首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 629 毫秒
1.
Head and neck squamous cell carcinoma (HNSCC) remains a major health problem worldwide. We aimed to identify a robust microRNA (miRNA)-based signature for predicting HNSCC prognosis. The miRNA expression profiles of HNSCC were obtained from The Cancer Genome Atlas (TCGA) database. The TCGA HNSCC cohort was randomly divided into the discovery and validation cohort. A miRNA-based prognostic signature was built up based on TGCA discovery cohort, and then further validated. The downstream targets of prognostic miRNAs were subjected to functional enrichment analyses. The role of miR-1229-3p, a prognosis-related miRNA, in tumorigenesis of HNSCC was further evaluated. A total of 305 significantly differentially expressed miRNAs were found between HNSCC samples and normal tissues. A six-miRNA prognostic signature was constructed, which exhibited a strong association with overall survival (OS) in the TCGA discovery cohort. In addition, these findings were successfully confirmed in TCGA validation cohort and our own independent cohort. The miRNA-based signature was demonstrated as an independent prognostic indicator for HNSCC. A risk signature-based nomogram model was constructed and showed good performance for predicting the OS for HNSCC. The functional analyses revealed that the downstream targets of these prognostic miRNAs were closely linked to cancer progression. Mechanistically, in vitro analysis revealed that miR-1229-3p played a tumor promoting role in HNSCC. In conclusion, our study has developed a robust miRNA-based signature for predicting the prognosis of HNSCC with high accuracy, which will contribute to improve the therapeutic outcome.  相似文献   

2.
Lung cancer is one of the fatal tumors. The tumor microenvironment plays a key role in regulating tumor progression. To figure out the role of tumor microenvironment in lung adenocarcinoma (LUAD), ESTIMATE algorithm was used to evaluate the immune scores in LUAD. Patients with low immune scores had a worse overall survival (OS) compared with high immune scores. Using RNA-Seq data of 489 patients in The Cancer Genome Atlas (TCGA), differentially expressed genes (DEGs) were identified between high- and low-immune score groups. Based on the DEGs, nine-gene signature was constructed by the least absolute shrinkage and selection operator Cox regression model in TCGA set. The signature demonstrated significant prognostic value in both TCGA and Gene Expression Omnibus database. Multivariate Cox regression analyses indicated that nine-genes signature was an independent prognostic factor. Subgroup analysis also revealed a robust prognostic ability of nine-gene signature. A nomogram with a C-index of 0.722 had a favorable power for predicting 3-, 5-, and 10-year survival for clinical use by integrating nine-gene signature and other clinical features. Co-expression and functional enrichment analysis showed that nine-gene signature was significantly associated with immune response and provided potential profound molecules for revealing the mechanism of tumor initiation and progression. In conclusion, we revealed the significance of immune infiltration and built a novel nine-gene signature as a reliable prognostic factor for patients with LUAD.  相似文献   

3.
Hepatocellular carcinoma (HCC) is one of the most prevalent and lethal cancers worldwide. Neovascularization is closely related to the malignancy of tumors. We constructed a signature of angiogenesis-related long noncoding RNA (lncRNA) to predict the prognosis of patients with HCC. The lncRNA expression matrix of 424 HCC patients was downloaded from The Cancer Genome Atlas (TCGA). First, gene set enrichment analysis (GSEA) was used to distinguish the differentially expressed genes of the angiogenesis genes in liver cancer and adjacent tissues. Next, a signature of angiogenesis-related lncRNAs was constructed using univariate and multivariate analyses, and receiver operating characteristic (ROC) curves were used to assess the accuracy. The signature and relevant clinical information were used to construct the nomogram. A 5-lncRNA signature was highly correlated with overall survival (OS) in HCC patients and performed well in evaluations using the C-index, areas under the curve, and calibration curves. In summary, the 5-lncRNA model can serve as an accurate signature to predict the prognosis of patients with liver cancer, but its mechanism of action must be further elucidated by experiments.  相似文献   

