首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Phytophthora cinnamomi occurs worldwide and has a host range in excess of 1,000 plant species. Avocados (Persea americana Mill) have been described as highly susceptible to this soil-borne pathogen. Here, the regulation of defence responses in avocado root seedlings inoculated with P. cinnamomi mycelia is described. A burst of reactive oxygen species (ROS) was observed 4 days after inoculation. The higher physiological concentration of H2O2 induced by P. cinnamomi on avocado roots had no effect on in vitro growth of the oomycete. Total phenols and epicathecin content showed a significant decrease, but lignin and pyocianidins exhibited no changes after inoculation. Also, increased nitric oxide (NO) production was observed 72 h after treatment. We studied the effects of one NO donor [sodium nitroprusside (SNP)], and one NO scavenger [2- to 4-carboxyphenyl-4,4,5,5-tetramethylimidazole-1-oxyl-3-oxide (CPTIO)] to determine the role of NO during root colonisation by P. cinnamomi mycelia. Pretreatment of the roots with CPTIO, but not with SNP, inhibited root colonisation suggesting an important role for NO production during the avocado–P. cinnamomi interaction. Our data suggest that although defence responses are activated in avocado roots in response to P. cinnamomi infection, these are not sufficient to avoid pathogen invasion.  相似文献   

3.
Filter-sterile culture filtrates of isolates of Diaporthe phaseolorum var. caulivora, Diaporthe phaseolorum var. sojae (anamorph Phomopsis sojae), and Phomopsis longicolla, causal agents of stem canker, pod and stem blight, and seed decay, respectively, on soybeans (Glycine max), grown on Czapek-Dox broth inhibited germination of soybean seeds (significant at P=0.05). Wilting and necrosis of excised soybean seedlings was significantly greater than the controls when treated with culture filtrates of P. longicolla and P. sojae. Soybean seedling radicle growth inhibited significantly when culture filtrates of P. longicolla were added.  相似文献   

4.
5.
Previous phylogenetic studies of the grape downy mildew pathogen, Plasmopara viticola, revealed five cryptic species in eastern North America that differed in their host range and geographic distribution. Preliminary comparative studies also documented differences in temperature responses during infection between certain cryptic species, indicating the biological relevance of knowing which cryptic species of the pathogen are present in a given region. However, limited information is available regarding the presence, prevalence and dynamics of cryptic species of P. viticola in the southeastern United States. Here, 301 P. viticola isolates obtained from cultivated grape species in five distinct grape‐growing regions of Georgia and Florida were subjected to cleaved amplified polymorphic sequence analysis and multilocus sequencing (internal transcribed spacer region of the rDNA, actin and β‐tubulin) to identify cryptic species and infer phylogenetic relationships. Three cryptic species, P. viticola clade aestivalis (Pva), clade vinifera (Pvv) and clade vulpina (Pvu), were identified in Georgia, whereas two, Pva and Pvv, were found in Florida; all three cryptic species are reported here for the first time in Georgia, whereas Pva is reported for the first time in Florida. Pva was the most prevalent cryptic species (72.1% of isolates) and was distributed widely from the North Georgia Mountains to Mid‐Florida, whereas Pvv (27.2%) and Pvu (0.7%) were found only in the Coastal Plain region of the two states. Interestingly, Pvu was obtained from French American hybrid Blanc du Bois and could be subcultured on Vitis vinifera Chardonnay, suggesting a broader host range than only the wild species Vitis vulpina reported previously.  相似文献   

