首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Late Pleistocene European cave bears (Ursus spelaeus ) have been considered to be largely vegetarian, although stable isotope data (δ13C and δ15N values) from the Romanian Carpathians has suggested considerable dietary variation. Here we evaluate previous and additional adult cave bear isotopic data from four Marine Isotope Stage 3 (MIS 3) sites in the Carpathians. Pe?tera Ur?ilor (=  35), Pe?tera Cioclovina (=  32), Pe?tera Muierilor (=  8), and Pe?tera cu Oase (=  72) provide both a dichotomy between samples suggesting vegetarian diets (from Cioclovina and Muierilor) and more omnivorous diets (from Ur?ilor and Oase), and considerable isotopic variation within samples from each site. While an inference of a strictly vegetarian diet may apply to groups that lived in ecosystems which restricted the available animal protein for these large ursids, the within and between sample isotopic variation among the Carpathian cave bears indicates considerable flexibility in their sources of protein and hence in their dietary regimes. In addition, developmental assessment of Cioclovina isotopic profiles (neonates, juveniles, sub‐adults and adults) provides patterns of transfer of stable isotope signatures throughout immature life for both δ13C and δ15N (increase and decrease, respectively), whereas those from Ur?ilor show little developmental shift.  相似文献   

2.
Abstract

When studying an extinct species such as the cave bear (Ursus spelaeus ROSENMÜLLER 1794), it is possible to apply a variety of molecular biology techniques such as the study of stable isotopes or mitochondrial DNA (mDNA) to infer patterns of behaviour or physiology that would otherwise remain concealed. Throughout Europe and along time, differences in the isotopic values (δ13C and δ15N) of cave bears arise from environmental differences and the Pleistocene climatic evolution. The climate determines the hibernation length, during which the cave bears undergo a particular physiology that can be related to an increase in δ15N during climate cooling. In order to verify whether hibernation affected the isotopic values, we compared cave bears in different ontogenetic stages. The results show that perinatal values reflect the values for mothers during hibernation, while juveniles show differences in maternal investment. A previous study in the literature based on complete mitochondrial DNA sequences of several individuals collected from closely situated caves showed that each cave housed, almost exclusively, a single lineage of haplotypes. This pattern suggests extreme fidelity to the birth site, or homing behaviour, and that cave bears formed stable maternal social groups, at least for the purpose of hibernation. Studies of this type offer unexpected data on the palaeobiology of this extinct animal.  相似文献   

3.
Carbon and nitrogen stable isotopes were used to track major dietary variations in arthropods found in a cave located in a neotropical savanna in Central Brazil. We determined the δ13C and δ15N for cave crickets, cockroaches, spiders, guano of a hematophagous bat, and leaf litter found on the ground near the cave entrance. The δ13C and δ15N for the cricket and cockroaches showed that bat guano was not the only food item for these arthropods. They had intermediate δ13C and δ15N between bat guano and leaf litter, which means that they consumed additional food resources other than guano in their diet, independent of distribution of guano deposits in the cave. The spiders, predators with great mobility, seemed to not have a preferential diet item since their isotope signals indicated they hunt both crickets and cockroaches. The δ13C of the bat guano (?15.4‰) indicated that the diet of these hematophagous bats relied on animals fed with C4 plants. The conversion of native savanna vegetation of which the debris is mostly from C3 plants, to pasture, based on C4 African grass, a remarkably common land use transformation in the region, is indirectly influencing the diet of hematophagous bats, which basically relied on exotic fauna. The C and N stable isotope ratios showed that the arthropods inside the cave do not rely solely on bat guano for their diet, but interact directly with the external environment, through litter debris, indicating a significant exchange of energy and matter between the cave environment and the surrounding area.  相似文献   

4.
Abstract

The Cave Bear, Ursus spelaeus (sensu lato), was one of many megafaunal species that became extinct during the Late Pleistocene in Europe. With new data we revisit the debate about the extinction and paleoecology of this species by presenting new chronometric, isotopic and taphonomic evidence from two Palaeolithic cave bear sites in northeastern Italy: Paina Cave and Trene Cave. Two direct radiocarbon dates on well-preserved collagen have yielded ages around 24,200–23,500 cal yr BP, which make them the latest known representatives of the species in Europe. The carbon (δ13C) and nitrogen (δ15N) isotopic values of bone collagen exhibit values similar to those of older cave bears from Swabian Jura and France, suggesting that the feedings preferences of cave bears remained unchanged until the disappearance of this species in Europe. Several bear remains preserved traces of human modification such as cut marks, which enables a reconstruction of the main steps of fur recovery and the butchering process. The broad range of plant types available and the favorable location of Berici Hills may have played an important role in the range expansion of cave bears and their interaction with the Paleolithic hunters settled the same area.  相似文献   

