Vpr蛋白诱导细胞G2期阻滞和细胞凋亡的能力。结果显示,初始传播病毒ZM246和ZM247的Vpr诱导细胞G2期阻滞和细胞凋亡的能力显著高于慢性感染株MJ4 Vpr。氨基酸序列分析表明,初始传播病毒Vpr在第77、85和94位上存在高频突变。研究结果提示初始传播病毒可能在病毒感染早期,通过Vpr基因的遗传突变,提升病毒诱导细胞停滞G2期和细胞凋亡的能力,进而促进病毒在宿主体内的复制和传播。  相似文献   

19.
Cytotoxic lymphocyte protease granzyme M (GrM) is a potent inducer of tumor cell death. The apoptotic phenotype and mechanism by which it induces cell death, however, remain poorly understood and controversial. Here, we show that GrM-induced cell death was largely caspase-dependent with various hallmarks of classical apoptosis, coinciding with caspase-independent G2/M cell cycle arrest. Using positional proteomics in human tumor cells, we identified the nuclear enzyme topoisomerase II alpha (topoIIα) as a physiological substrate of GrM. Cleavage of topoIIα by GrM at Leu1280 separated topoIIα functional domains from the nuclear localization signals, leading to nuclear exit of topoIIα catalytic activity, thereby rendering it nonfunctional. Similar to the apoptotic phenotype of GrM, topoIIα depletion in tumor cells led to cell cycle arrest in G2/M, mitochondrial perturbations, caspase activation, and apoptosis. We conclude that cytotoxic lymphocyte protease GrM targets topoIIα to trigger cell cycle arrest and caspase-dependent apoptosis.  相似文献   

20.
The anticancer potential of a synthetic 2,3-diarylindole (PCNT13) has been demonstrated in A549 lung cancer cells by inducing both apoptosis and autophagic cell death. In this report, we designed to connect a fluorophore to the compound via a hydrophilic linker for monitoring intracellular localization. The best position for linker attachment was identified from cytotoxicity and effect on cell morphology of newly synthesized PCNT13 derivatives bearing hydrophilic linker. Cytotoxicity and effect on cell morphology related to the parental compound were used to identify the optimum position for linker attachment in the PCNT13 chemical structure. The fluorophore-PCNT13 conjugate was found to localize in the cytoplasm. Microtubules were found to be one of the cytosolic target proteins of PCNT13, as the compound could inhibit tubulin polymerization in vitro. A molecular docking study revealed that PCNT13 binds at the colchicine binding site on the α/β-tubulin heterodimer. The effect of PCNT13 on microtubule dynamics caused cell cycle arrest in the G2/M phase as analyzed by flow cytometric analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号