4.
MVI has significant clinical value for treatment selection and prognosis evaluation in hepatocellular carcinoma (HCC). We aimed to construct a model based on MVI-Related Genes (MVIRGs) for risk assessment and prognosis prediction in patients with HCC. This study utilized various statistical analysis methods for prognostic model construction and validation in the Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) cohorts, respectively. In addition, immunohistochemistry and qRT-PCR were used to analyze and identify the value of the model in our cohort. After the analyses, 153 differentially expressed MVIRGs were identified, and three key genes were selected to construct a prognostic model. The high-risk group showed significantly lower overall survival (OS), and this trend was observed in all subgroups: different age groups, genders, stages, and grades. Risk score was a risk factor independent of age, gender, stage, and grade. Moreover, the ICGC cohort validated the prognostic value of the model corresponding to the TCGA. In our cohort, qRT-PCR and immunohistochemistry showed that all three genes had higher expression levels in HCC samples than in normal controls. High expression levels of genes and high-risk scores showed significantly lower recurrence-free survival (RFS) and OS, especially in MVI-positive HCC samples. Therefore, the prognostic model constructed by three MVIRGs can reliably predict the RFS and OS of patients with HCC and is valuable for guiding clinical treatment selection and prognostic assessment of HCC.  相似文献   

5.
Clear cell renal cell carcinoma (ccRCC) is the main subtype of renal cell carcinoma with varied prognosis. We aimed to identify and assess the possible prognostic long noncoding RNA (lncRNA) biomarkers. LncRNAs expression data and corresponding clinical information of 619 ccRCC patients were downloaded from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases. Differentially expressed genes analysis, univariate Cox regression, the least absolute shrinkage and selection operator Cox regression model were utilized to identify hub lncRNAs. Multivariate Cox regression was used to establish the risk model. Statistical analysis was performed using R 3.5.3. The expression value of five lncRNAs and the risk-score levels were significantly associated with a survival prognosis of ccRCC patients (all P < .001). In the TCGA validation cohort, the area under the curve (AUC) for the integrated nomogram was 0.905 and 0.91 for 3-, 5-year prediction separately. The AUC reached up to 0.757 in an independent ICGC cohort. Besides, the calibration plots also illustrated well curve-fitting between observation values and predictive values. Weighted gene co-expression network analysis and subsequent pathway analysis revealed that the PI3K-Akt-mTOR and hypoxia-inducible factor signaling crosstalk might function as the most essential mechanisms related to the five-lncRNAs signature. Our study suggested that lncRNA AC009654.1, AC092490.2, LINC00524, LINC01234, and LINC01885 were significantly associated with ccRCC prognosis. The prognostic model based on this five lncRNA may predict the overall survival of ccRCC.  相似文献   

6.
There is growing evidence that alternative splicing (AS) plays an important role in cancer development. However, a comprehensive analysis of AS signatures in kidney renal clear cell carcinoma (KIRC) is lacking and urgently needed. It remains unclear whether AS acts as diagnostic biomarkers in predicting the prognosis of KIRC patients. In the work, gene expression and clinical data of KIRC were obtained from The Cancer Genome Atlas (TCGA), and profiles of AS events were downloaded from the SpliceSeq database. The RNA sequence/AS data and clinical information were integrated, and we conducted the Cox regression analysis to screen survival-related AS events and messenger RNAs (mRNAs). Correlation between prognostic AS events and gene expression were analyzed using the Pearson correlation coefficient. Protein-protein interaction analysis was conducted for the prognostic AS-related genes, and a potential regulatory network was built using Cytoscape (version 3.6.1). Meanwhile, functional enrichment analysis was conducted. A prognostic risk score model is then established based on seven hub genes (KRT222, LENG8, APOB, SLC3A1, SCD5, AQP1, and ADRA1A) that have high performance in the risk classification of KIRC patients. A total 46,415 AS events including 10,601 genes in 537 patients with KIRC were identified. In univariate Cox regression analysis, 13,362 survival associated AS events and 8,694 survival-specific mRNAs were detected. Common 3,105 genes were screen by overlapping 13,362 survival associated AS events and 8,694 survival-specific mRNAs. The Pearson correlation analysis suggested that 13 genes were significantly correlated with AS events (Pearson correlation coefficient >0.8 or <−0.8). Then, We conducted multivariate Cox regression analyses to select the potential prognostic AS genes. Seven genes were identified to be significantly related to OS. A prognostic model based on seven genes was constructed. The area under the ROC curve was 0.767. In the current study, a robust prognostic prediction model was constructed for KIRC patients, and the findings revealed that the AS events could act as potential prognostic biomarkers for KIRC.  相似文献   