5.
Omnivores are generally opportunistic foragers and have a flexible dietary response to resource abundance and availability. Their populations may consist of individuals that differ from each other in terms of their trophic positions, which implies that the dietary response to resource fluctuations differs within a population. We investigated how changes in the abundance of sika deer (Cervus nippon) affected dietary variation and body condition in the Asian black bear (Ursus thibetanus). We used fecal analysis, nitrogen stable isotopes (δ15N), and body measurements to determine whether the variation in dietary meat content of Asian black bears is positively related to variations in the density of the sika deer population, whether male bears have a higher trophic position compared to females, and whether dietary meat content is positively related with body mass or body condition of bears. We found a positive correlation between the occurrence of deer remains in bear feces and deer density, suggesting that bears change their diet in response to temporal changes in deer density. Male bears had higher δ15N values than females, and neither values varied when deer density decreased. Males selectively consumed deer after a reduction in deer density, whereas females consistently consumed more plant-based diet. The δ15N values were positively related with body mass of adult (>4 yr) bears but had no relationship with body condition of bears of either sex or any age class. Deer seem to be an important food source for large adult males, which have an advantage in mating. Thus, increasing herbivore abundance and availability altered the foraging strategy of Asian black bears, but the importance of herbivore on bear diet differs within a population.  相似文献   

6.
Carbon and nitrogen stable isotope ratios (δ13C and δ15N) have been used for more than two decades in analyses of food web structure. The utility of isotope ratio measurements is based on the observation that consumer δ13C values are similar (<1‰ difference) to those of their diet, while consumer δ15N values are about 3‰ higher than those of their diet. The technique has been applied most often to aquatic and aboveground terrestrial food webs. However, few isotope studies have examined terrestrial food web structure that includes both above- and belowground (detrital) components. Here, we review factors that may influence isotopic signatures of terrestrial consumers in above- and belowground systems. In particular, we emphasize variations in δ13C and δ15N in belowground systems, e.g., enrichment of 13C and 15N in soil organic matter (likely related to soil microbial metabolism). These enrichments should be associated with the high 13C (~3‰) enrichment in belowground consumers relative to litter and soil organic matter and with the large variation in δ15N (~6‰) of the consumers. Because such enrichment and variation are much greater than the trophic enrichment generally used to estimate consumer trophic positions, and because many general predators are considered dependent on energy and material flows from belowground, the isotopic variation in belowground systems should be taken into account in δ13C and δ15N analyses of terrestrial food webs. Meanwhile, by measuring the δ13C of key predators, the linkage between above- and belowground systems could be estimated based on observed differences in δ13C of primary producers, detritivores and predators. Furthermore, radiocarbon (14C) measurements will allow the direct estimation of the dependence of predators on the belowground systems.  相似文献   

7.
We analyzed the carbon and nitrogen isotopic values of the muscle, liver, and crop contents (“diet”) of 132 individuals of 16 species of Chilean birds. The nitrogen content of diet was tightly correlated with the fraction of gut contents represented by insects relative to plant material. The carbon and nitrogen isotopic values of diet, liver, and muscle were all linearly correlated, implying high temporal consistency in the isotopic value of the diet of these birds. However, δ15N was not significantly related with the percentage of insects in diet. These results cast doubt on the applicability of the use of 15N enrichment to diagnose trophic level in, at least some, terrestrial ecosystems. However, the residuals of the relationship relating the isotopic value of bird tissues with those of their diet were weakly negatively correlated with insect intake. We hypothesize that this negative correlation stems from the higher quality of protein found in insects relative to that of plant materials. Finally, our data corroborated a perplexing and controversial negative relationship between tissue to diet isotopic discrimination and the isotopic value of diet. We suggest that this relationship is an example of the commonly observed regression to the mean effect that plagues many scientific studies.  相似文献   

