首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electroporation and Agrobacterium tumefaciens-mediated transformation (ATMT) were adapted and optimized for genetic transformation of the basidiomycetous yeast-like fungus Pseudozyma antarctica as alternatives to the cumbersome PEG/CaCl2-mediated transformation of protoplasts. Electroporation yielded 100–200 transformants per μg of DNA per 108 cells after 3 days on selective medium. For its part, ATMT yielded 60–160 transformants per 106 input cfu after 5–10 days on a selective medium. Transformants obtained from both methods showed stable hygromycin resistance and strong expression of green fluorescent protein. Analysis of integration events revealed a limited number of predominantly tandem insertions in the genome of transformants, an improvement over PEG/CaCl2-mediated transformation. Both protocols relied on intact conidia of P. antarctica as starting material and thus eliminated the need for cell wall-degrading or weakening agents such as lytic enzymes or chemicals. Other advantages over protoplast transformation included higher yield of transformants and shorter recovery time of transformed colonies on selective medium.  相似文献   

2.
从土样中筛选出一株产木聚糖酶的青霉,该青霉所产木降糖酶具有很高的木二糖形成活力,经鉴定为顶青霉,其木聚糖酶的合成与分泌受木聚糖等木糖苷类物质的诱导,麸皮对其木聚糖酶的合成也有促进作用,优化产酶液体培养主要成分的配比为:麸皮:玉米芯木聚糖:玉米芯粉;蛋白胨(或尿素)=1:1:1:0.6(0.4),摇瓶96h达到最大酶活,最高木聚糖酶活达到289.3U/ml,该菌所产木聚糖酶的最适作用条件为45-50度,PH4.4,在PH4.4-8.0范围内稳定。  相似文献   

3.
生物絮凝剂高产菌株的选育   总被引:4,自引:0,他引:4  
以野生菌谷氨酸棒杆菌Corynebacterium glutamicumCCTCCM 2 0 10 0 5为出发菌株 ,进行紫外和甲基磺酸乙酯逐级诱变 ,获得一株絮凝剂高产菌XMU YH1111,通过条件优化实验 ,获得突变株XMU YH1111合成生物絮凝剂的最佳发酵条件 :葡萄糖为碳源 ,尿素和酵母膏为氮源 ,培养基初始 pH 4~ 8,种子最佳种龄 16h ,接种量 5 % ,发酵罐通风量 1L/ (L·min) ,搅拌转速 10 0r/min。在此发酵条件下 ,絮凝活性最高可达到 892U/mL ,比原出发菌株CCTCCM 2 0 10 0 5的絮凝活性提高 2倍以上。  相似文献   

4.
He  Linlin  Liu  Lu  Ban  Rui 《Biotechnology letters》2022,44(8):991-1000
Biotechnology Letters - To construct a Bacillus subtilis strain for improved purity of poly-γ-glutamic acid. The construction of strain GH16 was achieved by knocking out five genes encoding...  相似文献   

5.
从成都佳丰食品厂等处采集的样品中平板分离初筛到124株碱性蛋白酶产生菌,进一步复筛出一株高产,且稳定的碱性蛋白酶产生菌株B.L.JF-ld,初步鉴定为地衣穿孢杆菌(Bacilluslicheniformis)。该菌的最适产酶条件为:培养基(%)为麦芽糖7.5,酵母膏3,NaCl0.5,K2HPO4·3H2O0.53,NaHPO4·2H2O0.03,Na2CO30.056,MnSO4l×10-4mol/L,pH8.7,通气量为(1:0.5)~(1:1)(v/v),37℃发酵40h,酶活力单位高达7180U/ml。  相似文献   

6.
Corynebacterium glutamicum is an important organism in industrial biotechnology for the microbial production of bulk chemicals, in particular amino acids. However, until now activity of a complex catabolic network for the degradation of aromatic compounds averted application of C. glutamicum as production host for aromatic compounds of pharmaceutical or biotechnological interest. In the course of the construction of a suitable C. glutamicum platform strain for plant polyphenol production, four gene clusters comprising 21 genes involved in the catabolism of aromatic compounds were deleted. Expression of plant-derived and codon-optimized genes coding for a chalcone synthase (CHS) and a chalcone isomerase (CHI) in this strain background enabled formation of 35 mg/L naringenin and 37 mg/L eriodictyol from the supplemented phenylpropanoids p-coumaric acid and caffeic acid, respectively. Furthermore, expression of genes coding for a 4-coumarate: CoA-ligase (4CL) and a stilbene synthase (STS) led to the production of the stilbenes pinosylvin, resveratrol and piceatannol starting from supplemented phenylpropanoids cinnamic acid, p-coumaric acid and caffeic acid, respectively. Stilbene concentrations of up to 158 mg/L could be achieved. Additional engineering of the amino acid metabolism for an optimal connection to the synthetic plant polyphenol pathways enabled resveratrol production directly from glucose. The construction of these C. glutamicum platform strains for the synthesis of plant polyphenols opens the door towards the microbial production of high-value aromatic compounds from cheap carbon sources with this microorganism.  相似文献   