7.
《Genomics》2021,113(2):740-754
Clear-cell renal cell carcinoma (ccRCC) carries a variable prognosis. Prognostic biomarkers can stratify patients according to risk, and can provide crucial information for clinical decision-making. We screened for an autophagy-related long non-coding lncRNA (lncRNA) signature to improve postoperative risk stratification in The Cancer Genome Atlas (TCGA) database. We confirmed this model in ICGC and SYSU cohorts as a significant and independent prognostic signature. Western blotting, autophagic-flux assay and transmission electron microscopy were used to verify that regulation of expression of 8 lncRNAs related to autophagy affected changes in autophagic flow in vitro. Our data suggest that 8-lncRNA signature related to autophagy is a promising prognostic tool in predicting the survival of patients with ccRCC. Combination of this signature with clinical and pathologic parameters could aid accurate risk assessment to guide clinical management, and this 8-lncRNAs signature related to autophagy may serve as a therapeutic target.  相似文献   

8.
《Genomics》2021,113(2):795-804
RNA-binding proteins (RBPs) play crucial roles in multiple cancers. However, very few RBPs and their association with immune genes have been systematically studied in liver cancer (LC). We aimed to identify an immune-related RBP signature to predict the survival of LC patients. Bioinformatics methods were used to identify differentially expressed, immune-related, and prognostic RBPs and to develop an immune-related RBP signature based on data from the Cancer Genome Atlas (TCGA) cohort. We obtained eight differentially expressed, immune-related, and prognostic RBPs to construct a risk signature. The signature could effectively distinguish between high- and low-risk patients, and its predictive capacity was validated in the International Cancer Genomics Consortium (ICGC) cohort. We speculated that the high-risk group was more sensitive to targeted therapy. The immune-related RBP signature is an independent prognostic biomarker for LC patients and can expand the application of targeted therapy through patient stratification.  相似文献   

9.
Complement factor H-related 3 (CFHR3) is a protein-coding gene acting in various diseases. However, its prognostic values of CFHR3 in hepatocellular carcinoma (HCC) are not understandable. Therefore, we present a further study on CFHR3 in HCC. CFHR3 expression data were acquired from The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC). We compared the differential expression of CFHR3 between the low-stage (stage I and II) and high-stage (stage III and IV) patients with HCC in the TCGA and ICGC cohorts. Furthermore, we assessed the CFHR3 expression as a prognostic marker using the Kaplan-Meier survival analysis, univariate, and multivariate analysis. The Kaplan-Meier analysis declared that CFHR3 overexpression was correlated with a good prognosis for HCC patients. Multivariate analysis proved the prognostic significance of CFHR3 expression levels (P < .001 and .003 for TCGA and ICGC, respectively). Immune-related scores in low-risk cohorts were higher than high-risk cohorts. Gene set enrichment analysis implied that the low CFHR3 expression phenotype was significantly enriched in critical biological functions and pathways and was associated with tumorigenesis, such as regulation of cell activation cycle, and the WNT and NOTCH signal pathway. Above all, CFHR3 could be a novel prognostic biomarker and therapeutic target for HCC.  相似文献   

10.
Lower-grade gliomas (LGGs) have a good prognosis with a wide range of overall survival (OS) outcomes. An accurate prognostic system can better predict survival time. An RNA-Sequencing (RNA-seq) prognostic signature showed a better predictive power than clinical predictor models. A signature constructed using gene pairs can transcend changes from biological heterogeneity, technical biases, and different measurement platforms. RNA-seq coupled with corresponding clinical information were extracted from The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA). Immune-related gene pairs (IRGPs) were used to establish a prognostic signature through univariate and multivariate Cox proportional hazards regression. Weighted gene co-expression network analysis (WGCNA) was used to evaluate module eigengenes correlating with immune cell infiltration and to construct gene co-expression networks. Samples in the training and testing cohorts were dichotomized into high- and low-risk groups. Risk score was identified as an independent predictor, and exhibited a closed relationship with prognosis. WGCNA presented a gene set that was positively correlated with age, WHO grade, isocitrate dehydrogenase (IDH) mutation status, 1p/19 codeletion, risk score, and immune cell infiltrations (CD4 T cells, B cells, dendritic cells, and macrophages). A nomogram comprising of age, WHO grade, 1p/19q codeletion, and three gene pairs (BIRC5|SSTR2, BMP2|TNFRSF12A, and NRG3|TGFB2) was established as a tool for predicting OS. The IPGPs signature, which is associated with immune cell infiltration, is a novel tailored tool for individual-level prediction.  相似文献   