8.
Nitrogen isotope signatures in plants might give insights in the metabolism and allocation of nitrogen. To obtain a deeper understanding of the modifications of the nitrogen isotope signatures, we determined δ15N in transport saps and in different fractions of leaves, axes and roots during a diel course along the plant axis. The most significant diel variations were observed in xylem and phloem saps where δ15N was significantly higher during the day compared with during the night. However in xylem saps, this was observed only in the canopy, but not at the hypocotyl positions. In the canopy, δ15N was correlated fairly well between phloem and xylem saps. These variations in δ15N in transport saps can be attributed to nitrate reduction in leaves during the photoperiod as well as to 15N‐enriched glutamine acting as transport form of N. δ15N of the water soluble fraction of roots and leaves partially affected δ15N of phloem and xylems saps. δ15N patterns are likely the result of a complex set of interactions and N‐fluxes between plant organs. Furthermore, the natural nitrogen isotope abundance in plant tissue is not constant during the diel course – a fact that needs to be taken into account when sampling for isotopic studies.  相似文献   

9.
Southern African forests are naturally fragmented yet hold a disproportionately high number of bird species. Carbon and nitrogen stable isotopes were measured in feathers from birds captured at Woodbush (n = 27 species), a large afromontane forest in the eastern escarpment of Limpopo province, South Africa. The δ13C signatures of a range of forest plants were measured to categorise the food base. Most plants sampled, including two of five grass species, had δ13C signatures typical of a C3 photosynthetic pathway (?29.5 ± 1.9‰). Three grass species had a C4 signature (?12.0 ± 0.6‰). Most bird species had δ13C values representing a predominantly C3‐based diet (?24.8‰ to ?20.7‰). δ15N values were as expected, with higher levels of enrichment associated with a greater proportion of dietary animal matter. The cohesive isotopic niche defining most species (n = 22), where the ranges for δ13C and δ15N were 2.4‰ and 3.4‰, respectively, highlight the difficulties in understanding diets of birds in a predominantly C3‐based ecosystem using carbon and nitrogen stable isotopes. However, variation in isotopic values between and within species provides insight into possible niche width and the use of resources by different birds within a forest environment.  相似文献   

10.
Understanding the ecological patterns of invasive species and their habitats require an understanding of the species’ foraging ecology. Stable carbon (δ13C) and nitrogen (δ15N) isotope values provide useful information into the study of animal ecology and evolution, since the isotope ratios of consumers reflect consumer's dietary patterns. Nevertheless, the lack of species‐ and element‐specific laboratory‐derived turnover rates could limit their application. Using a laboratory‐based dual stable isotope tracer approach (Na15NO3 and NaH13CO3), we evaluated the δ15N and δ13C isotope turnover rates in full‐grown adult invasive Limnomysis benedeni from Lake Constance. We provide δ15N and δ13C turnover rates based on nonlinear least‐squares regression and posterior linear regression models. Model precisions and fit were evaluated using Akaike's information criterion. Within a couple of days, the δ15N and δ13C of mysids began to change. Nevertheless, after about 14 days, L. benedeni did not reach equilibrium with their new isotope values. Since the experiment was conducted on adult subjects, it is evident that turnover was mainly influenced by metabolism (in contrast to growth). Unlike traditional dietary shifts, our laboratory‐based dual stable isotope tracer approach does not shift the experimental organisms into a new diet and avoids dietary effects on isotope values. Results confirm the application of isotopic tracers to label mysid subpopulations and could be used to reflect assimilation and turnover from the labeled dietary sources. Field‐based stable isotope studies often use isotopic mixing models commonly assuming diet‐tissue steady state. Unfortunately, in cases where the isotopic composition of the animal is not in equilibrium with its diet, this can lead to highly misleading conclusions. Thus, our laboratory‐based isotopic incorporation rates assist interpretation of the isotopic values from the field and provide a foundation for future research into using isotopic tracers to investigate invasion ecology.  相似文献   