6.
Light is a key environmental cue controlling plant development, which involves meristemic activation by cell proliferation and differentiation. Here, we identify one gene, AtSKIP, associated with cell cycle-regulated root and leaf growth processes in Arabidopsis. The spatial pattern of β-glucuronidase (GUS) activity indicated that AtSKIP is expressed in the leaf primodia, root meristem region and root vascular system, and can be activated by light. Ectopic expression of AtSKIP resulted in enhanced leaf development but suppressed root elongation in Arabidopsis, whereas AtSKIPDD seedlings displayed retarded leaf growth and normal root growth. Moreover, AtSKIP cells displayed enhanced sensitivity to a cytokinin in a callus induction assay, further demonstrated that AtSKIP expression altered endogenous cell cycle-regulated signaling in plants. Together, these data indicate that AtSKIP participates in cell cycle-mediated growth of leaf and root.  相似文献   

7.
Ethylene response factor (ERF) is an important component in ethylene or pathogen-induced defensive response of plants. However, physiological effects of ERF on plants have not been fully elucidated. We previously identified an ERF gene, OsERF1, in rice. It up-regulated ethylene-responsive genes expression and influenced growth and development of the transgenic Arabidopsis. Here, we report that similar to other seedlings with constitutive ethylene response, OsERF1 seedlings were suppressed in their root growth. Interestingly, the suppressed root growth was restorable by light irradiation. Detailed analysis showed that OsERF1 inhibited cell elongation without influencing cell number in hypocotyls and leaves of the transgenic Arabidopsis. In addition, homozygous OsERF1 was fatal and heterozygous OsERF1 was harmful in Arabidopsis. These findings expand our understanding of ERF.  相似文献   

8.
Abstract

Root growth of Arabidopsis seedlings on the surface of agar plates was measured after the seedlings were exposed to volatile organic compounds. Similar to the roots of unexposed seedlings, the roots of seedlings exposed to volatile methanol (control) grew straight down. On the other hand, seedlings exposed to volatile bornyl acetate produced wavy roots. Interestingly, the wavy roots from seedlings exposed to (+)-bornyl acetate were significantly longer than those from seedlings exposed to (?)-bornyl acetate. Exposure to either (+)- or (?)-borneol resulted in thick root tips and reduced root growth. The roots from seedlings treated with (+)-borneol were significantly longer than those from seedlings exposed to (?)-borneol. The interactions between root length and the concentrations of (+)- or (?)-borneol were significantly different, showing that the Arabidopsis seedlings specifically responded to the molecular configuration of the borneol.  相似文献   

9.
The grapevine downy mildew pathogen Plasmopara viticola secretes a set of RXLR effectors (PvRXLRs) to overcome host immunity and facilitate infection, but how these effectors function is unclear. Here, the biological function of PvRXLR131 was investigated via heterologous expression. Constitutive expression of PvRXLR131 in Colletotrichum gloeosporioides significantly enhanced its pathogenicity on grapevine leaves. Constitutive expression of PvRXLR131 in Arabidopsis promoted Pseudomonas syringae DC3000 and P. syringae DC3000 (hrcC-) growth as well as suppressed defence-related callose deposition. Transient expression of PvRXLR131 in Nicotiana benthamiana leaves could also suppress different elicitor-triggered cell death and inhibit plant resistance to Phytophthora capsici. Further analysis revealed that PvRXLR131 interacted with host Vitis vinifera BRI1 kinase inhibitor 1 (VvBKI1), and its homologues in N. benthamiana (NbBKI1) and Arabidopsis (AtBKI1). Moreover, bimolecular fluorescence complementation analysis revealed that PvRXLR131 interacted with VvBKI1 in the plasma membrane. Deletion assays showed that the C-terminus of PvRXLR131 was responsible for the interaction and mutation assays showed that phosphorylation of a conserved tyrosine residue in BKI1s disrupted the interaction. BKI1 was a receptor inhibitor of growth- and defence-related brassinosteroid (BR) and ERECTA (ER) signalling. When silencing of NbBKI1 in N. benthamiana, the virulence function of PvRXLR131 was eliminated, demonstrating that the effector activity is mediated by BKI1. Moreover, PvRXLR131-transgenic plants displayed BKI1-overexpression dwarf phenotypes and suppressed BR and ER signalling. These physiological and genetic data clearly demonstrate that BKI1 is a virulence target of PvRXLR131. We propose that P. viticola secretes PvRXLR131 to target BKI1 as a strategy for promoting infection.  相似文献   