11.
Lung adenocarcinoma (LUAD) is the main subtype of non-small cell lung cancer with a poor survival prognosis. In our study, gene expression, DNA methylation, and clinicopathological data of primary LUAD were utilized to identify potential prognostic markers for LUAD, which were recruited from The Cancer Genome Atlas (TCGA) database. Univariate regression analysis showed that there were 21 methylation-associated DEGs related to overall survival (OS), including 9 down- and 12 up-regulated genes. The 12 up-regulated genes with hypomethylation may be risky genes, whereas the other 9 down-regulated genes with hypermethylation might be protective genes. By using the Step-wise multivariate Cox analysis, a methylation-associated 6-gene (consisting of CCL20, F2, GNPNAT1, NT5E, B3GALT2, and VSIG2) prognostic signature was constructed and the risk score based on this gene signature classified patients into high- or low-risk groups. Patients of the high-risk group had shorter OS than those of the low-risk group in both the training and validation cohort. Multivariate Cox analysis and the stratified analysis revealed that the risk score was an independent prognostic factor for LUAD patients. The methylation-associated gene signature may serve as a prognostic factor for LUAD patients and the represent hypermethylated or hypomethylated genes might be potential targets for LUAD therapy.  相似文献   

12.
Acute myeloid leukemia (AML) is a hematologic malignancy with significant molecular heterogeneity. MicroRNAs (miRNAs) play a critical role in AML diagnosis, pathogenesis, and prognosis of AML. Little has been done to identify a miRNA signature in pediatric and adolescent patients for predicting overall survival. This study aims to identify a panel of miRNA signature that could predict the prognosis of all younger AML patients with all subtypes of AML by analyzing data from The Cancer Genome Atlas (TCGA). A total of 229 patients under 23 years with miRNA data and corresponding clinical data from TCGA database were enrolled in this study. Through conducting multivariate analysis in the training test, it was identified that the high expression of hsa-miR-509 and hsa-miR-542 were independent poor prognostic factors, whereas that of hsa-miR-146a and hsa-miR-3667 had a trend to be favorable factors. A 4-miRNA signature was constructed by these miRNAs considering the weight of each. In testing group and all 229 patients’ cohort as well as 59 cytogenetically normal AML (CN-AML) patients’ cohort, higher risk score was associated with shorter overall survival (OS). All results were confidential by using powerful statistical analysis. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analysis were carried out to further develop leukemia-relevant mechanisms supporting the model. The results indicate that the 4-miRNA-based signature is a reliable prognostic biomarker for pediatric and adolescent AML patients.  相似文献   

13.
N6-methyladenosine (m6A) methyltransferase has been shown to be an oncogene in a variety of cancers. Nevertheless, the relationship between the long non-coding RNAs (lncRNAs) and hepatocellular carcinoma (HCC) remains elusive. We integrated the gene expression data of 371 HCC and 50 normal tissues from The Cancer Genome Atlas (TCGA) database. Differentially expressed protein-coding genes (DE-PCGs)/lncRNAs (DE-lncRs) analysis and univariate regression and Kaplan–Meier (K–M) analysis were performed to identify m6A methyltransferase-related lncRNAs. Three prognostic lncRNAs were selected by univariate and LASSO Cox regression analyses to construct the m6A methyltransferase-related lncRNA signature. Multivariate Cox regression analyses illustrated that this signature was an independent prognostic factor for overall survival (OS) prediction. The Gene Set Enrichment Analysis (GSEA) suggested that the m6A methyltransferase-related lncRNAs were involved in the immune-related biological processes (BPs) and pathways. Besides, we discovered that the lncRNAs signature was correlated with the tumor microenvironment (TME) and the expression of critical immune checkpoints. Tumor Immune Dysfunction and Exclusion (TIDE) analysis revealed that the lncRNAs could predict the clinical response to immunotherapy. Our study had originated a prognostic signature for HCC based on the potential prognostic m6A methyltransferase-related lncRNAs. The present study had deepened the understanding of the TME status of HCC patients and laid a theoretical foundation for the choice of immunotherapy.  相似文献   

14.
Breast cancer (BRCA) represents the most common malignancy among women worldwide with high mortality. Radiotherapy is a prevalent therapeutic for BRCA that with heterogeneous effectiveness among patients. Here, we proposed to develop a gene expression-based signature for BRCA radiotherapy sensitivity estimation. Gene expression profiles of BRCA samples from the Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) were obtained and used as training and independent testing dataset, respectively. Differential expression genes (DEGs) in BRCA samples compared with their paracancerous samples in the training set were identified by using the edgeR Bioconductor package. Univariate Cox regression analysis and LASSO Cox regression method were applied to screen optimal genes for constructing a radiotherapy sensitivity estimation signature. Nomogram combining independent prognostic factors was used to predict 1-, 3-, and 5-year OS of radiation-treated BRCA patients. Relative proportions of tumor infiltrating immune cells (TIICs) calculated by CIBERSORT and mRNA levels of key immune checkpoint receptors was adopted to explore the relation between the signature and tumor immune response. As a result, 603 DEGs were obtained in BRCA tumor samples, six of which were retained and used to construct the radiotherapy sensitivity prediction model. The signature was proved to be robust in both training and testing sets. In addition, the signature was closely related to the immune microenvironment of BRCA in the context of TIICs and immune checkpoint receptors’ mRNA levels. In conclusion, the present study obtained a radiotherapy sensitivity estimation signature for BRCA, which should shed new light in clinical and experimental research.  相似文献   