11.
Balter V  Simon L  Fouillet H  Lécuyer C 《Oecologia》2006,147(2):212-222
The 15N/14N signature of animal proteins is now commonly used to understand their physiology and quantify the flows of nutrient in trophic webs. These studies assume that animals are predictably 15N-enriched relative to their food, but the isotopic mechanism which accounts for this enrichment remains unknown. We developed a box model of the nitrogen isotope cycle in mammals in order to predict the 15N/14N ratios of body reservoirs as a function of time, N intake and body mass. Results of modeling show that a combination of kinetic isotope fractionation during the N transfer between amines and equilibrium fractionation related to the reversible conversion of N-amine into ammonia is required to account for the well-established ≈4‰ 15N-enrichment of body proteins relative to the diet. This isotopic enrichment observed in proteins is due to the partial recycling of 15N-enriched urea and the urinary excretion of a fraction of the strongly 15N-depleted ammonia reservoir. For a given body mass and diet δ15N, the isotopic compositions are mainly controlled by the N intake. Increase of the urea turnover combined with a decrease of the N intake lead to calculate a δ15N increase of the proteins, in agreement with the observed increase of collagen δ15N of herbivorous animals with aridity. We further show that the low δ15N collagen values of cave bears cannot be attributed to the dormancy periods as it is commonly thought, but inversely to the hyperphagia behavior. This model highlights the need for experimental investigations performed with large mammals in order to improve our understanding of natural variations of δ15N collagen.  相似文献   

12.
The life-history, genetic, and habitat use differences between the 2 polar bear (Ursus maritimus) subpopulations in Alaska, USA, have been used to determine the geographic border separating them, but it has sparked a debate of the correct placement of the border for several years. Recently, the Southern Beaufort Sea (SBS) polar bear subpopulation has declined because of sea ice loss, while the Chukchi Sea (CS) subpopulation appears stable. To provide additional information about potential differences between the SBS and CS subpopulations, such as differences in prey sources, we used stable isotope analysis of carbon and nitrogen from bone collagen of polar bears in these 2 neighboring subpopulations. We analyzed polar bear bones from 112 individuals collected from 1954–2019. Our purpose was to determine if the SBS and CS subpopulations could be distinguished based on the stable isotope signatures of bone collagen. A difference >1‰ in stable carbon isotope (δ13C) values suggests a change in carbon sources, such as nearshore to offshore, while a 3‰ change in stable nitrogen isotope (δ15N) values equates to a change of about 1 trophic level. Our study indicated a difference in δ13C values (P ≤ 0.001) but not δ15N values (P = 0.654) between the CS (−13.0 ± 0.3‰ and 22.0 ± 0.9‰, respectively) and SBS bears (−14.7 ± 1.3‰ and 22.2 ± 1.0‰, respectively). Our findings indicate that the 2 subpopulations are consuming similar high trophic level prey, while feeding in ecosystems with different δ13C baselines. We performed a logistic regression analysis using δ13C and δ15N values of the polar bears to predict their placement into these 2 subpopulations. Using Icy Cape, Alaska as the geographical boundary, the analysis correctly placed polar bears in their respective subpopulations 82% of the time. Overall accuracy of placement changed to 84% when using the current geographical boundary at Utqiaġvik, Alaska. We predicted samples collected from the Wainwright, Alaska region as 58% CS and 42% SBS polar bears. This suggests that the area between Wainwright and Icy Cape is a polar bear mixing zone that includes bears from both subpopulations. Bone collagen has a long-term, potentially life-long, stable isotope turnover rate, and our results could be used to determine the association of harvested polar bears to Alaska subpopulations, thus aiding in transboundary harvest quota management.  相似文献   

13.

Estuaries are complex systems where environmental fluctuations occur over distinct timescales due to local meteorological and large-scale climatic factors. Consequently, studies with low temporal resolution and taxonomic coverage may fail to detect isotopic variations in basal sources, providing biased interpretations of isotope mixing models. We investigated the seasonal and El Niño Southern Oscillation (ENSO)-driven interannual variations in δ13C, δ15N and C:N values among distinct basal sources and their implications for mixing models interpretation in a subtropical estuary. δ13C variations among sources differed in their magnitude and timescales, being large enough to confound source-specific values. Macroalgae and POM δ13C varied seasonally, whereas ENSO effects prevailed for C3 and C4 salt marsh plants, highlighting the contrasting influence of local versus remote environmental drivers on short- and long-lived primary producers, respectively. Peaks of δ15N were detected for all sources during short-term anthropogenic nutrient inputs. Isotope mixing model comparisons showed that overlooking isotopic variations in basal sources under distinct ENSO conditions can cause misinterpretation of local trophic interactions and nutrient cycling. The present study contributes to design appropriate sampling delineations in highly variable aquatic environments, emphasizing the importance of comprehensive, long-term monitoring of estuarine primary producers to encompass environmental drivers of stable isotopic variations.