10.
Homogeneous low phosphorus availability was reported to regulate root architecture in Arabidopsis via auxin, but the roles of auxin in root architecture plasticity to heterogeneous P availability remain unclear. In this study, we employed auxin biosynthesis-, transport- and signalling-related mutants. Firstly, we found that in contrast to low P (LP) content in the whole medium, primary root (PR) growth of Arabidopsis was partially rescued in the medium divided into two parts: upper with LP and lower with high P (HP) content or in the reverse arrangement. The down part LP was more effective to arrest PR growth as well as to decrease density of lateral roots (DLR) than the upper LP, and effects were dependent on polar auxin transport. Secondly, we verified that auxin receptor TIR1 was involved in the responses of PR growth and lateral root (LR) development to P supply and loss of function of TIR1 inhibited LR development. Thirdly, effects of heterogeneous P on LRD in the upper part of PR was dependent on PIN2 and PIN4, and in the down part on PIN3 and PIN4, whereas density of total LRs was dependent on auxin transporters PIN2 and PIN7. Finally, heterogeneous P availability altered the accumulation of auxin in PR tip and the expression of auxin biosynthesisrelated genes TAA1, YUC1, YUC2, and YUC4. Taken together, we provided evidences for the involvement of auxin in root architecture plasticity in response to heterogeneous phosphorus availability in Arabidopsis.  相似文献   

11.
《Autophagy》2013,9(4):360-362
In previous studies, using a membrane-permeable protease inhibitor, E-64d, we showed that autophagy occurs constitutively in the root cells of barley and Arabidopsis. In the present study, a fusion protein composed of the autophagy-related protein AtAtg8 and green fluorescent protein (GFP) was expressed in Arabidopsis to visualize autophagosomes. We first confirmed the presence of autophagosomes with GFP fluorescence in the root cells of seedlings grown on a nutrient-sufficient medium. The number of autophagosomes changed as the root cells grew and differentiated. In cells near the apical meristem, autophagosomes were scarcely found. However, a small but significant number of autophagosomes existed in the elongation zone. More autophagosomes were found in the differentiation zone where cell growth ceases but the cells start to form root hair. In addition, we confirmed that autophagy is activated under starvation conditions in Arabidopsis root cells. When the root tips were cultured in a sucrose-free medium, the number of autophagosomes increased in the elongation and differentiation zones, and a significant number of autophagosomes appeared in cells near the apical meristem. The results suggest that autophagy in plant root cells is involved not only in nutrient recycling under nutrient-limiting conditions but also in cell growth and root hair formation.

Addendum to:

AtATG Genes, Homologs of Yeast Autophagy Genes, are Involved in Constitutive Autophagy in Arabidopsis Root Tip Cells

Y. Inoue, T. Suzuki, M. Hattori, K. Yoshimoto, Y. Ohsumi and Y. Moriyasu

Plant Cell Physiol 2006; 47:1641-52  相似文献   

12.
13.
Avocado (Persea americana) fruits are consumed as part of the human diet and extracts have shown growth inhibitory effects in various types of human cancer cells, although the effectiveness of individual components and their underlying mechanism are poorly understood. Using activity-guided fractionation of the flesh of avocado fruits, a chloroform-soluble extract (D003) was identified that exhibited high efficacy towards premalignant and malignant human oral cancer cell lines. From this extract, two aliphatic acetogenins of previously known structure were isolated, compounds 1 [(2S,4S)-2,4-dihydroxyheptadec-16-enyl acetate] and 2 [(2S,4S)-2,4-dihydroxyheptadec-16-ynyl acetate]. In this study, we show for the first time that the growth inhibitory efficacy of this chloroform extract is due to blocking the phosphorylation of EGFR (Tyr1173), c-RAF (Ser338), and ERK1/2 (Thr202/Tyr204) in the EGFR/RAS/RAF/MEK/ERK1/2 cancer pathway. Compounds 1 and 2 both inhibited phosphorylation of c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204). Compound 2, but not compound 1, prevented EGF-induced activation of the EGFR (Tyr1173). When compounds 1 and 2 were combined they synergistically inhibited c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204) phosphorylation, and human oral cancer cell proliferation. The present data suggest that the potential anticancer activity of avocado fruits is due to a combination of specific aliphatic acetogenins that target two key components of the EGFR/RAS/RAF/MEK/ERK1/2 cancer pathway.  相似文献   