15.
Hepatocellular carcinoma (HCC) is a heterogeneous malignancy closely related to metabolic reprogramming. We investigated how CTNNB1 mutation regulates the HCC metabolic phenotype and thus affects the prognosis of HCC. We obtained the mRNA expression profiles and clinicopathological data from The Cancer Genome Atlas (TCGA), the International Cancer Genomics Consortium (ICGC) and the Gene Expression Omnibus database ( GSE14520 and GSE116174 ). We conducted gene set enrichment analysis on HCC patients with and without mutant CTNNB1 through TCGA dataset. The Kaplan-Meier analysis and univariate Cox regression analysis assisted in screening metabolic genes related to prognosis, and the prognosis model was constructed using the Lasso and multivariate Cox regression analysis. The prognostic model showed good prediction performance in both the training cohort (TCGA) and the validation cohorts (ICGC, GSE14520 , GSE116174 ), and the high-risk group presented obviously poorer overall survival compared with low-risk group. Cox regression analysis indicated that the risk score can be used as an independent predictor for the overall survival of HCC. The immune infiltration in different risk groups was also evaluated in this study to explore underlying mechanisms. This study is also the first to describe an metabolic prognostic model associated with CTNNB1 mutations and could be implemented for determining the prognoses of individual patients in clinical practice.  相似文献   

16.
Background: Colorectal cancer (CRC) is one of the most prevalent malignant cancers worldwide. Immune-related long non-coding RNAs (IRlncRNAs) are proved to be essential in the development and progression of carcinoma. The purpose of the present study was to develop and validate a prognostic IRlncRNA signature for CRC patients.Methods: Gene expression profiles of CRC samples were downloaded from The Cancer Genome Atlas (TCGA) database. Immune-related genes were obtained from the ImmPort database and were used to identify IRlncRNA by correlation analysis. Through LASSO Cox regression analyses, a prognostic signature was constructed. Functional enrichment analysis was performed by gene set enrichment analysis (GSEA). TIMER2.0 web server and tumor immune dysfunction and exclusion (TIDE) algorithm were employed to analyze the association between our model and tumor-infiltrating immune cells and immunotherapy response. The expression levels of IRlncRNAs in cell lines were detected by quantitative real-time PCR (qPCR).Results: A 9-IRlncRNA signature was developed by a LASSO Cox proportional regression model. Based on the signature, CRC patients were divided into high- and low-risk groups with different prognoses. GSEA results indicated that patients in high-risk group were associated with cancer-related pathways. In addition, patients in low-risk group were found to have more infiltration of anti-tumor immune cells and might show a favorable response to immunotherapy. Finally, the result of qPCR revealed that most IRlncRNAs were differently expressed between normal and tumor cell lines.Conclusion: The constructed 9-IRlncRNA signature has potential to predict the prognosis of CRC patients and may be helpful to guide personalized immunotherapy.  相似文献   

17.
Lipid metabolism reprogramming plays important role in cell growth, proliferation, angiogenesis and invasion in cancers. However, the diverse lipid metabolism programmes and prognostic value during glioma progression remain unclear. Here, the lipid metabolism‐related genes were profiled using RNA sequencing data from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) database. Gene ontology (GO) and gene set enrichment analysis (GSEA) found that glioblastoma (GBM) mainly exhibited enrichment of glycosphingolipid metabolic progress, whereas lower grade gliomas (LGGs) showed enrichment of phosphatidylinositol metabolic progress. According to the differential genes of lipid metabolism between LGG and GBM, we developed a nine‐gene set using Cox proportional hazards model with elastic net penalty, and the CGGA cohort was used for validation data set. Survival analysis revealed that the obtained gene set could differentiate the outcome of low‐ and high‐risk patients in both cohorts. Meanwhile, multivariate Cox regression analysis indicated that this signature was a significantly independent prognostic factor in diffuse gliomas. Gene ontology and GSEA showed that high‐risk cases were associated with phenotypes of cell division and immune response. Collectively, our findings provided a new sight on lipid metabolism in diffuse gliomas.  相似文献   