  相似文献   

14.
We analyzed spatial, temporal, and age/sex variation in the diet of the South American sea lions (SASL, Otaria byronia) in southern Chile via δ13C and δ15N isotope analysis, with emphasis on exotic farmed and feral salmonids as a source of prey for this generalist predator. Isotope mixing models show that the primary prey consumed by SASL were demersal and benthopelagic fishes. Individuals sampled in summer and in the outer coast had higher δ15N values than those from winter or from the inner coast due to consumption of high trophic level demersal fish. We also found evidence of an ontogenetic shift in isotopic niche width as measured by δ13C and δ15N standard ellipse areas, with juveniles showing a restricted isotopic niche width (1.0‰2) in comparison to subadult (2.2‰2) and adult males (1.9‰2). The proportion of salmonids in the diet of the SASL was negligible and lower than reported in previous studies, which may be related to a recent drop in the production of salmon aquaculture in the region. Our study suggests that the SASL are able to adapt to shifts in spatiotemporal variations in the abundance of potential prey, including feral and farmed salmonids.  相似文献   

15.
An isotopic reconstruction of human dietary patterns and livestock management practices (herding, grazing, foddering, etc.) is presented here from the sites of Düzen Tepe and Sagalassos in southwestern Turkey. Carbon and nitrogen stable isotope ratios were determined from bone collagen extracted from humans (n = 49) and animals (n = 454) from five distinct time periods: Classical‐Hellenistic (400–200 BC), Early to Middle Imperial (25 BC–300 AD), Late Imperial (300–450 AD), Early Byzantine (450–600 AD), and Middle Byzantine (800–1200 AD). The humans had protein sources that were based on C3 plants and terrestrial animals. During the Classical‐Hellenistic period, all of the domestic animals had δ13C and δ15N signatures that clustered together; evidence that the animals were herded in the same area or kept in enclosures and fed on similar foods. The diachronic analysis of the isotopic trends in the dogs, cattle, pigs, sheep, and goats highlighted subtle but distinct variations in these animals. The δ13C values of the dogs and cattle increased (reflecting C4 plant consumption) during the Imperial and Byzantine periods, but the pigs and the goats displayed little change and a constant C3 plant‐based diet. The sheep had a variable δ13C pattern reflecting periods of greater and lesser consumption of C4 plants in the diet. In addition, the δ15N values of the dogs, pigs, cattle, and sheep increase substantially from the Classical‐Hellenistic to the Imperial periods reflecting a possible increase in protein consumption, but the goats showed a decrease. Finally, these isotopic results are discussed in the context of zooarcheological, archeobotanical, and trace element evidence. Am J Phys Anthropol 149:157–171, 2012. © Wiley Periodicals, Inc.  相似文献   

16.
  1. Using stable isotope ratios to explore the trophic ecology of freshwater animals requires knowledge about effects of food quality on isotopic incorporation dynamics. The aim of this experimental study was to: (1) estimate carbon and nitrogen isotopic incorporation rates and trophic discrimination factors (TDFs) of a freshwater first-feeding fish (i.e. salmonid fry) fed three diets that differed only in protein quality (animal or plant or a blend of both); (2) investigate effects of fasting and; (3) evaluate the proportion of each source assimilated when fry were fed a 50:50 animal:plant-based diet.
  2. For each diet, incorporation rates of δ13C and δ15N values were estimated using a time or growth-dependent isotopic incorporation model. Effects of fasting on isotope ratio values were measured regularly until the death of fry. Bayesian stable-isotope mixing models were used to estimate the contribution of animal and plant material to fish fed a blend of both food types.
  3. Our results show that incorporation rates were lower for fry fed a plant-based diet than for those fed an animal-based diet as growth rate decreased. Time- and growth-dependent models indicated that growth was solely responsible for isotopic incorporation in fry fed an animal-based diet, whereas catabolism increased in fry fed a plant-based diet. After lipid extraction, carbon TDFs were similar regardless of the diet, whereas nitrogen TDFs increased for fry fed a plant-based diet. Long-term fasting induced an increase of 0.63‰ in δ13C values of fry in 23 days, whereas δ15N values did not vary significantly. Proportions of food sources assimilated by fry fed an animal:plant-based diet were similar to those consumed when using a mixing model with the estimated TDFs, while proportions were unrealistic when using mean TDFs extrapolated from the literature.
  4. The results of our study indicate that the quality of food must be considered to use an appropriate timescale to detect changes in fry diets in the field. Moreover, we recommend using different carbon and nitrogen TDFs, one for animal-derived sources and one for plant-derived sources, to increase the accuracy of mixing models.
  相似文献   