14.
The endophytic fungus Falciphora oryzae was initially isolated from wild rice (Oryza granulata) and colonizes many crop species and promotes plant growth. However, the molecular mechanisms underlying F. oryzae-mediated growth promotion are still unknown. We found that F. oryzae was able to colonize Arabidopsis thaliana. The most dramatic change after F. oryzae inoculation was observed in the root architecture, as evidenced by increased lateral root growth but reduced primary root length, similar to the effect of auxin, a significant plant growth hormone. The expression of genes responsible for auxin biosynthesis, transport, and signalling was regulated in Arabidopsis roots after F. oryzae cocultivation. Indole derivatives were detected at significantly higher levels in liquid media after cocultivation compared with separate cultivation of Arabidopsis and F. oryzae. Consistently, the expression of indole biosynthetic genes was highly upregulated in F. oryzae upon treatment with Arabidopsis exudates. Global analysis of Arabidopsis gene expression at the early stage after F. oryzae cocultivation suggested that signals were exchanged to initiate ArabidopsisF. oryzae interactions. All these results suggest that signalling molecules from Arabidopsis roots are perceived by F. oryzae and induce the biosynthesis of indole derivatives in F. oryzae, consequently stimulating Arabidopsis lateral root growth.  相似文献   

15.
Three developmental changes were observed in the roots of Arabidopsis thaliana (Columbia) when shoots were exposed to elevated CO2. (I) The allometric coefficient, k, was enhanced significantly (P<0.001), (ii) primary root length and root extension rate were enhanced (P<0.001). Accelerated cortical cell expansion contributed to this effect and was associated with increased cell wall extensibility, measured as % plasticity. (iii) Lateral root formation and extension were also increased in elevated CO2 (P<0.05).These results illustrate that root growth and structure was altered following exposure to elevated CO2. The changes observed suggest that Arabidopsis provides a useful model which should, in future, be amenable to study using appropriate mutants allowing the genetic basis of the responses to be identified.Keywords: Arabidopsis thaliana, elevated CO2, cell expansion, lateral root formation, allometric coefficient.   相似文献   

16.
Abstract

In plants, an increased production of toxic oxygen species is commonly observed under low oxygen stress, but cellular responses still have to be fully investigated. Plant cell cultures can be a valuable tool to study plant metabolic responses to various environmental stresses including low oxygen condition. Arabidopsis suspension cultures growing in shake flasks were subjected to hypoxia by stopping shaking for different intervals, showing an increase of the antioxidant metabolite α‐tocopherol. In order to obtain a more controlled condition, cultivation of Arabidopsis suspension cultures was established in a 5‐l stirred bioreactor. A constant aeration of 20% dissolved oxygen was found to be the most suitable for cell growth. A 4‐h anoxic shock was induced by suspending the aeration and flushing into the vessel with nitrogen. During the anoxic stress, tocopherol levels resulted increased at the end of the treatment, indicating that the complete oxygen deprivation, indeed, induced a defence response involving antioxidant metabolism. The presence of an oxidative stress as a consequence of anoxic condition was also confirmed by the increased levels of H2O2. Overall, these results indicate that Arabidopsis suspension cultures grown in a stirred bioreactor can be a useful in vitro system for investigating low oxygen stress.  相似文献   