18.
Renal cell carcinoma (RCC) is the most common adult renal epithelial cancer susceptible to metastasis and patients with irresectable RCC always have a poor prognosis. Long noncoding RNAs (lncRNAs) have recently been documented as having critical roles in the etiology of RCC. Nevertheless, the prognostic significance of lncRNA-based signature for outcome prediction in patients with RCC has not been well investigated. Therefore, it is essential to identify a lncRNA-based signature for predicting RCC prognosis. In the current study, we comprehensively analyzed the RNA sequencing data of the three main pathological subtypes of RCC (kidney renal clear cell carcinoma [KIRC], kidney renal papillary cell carcinoma [KIRP], and kidney chromophobe carcinoma [KICH]) from The Cancer Genome Atlas (TCGA) database, and identified a 6-lncRNA prognostic signature with the help of a step-wise multivariate Cox regression model. The 6-lncRNA signature stratified the patients into low- and high-risk groups with significantly different prognosis. Multivariate Cox regression analysis showed that predictive value of the 6-lncRNA signature was independent of other clinical or pathological factors in the entire cohort and in each cohort of RCC subtypes. In addition, the three independent prognostic clinical factors (including age, pathologic stage III, and stage IV) was also stratified into low- and high-risk groups basis on the risk score, and the stratification analyses demonstrated that the high-risk score was a poor prognostic factor. In conclusion, these findings indicate that the 6-lncRNA signature is a novel prognostic biomarker for all three subtypes of RCC, and can increase the accuracy of predicting overall survival.  相似文献   

19.
Background: Hepatocellular carcinoma (HCC) is a malignant tumor of the digestive system characterized by mortality rate and poor prognosis. To indicate the prognosis of HCC patients, lots of genes have been screened as prognostic indicators. However, the predictive efficiency of single gene is not enough. Therefore, it is essential to identify a risk-score model based on gene signature to elevate predictive efficiency.Methods: Lasso regression analysis followed by univariate Cox regression was employed to establish a risk-score model for HCC prognosis prediction based on The Cancer Genome Atlas (TCGA) dataset and Gene Expression Omnibus (GEO) dataset GSE14520. R package ‘clusterProfiler’ was used to conduct function and pathway enrichment analysis. The infiltration level of various immune and stromal cells in the tumor microenvironment (TME) were evaluated by single-sample GSEA (ssGSEA) of R package ‘GSVA’.Results: This prognostic model is an independent prognostic factor for predicting the prognosis of HCC patients and can be more effective by combining with clinical data through the construction of nomogram model. Further analysis showed patients in high-risk group possess more complex TME and immune cell composition.Conclusions: Taken together, our research suggests the thirteen-gene signature to possess potential prognostic value for HCC patients and provide new information for immunological research and treatment in HCC.  相似文献   

20.
Background: Glioma is a malignant intracranial tumor and the most fatal cancer. The role of ferroptosis in the clinical progression of gliomas is unclear.Method: Univariate and least absolute shrinkage and selection operator (Lasso) Cox regression methods were used to develop a ferroptosis-related signature (FRSig) using a cohort of glioma patients from the Chinese Glioma Genome Atlas (CGGA), and was validated using an independent cohort of glioma patients from The Cancer Genome Atlas (TCGA). A single-sample gene set enrichment analysis (ssGSEA) was used to calculate levels of the immune infiltration. Multivariate Cox regression was used to determine the independent prognostic role of clinicopathological factors and to establish a nomogram model for clinical application.Results: We analyzed the correlations between the clinicopathological features and ferroptosis-related gene (FRG) expression and established an FRSig to calculate the risk score for individual glioma patients. Patients were stratified into two subgroups with distinct clinical outcomes. Immune cell infiltration in the glioma microenvironment and immune-related indexes were identified that significantly correlated with the FRSig, the tumor mutation burden (TMB), copy number alteration (CNA), and immune checkpoint expression was also significantly positively correlated with the FRSig score. Ultimately, an FRSig-based nomogram model was constructed using the independent prognostic factors age, World Health Organization (WHO) grade, and FRSig score.Conclusion: We established the FRSig to assess the prognosis of glioma patients. The FRSig also represented the glioma microenvironment status. Our FRSig will contribute to improve patient management and individualized therapy by offering a molecular biomarker signature for precise treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号