17.
18.
ABSTRACT

The diet of the cave bear (Ursus spelaeus) is a controversial topic, as different paleobiological approaches (e.g. dental wear, isotopic biochemistry, skull morphometrics) result in different dietary inferences for the cave bear, ranging from carnivory to pure herbivory. Here, we review the main results obtained from these approaches, with special emphasis on those obtained from the morphometric analyses of the cave bear craniodental skeleton. Then, we compute a between-group Principal Components Analysis from a set of 3D-landmarks digitized on 103 mandibles of living bears and extinct cave bears and using a phylomorphospace approach. Moreover, we also reconstructed the evolutionary trajectory of the cave bear mandible from the hypothetical shape of its inferred ancestor. Our results indicate that the mandible of the cave bear possess specific traits indicative of a highly-herbivorous diet or, at least, more herbivorous than their closest living relative, the brown bear (Ursus arctos). Moreover, we also propose new directions for future research to obtain more detailed inferences on the potential food resources consumed by the cave bear being crucial to understand the ‘life and death’ of this vanished animal.  相似文献   

19.
Stable isotope analysis is frequently used to infer resource use in natural populations of fishes. Studies have examined factors, other than diet, that influence δ15N and δ13C including tissue-specific rates of equilibration and starvation. Most such studies completed under laboratory conditions tightly control food quantity and its isotopic composition, but it is also necessary to evaluate the influence of these factors under more natural conditions. Using pumpkinseed sunfish (Lepomis gibbosus) we evaluated whether restricted rations below minimum daily requirements affects tissue equilibration to a change in diet by holding fish on two treatments that often reflect divergent resource use in natural populations (pelagic zooplankton or littoral macroinvertebrates). Over 42 days, δ15N values increased while δ13C values did not change, additionally neither were related to diet treatment. Increased δ15N values were negatively related to body condition while δ13C values were not, indicating that stable isotope values were more affected by decreasing body condition than by diet. Additionally, δ15N values changed more in the blood and liver tissues than in white muscle tissue, indicating that restricting food availability had greater effects on tissues with greater metabolic activity. We hypothesize that stable isotope values of consumers are subject to a tissue-specific trade-off between sensitivity to changes in resource use and resistance to the effects of low resource availability. This trade-off may require consideration in stable isotope studies of wild populations facing periodic limitations of food availability.  相似文献   

20.
Stable carbon, nitrogen, hydrogen and oxygen isotopes have been used to infer aspects of species ecology and environment in both modern ecosystems and the fossil record. Compared to large mammals, stable isotopic studies of small‐mammal ecology are limited; however, high species and ecological diversity within small mammals presents several advantages for quantifying resource use and organism–environment interactions using stable isotopes over various spatial and temporal scales. We analyzed the isotopic composition of hair from two heteromyid rodent species, Dipodomys ordii and Perognathus parvus, from localities across western North America in order to characterize dietary variation in relation to vegetation and climatic gradients. Significant correlations between the carbon isotopic composition (δ13C) of these species and several climatic variables imply that seasonal temperature and precipitation control the composition and distribution of dietary resources (grass seeds). Our results also suggest a moisture influence on the nitrogen isotopic composition (δ15N) of heteromyid diets. Population‐ and species‐level variation in δ13C and δ15N values record fine‐scale habitat heterogeneity and significant differences in resource use between species. Using classification and regression‐tree techniques, we modeled the geographic variation in heteromyid δ13Cdiet values based on 10 climatic variables and generated an isotope landscape model (‘isoscape’). The isoscape predictions for δ13Cdiet differ from expectations based on observed C4 distributions and instead indicate that D. ordii and P. parvus record seasonally abundant grass resources, with additional model deviations potentially attributed to geographic variation in dietary selection. The oxygen and hydrogen isotopic composition of D. ordii is enriched relative to local meteoric water and suggests that individuals rely on highly evaporated water sources, such as seed moisture. Based on the climatic influences on vegetation and diet documented in this study, the isotopic composition of small mammals has high potential for recording ecological responses to environmental changes over short and long time scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号