7.
Gibberellic acid from the fungi has been widely used in agriculture. In this study, more than 20 fungal isolates were screened and Paecilomyces sp. ZB shown to produce more gibberellic acid than other fungal isolates. Cow dung was used as low cost substrate for gibberellic acid production in solid state fermentation (SSF). Carbon, nitrogen and ionic sources stimulated gibberellic acid production in SSF. Lactose emerged as the significant carbon source supporting more gibberellic acid production (731 µg/g). Among the nitrogen sources, glycine appeared to influence the production of more gibberellic acid (803 µg/g). The process parameters were optimized to enhance gibberellic acid production using a two-level full factorial design and response surface methodology. The amount of gibberellic acid production was influenced mainly by moisture and pH of the substrate. Gibberellic acid production was 1312 µg/g under the optimized conditions and the predicted response was 1339 µg/g. The gibberellic acid yield increased twofolds after medium optimization. The extracted gibberellic acid was sprayed on the growing Mung bean plant and it stimulated the growth of the plant effectively. To conclude, cow dung is a new alternative to produce gibberellic acid in SSF.  相似文献   

8.
对辅酶Q10生产菌株鞘氨醇单胞菌YZ0803的发酵条件进行优化,确定发酵时间为90 h,250 mL摇瓶装液量为30 mL。培养基组成(质量分数,下同):葡萄糖1.5%,淀粉2.5%,黄豆饼粉2.5%,(NH4)2SO40.5%,NaCl0.03%,K2HPO40.02%,MgSO40.005%。优化后的辅酶Q10产量达到192 mg/L,比采用基础培养基的产量(138mg/L)提高了39.13%。  相似文献   

9.
The feasibility of arrowroot (Marantha arundinacea) starch for alkaline protease production using an alkalophilic Bacillus lentus isolate was evaluated in batch fermentations in shake flasks and in a bioreactor under a range of conditions. A new arrowroot starch-casein medium (pH 10.2) was formulated having a composition (%, w/v): arrowroot starch 1, casein 1, sodium succinate 0.25, NH4Cl 0.05, NaCl 0.05, KH2PO4 0.04, K2HPO4 0.03, MgCl2 0.01, yeast extract 0.01 and Na2CO3 1.05. The isolate produced a maximum protease yield (6754.7 U ml–1) in this medium when grown for 72 h at 250 rev/min and 37 °C. Scaling-up studies in a bioreactor showed a 5-fold increase in alkaline protease yields (31899 U ml–1) at a lower production time of 45 h, aeration of 1 v/v/m and agitation of 400 rev/min at 37 °C.  相似文献   

10.
AIMS: The potential of a Sinorhizobium fredii strain to produce a copolymer from glucose and sodium dodecanoate substrates was investigated. METHODS AND RESULTS: Using an orthogonal design in a flask-shaker culture system, the vital regulation conditions for copolymer synthesis were optimized. These optimal results were applied to further studies in a two-stage fed-batch fermentation with a 10-l fermentor. When the biomass approached 33.5 g l(-1) dry cells at 35 h, 7 mmol l(-1) sodium dodecanoate was added into the broth to trigger the copolymer synthesis. After further culturing for 3 h, the copolymer product could be 17.14 g l(-1). The molecular structure of the copolymer was determined to be a poly (3-hydroxybutyrate-co-3-hydroxyoctanoate) [P (HB-HO)] by nuclear magnetic resonance. The content of HB and HO in P (HB-HO) was 79.2% (w/w) and 20.8% (w/w) respectively. The molecular weight of the P (HB-HO) was measured as 1.85 x 10(5) Da by a viscosity method. CONCLUSION: The results demonstrated that the S. fredii strain used could be a potential candidate for the industrial production of the copolymer. SIGNIFICANCE AND IMPACT OF THE STUDY: Some basic fermentation parameters were acquired through the fed-batch culturing experiments and they should be applicable in developing large-scale fermentation technologies for producing the P (HB-HO) copolymers.  相似文献   