17.
Nine phosphatidylinositol‐specific phospholipases C (PLCs) have been identified in the Arabidopsis genome; among the importance of PLC2 in reproductive development is significant. However, the role of PLC2 in vegetative development such as in root growth is elusive. Here, we report that plc2 mutants displayed multiple auxin‐defective phenotypes in root development, including short primary root, impaired root gravitropism, and inhibited root hair growth. The DR5:GUS expression and the endogenous indole‐3‐acetic acid (IAA) content, as well as the responses of a set of auxin‐related genes to exogenous IAA treatment, were all decreased in plc2 seedlings, suggesting the influence of PLC2 on auxin accumulation and signalling. The root elongation of plc2 mutants was less sensitive to the high concentration of exogenous auxins, and the application of 1‐naphthaleneacetic acid or the auxin transport inhibitor N‐1‐naphthylphthalamic acid could rescue the root hair growth of plc2 mutants. In addition, the PIN2 polarity and cycling in plc2 root epidermis cells were altered. These results demonstrate a critical role of PLC2 in auxin‐mediated root development in Arabidopsis, in which PLC2 influences the polar distribution of PIN2.  相似文献   

18.
In Arabidopsis, phosphate starvation (-Pi)-induced responses of primary root and lateral root growth are documented to be correlated with ambient iron (Fe) status. However, whether and how Fe participates in -Pi-induced root hair growth (RHG) remains unclear. Here, responses of RHG to different Fe concentrations under Pi sufficiency/deficiency were verified. Generally, distinct dosage effects of Fe on RHG appeared at both Pi levels, due to the generation of reactive oxygen species. Following analyses using auxin mutants and the phr1 mutant revealed that auxin and the central regulator PHR1 are required for Fe-triggered RHG under −Pi. A further proteomic study indicated that processes of vesicle trafficking and auxin synthesis and transport were affected by Fe under −Pi, which were subsequently validated by using a vesicle trafficking inhibitor, brefeldin A, and an auxin reporter, R2D2. Moreover, vesicle trafficking-mediated recycling of PIN2, an auxin efflux transporter, was notably affected by Fe under -Pi. Correspondingly, root hairs of pin2 mutant displayed attenuated responses to Fe under -Pi. Together, we propose that Fe affects auxin signalling probably by modulating vesicle trafficking, chiefly the PIN2 recycling, which might work jointly with PHR1 on modulating -Pi-induced RHG.  相似文献   

19.
20.

Microbial volatile organic compounds (mVOCs) play important roles in inter- and intra-kingdom interactions, and they are also important as signal molecules in physiological processes acting either as plant growth-promoting or negatively modulating plant development. We investigated the effects of mVOCs emitted by PGPR vs non-PGPR from avocado trees (Persea americana) on growth of Arabidopsis thaliana seedlings. Chemical diversity of mVOCs was determined by SPME–GC–MS; selected compounds were screened in dose–response experiments in A. thaliana transgenic lines. We found that plant growth parameters were affected depending on inoculum concentration. Twenty-six compounds were identified in PGPR and non-PGPR with eight of them not previously reported. The VOCs signatures were differential between those groups. 4-methyl-2-pentanone, 1-nonanol, 2-phenyl-2-propanol and ethyl isovalerate modified primary root architecture influencing the expression of auxin- and JA-responsive genes, and cell division. Lateral root formation was regulated by 4-methyl-2-pentanone, 3-methyl-1-butanol, 1-nonanol and ethyl isovalerate suggesting a participation via JA signalling. Our study revealed the differential emission of volatiles by PGPR vs non-PGPR from avocado trees and provides a general view about the mechanisms by which those volatiles influence plant growth and development. Rhizobacteria strains and mVOCs here reported are promising for improvement the growth and productivity of avocado crop.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号