11.
Salinosporamide A (NPI-0052) is currently produced by a marine actinomycete, Salinispora tropica, via a saline fermentation process using a non-defined, commercially available synthetic sea salt, Instant Ocean. In order to control the consistency of the production of NPI-0052 and related analogs, two chemically defined salt formulations were developed to replace Instant Ocean. A chemically defined sodium-chloride-based salt formulation with similar sodium and chloride contents as in Instant Ocean was found to support higher production of NPI-0052 and a better metabolite production profile for downstream processing than Instant Ocean. A chemically defined sodium-sulfate-based salt formulation with low chloride concentration at 17 mM was found to support a similar NPI-0052 and metabolite production profile as Instant Ocean. The sodium-sulfate-based formulation is a robust formulation for large-scale production process due to its reduced corrosiveness in fermentation as compared with the saline fermentation utilizing Instant Ocean or the sodium-chloride-based salt formulation. The production of NPI-0052 in both chemically defined salt formulations was successfully scaled-up to a 42-l fermentor, indicating that these salt formulations can be used for large-scale manufacturing process.  相似文献   

12.
Kenaf (Hibiscus cannabinus) is an annual fiber crop grown mainly in India and China. This crop is becoming a new bio‐based energy source because of its fast growth rate, excellent CO2 absorption ability, and large productivity per unit area. In this study, we evaluated 10 different cultivars of kenaf for their potential as biomass for cellulosic ethanol production. First, kenaf samples were hydrolyzed using dilute sulfuric acid, which is the most simple and cost‐effective pretreatment method. Next, simultaneous saccharification and fermentation (SSF) of the hydrolysates were performed by wild‐type and engineered xylose‐fermenting yeast strains. The results of compositional analysis of the biomass, the hydrolysates, and the fermented products suggested that ethanol yield and productivity were significantly affected by a type of kenaf cultivars, which was not predictable based on the biomass compositions. Also, the ethanol production was maximized when the xylose fraction was utilized by engineered yeast under the control of pH to avoid acetate inhibition. Considering the sugar compositions and their fermentability, kenaf can be a promising energy‐dedicated crop for cellulosic ethanol production.  相似文献   

13.
A three-stage process was developed to produce polyhydroxyalkanoates (PHAs) from sugar cane molasses. The process includes (1) molasses acidogenic fermentation, (2) selection of PHA-accumulating cultures, (3) PHA batch accumulation using the enriched sludge and fermented molasses. In the fermentation step, the effect of pH (5–7) on the organic acids profile and productivity was evaluated. At higher pH, acetic and propionic acids were the main products, while lower pH favoured the production of butyric and valeric acids. PHA accumulation using fermented molasses was evaluated with two cultures selected either with acetate or fermented molasses. The effect of organic acids distribution on polymer composition and yield was evaluated with the acetate selected culture. Storage yields varied from 0.37 to 0.50 Cmmol HA/Cmmol VFA. A direct relationship between the type of organic acids used and the polymers composition was observed. Low ammonia concentration (0.1 Nmmol/l) in the fermented molasses stimulated PHA storage (0.62 Cmmol HA/Cmmol VFA). In addition, strategies of reactor operation to select a PHA-accumulating culture on fermented molasses were developed. The combination of low organic loading with high ammonia concentration selected a culture with a stable storage capacity and with a storage yield (0.59 Cmmol HA/Cmmol VFA) similar to that of the acetate-selected culture.  相似文献   

14.
The enzyme 3-methylaspartase (3-methylaspartate ammonia-lyase, EC 4.3.1.2) was found in the cells of enteric bacteria, especially in the genera Citrobacter and Morganella, that were grown under anoxic and oxygen-limited conditions. The enzymes were purified to homogeneity from the cell-free extracts of 18 active strains and had similar enzymological properties such as action on columns, specific activity, molecular weight, subunit structure, and N-terminal amino acid sequence similarity. The production of the enzyme was dependent on the limitation of oxygen during growth and was arrested by aeration. The addition of external electron acceptors such as dimethylsulfoxide could support cell growth and production of the enzyme. Activities of glutamate mutase (EC 5.4.99.1) and (S)-citramalate hydrolyase (EC 4.2.1.34), key enzymes of the mesaconate pathway of (S)-glutamate fermentation in the genus Clostridium, were detected in the cells of the active strains grown under oxygen-limited conditions. Based on the results, the mesaconate pathway is proposed to explain the (S)-glutamate fermentation process observed in Enterobacteriaceae, and 3-methylaspartase could be a marker enzyme for this pathway. Received: 28 May 1997 / Accepted: 16 July 1997  相似文献   

15.
16.
Y chromosome haplotyping based on microsatellites or single nucleotide polymorphisms has recently proven to be a powerful approach for evolutionary studies of human populations, and also holds great promise for the studies of wild species. However, the use of the approach is hampered in most natural populations by the lack of Y chromosome markers and sequence information. Here, we report the large-scale development of Y chromosome conserved anchor tagged sequence (YCATS) markers in mammals by a polymerase chain reaction screening approach. Exonic primers flanking 48 different introns of Y-linked genes were developed based on human and mouse sequences, and screened on a set of 20 different mammals. On average about 10 introns were amplified for each species and a total of 100 kb of Y chromosome sequence were obtained. Intron size in humans was a reasonable predictor of intron size in other mammals (r2 = 0.45) and there was a negative correlation between human fragment size and amplification success. We discuss a number of factors affecting the possibility of developing conserved Y chromosome markers, including fast evolution of Y chromosome sequences due to male-biased mutation and adaptive evolution of male-specific genes, dynamic evolution of the Y chromosome due to being a nonrecombining unit, and homology with X chromosome sequences.  相似文献   

17.
18.
The aim of the present work was to develop a bioprocess using EVOP-factorial design technique employing grease waste as a substrate for the production of lipase. A newly isolated fungal strain of Penicillium chrysogenum was explored for the fermentation process. Solid-state fermentation (SSF) was carried out using grease waste and Czapek-dox medium, supplemented with wheat bran. The yield of lipase was 38 U/ml when SSF was carried out at 32 °C for 8 days and grease:wheat bran:Czapek-dox media in 1:1:2 (w/w/v). Different physicochemical parameters affecting the production of lipase were optimized through evolutionary operation (EVOP) factorial design technique and after optimization yield was enhanced up to 46 U/ml at 30 °C, pH 7.0 with 1:1:2 (w/w/v) grease waste:wheat bran:Czapek-dox media. Industrial grease waste has never been reported before for the production of industrially important lipase enzyme.  相似文献   

19.
Whole cell pyruvate decarboxylase (PDC) from Candida utilis enhanced the enzymatic production of (R)-phenylacetylcarbinol (PAC) in an aqueous/octanol biotransformation compared to the partially purified PDC especially for a lower range of initial activities (0.3-2.5 U/mL). With an initial activity of 1.1 U/mL and at a 1:1 phase volume ratio, whole cell PDC achieved a maximum specific PAC production of 42 mg/U (2.8 g/L/h) in comparison to 13 mg/U (0.9 g/L/h) for partially purified PDC. The enhanced performance of whole cell PDC was associated with high stability towards the substrate benzaldehyde. The strong PDC inactivation by benzaldehyde was minimal even when whole cells were broken as long as cell debris was not removed from the broken cells. Biotransformations with various cellular components added to partially purified PDC revealed that membrane components especially 2 mg/mL phosphatidylcholine enhanced PAC concentrations. The role of surfactants was further confirmed from the results with synthetic surfactant sodium bis(2-ethyl-1-hexyl)sulfosuccinate (AOT). It was apparent that the membrane components in whole cells were sufficient for optimal PAC production and no further surfactant addition is required for optimal performance.  相似文献   

20.
This study evaluated the conventional jet cooking liquefaction process followed by simultaneous saccharification and fermentation (SSF) at 30% and 35% dry solids (DS) concentration of Indian sorghum feedstock for ethanol production, with addition of acid fungal protease or urea. To evaluate the efficacy of thermostable α‐amylase in liquefaction at 30% and 35% DS concentration of Indian sorghum, liquefact solubility, higher dextrins, and fermentable sugars were analyzed at the end of the process. The liquefact was further subjected to SSF using yeast. In comparison with urea, addition of an acid fungal protease during SSF process was observed to accelerate yeast growth (μ), substrate consumption (Qs), ultimately ethanol yield based on substrate (Yp/s) and ethanol productivity based on fermentation time (Qp). The fermentation efficiency and ethanol recovery were determined for both concentrations of Indian sorghum and found to be increased with use of acid fungal protease in SSF process. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29: 329–336, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号