首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Summary The distribution of vasoactive intestinal polypeptide (VIP) immunoreactivity has been studied in the mammalian heart and compared with that of neurotensin and substance P by use of light-microscopic peroxidase-antiperoxidase immunohistochemistry. VIP-immunoreactive cell bodies are present in intracardiac ganglia in various locations. VIP-immunoreactive nerve fibers predominate in the atria and the conduction system but are rare in the ventricles and occur in cardiac ganglia, endocardium, and epicardium. VIP-ergic nerves supply the coronary vasculature having a preference for the microvasculature and the nodal cells of the sinuatrial node. The large vessels of the heart and periarterial cardiac glomera also receive a VIP-immunoreactive nerve supply. There is partial co-distribution with neurotensin- and substance P-immunoreactive nerve fibers but no co-location in identical nerve fibers is detectable. The VIP-ergic cardiac innervation, which is probably predominantly intrinsic, may stem from postganglionic parasympathetic neurons and is less substantial than the more homogeneous neurotensin-ergic and substance P-ergic nervous supply which is probably extrinsic. The occurrence of an extrinsic VIP-ergic cardiac innervation cannot be excluded however. The differential histotopography of the multitarget cardiac nerves containing the cardiovascular active peptides VIP, neurotensin and substance P may suggest multiple and complex peptide-peptide and peptide-classical transmitter interactions. These may contribute to the regulation of various cardiac functions.  相似文献   

2.
Light microscopic analysis of the rat midbrain periaqueductal grey (PAG) showed vasoactive intestinal polypeptide immunoreactive (VIP-ir) neurons localized at the lateral and ventral walls of the aqueduct. Some varicose VIP-ir elements were detected closely associated with the ependyma. While several VIP-ir elements were encountered immediately under the ependyma, in a few cases, VIP-ir cell bodies were seen on the luminal surface of the ependymal cells lining the aqueduct. Electron microscopy revealed that most of these cells possessed the characteristics of a local circuit neuron. All VIP-ir cells had indented nuclei. Two types were distinguished: one with rounded cell body receiving numerous axo-somatic synapses established by VIP-negative axons. The other cell type was fusiform and its surface was almost fully isolated from axonal contacts by a glial sheath. The VIP-ir processes were interconnected with other periaqueductal cells by a variety of synaptic contacts. VIP-ir axon terminals formed asymmetric synapses with immunonegative dendritic shafts often in glomerulus-like assemblies. The postsynaptic immunonegative dendrites were of the aspinous, beaded type. We suggest that VIP-ir cells and processes in the midbrain PAG establish connections between the longitudinal functional columns of this region. On the basis of their morphology, VIP-ir cells in the PAG appear to be excitatory, terminating on inhibitory interneurons. Thus, a VIP-stimulated inhibition may be instrumental in the coordination of responses evoked by the stimulation of PAG columns.  相似文献   

3.
S Wray  G E Hoffman 《Peptides》1983,4(4):525-541
The organization and interactions of neuropeptides in the central nucleus of the amygdala (Ce) were studied using single and double label immunocytochemical techniques. Immunocytochemical localization of substance P (SP), neurotensin (NT), met-enkephalin (m-ENK), somatostatin (SS) and vasoactive intestinal polypeptide (VIP) revealed all of these peptides within discrete regions of the Ce. The regions differed from the classical medial and lateral anatomical divisions reported for the Ce. Instead, three easily recognizable neuropeptidergic subdivisions were evident: a medial zone, a central zone and a lateral capsular zone. Two types of interrelationships between peptides were noted. The first involved a peptidergic fiber in apposition to a peptidergic perikarya. The most prevalent peptidergic interaction of this type occurred between SP and NT. The second interrelationship involved two different peptidergic fibers in apposition to an immunonegative cell. Two interactions of this type were commonly observed. The first involved NT and m-ENK fibers simultaneously apposed to an unstained cell. The second involved SP and m-ENK fibers adjacent to the same immunonegative cell. The interactions between peptidergic systems may suggest a role of these substances in the regulation of autonomic functions in the Ce.  相似文献   

4.
Summary The pathway of nerves with vasoactive intestinal polypeptide(VIP)-like immunoreactivity to the major cerebral arteries was studied in rats by means of the indirect immunofluorescent method. The fibers are densely distributed in the ethmoidal nerves and in the adventitia of both the external and internal ethmoidal arteries. Section of both ethmoidal nerves and external ethmoidal arteries before they enter the cranial cavity induced a marked reduction of VIP-like immunoreactive fibers in the walls of the vessels of the circle of Willis and its major branches. However, section of the external ethmoidal artery alone did not result in visible changes of the nerves around major cerebral arteries. The present study suggests that VIP-like immunoreactive fibers surrounding major cerebral arteries of the rat arise from fibers in the ethmoidal nerve showing immunoreactivity to VIP.  相似文献   

5.
Ganglia of the nervus terminalis have been shown to contain luteinizing hormone-releasing hormone (LHRH) immunoreactive cells in several mammalian species. These cells are always accompanied by clusters of cells non-immunoreactive to antiserum to LHRH. Using immunocytochemical procedures, we found choline acetyltransferase (ChAT) and vasoactive intestinal polypeptide (VIP) present in cell bodies and in nerve processes throughout the peripheral, intracranial and central projections of the nervus terminalis. In addition, a dense plexus of substance P (SP) immunoreactive fibers was seen in the nasal mucosa surrounding the nasal glandular acini and blood vessels. A number of SP reactive fibers were traced with the olfactory nerves through the cribriform plate of the ethmoid bone and appeared to enter the brain in the area of the central roots of the nervus terminalis.  相似文献   

6.
Summary Two nuclei, termed here the medial hypothalamic nucleus and the lateral hypothalamic retinorecipient nucleus, are possible homologs of the mammalian suprachiasmatic nucleus. As the mammalian suprachiasmatic nucleus is characterized by a dense concentration of vasoactive intestinal peptide (VIP)-and neurophysin (NP)-immunoreactive neurons and an absence of acetylcholinesterase (AChE) staining, we decided to examine these factors in the ring dove hypothalamus. Neither the medial hypothalamic nucleus nor the lateral hypothalamic retinorecipient nucleus contained either VIP-or NP-like immunoreactive neurons. The lateral hypothalamic retinorecipient nucleus stained darkly for AChE. Although there was some overlap in the distribution of VIP-and NP-like immunoreactive neurons, a clustering of both types into a well defined nucleus was not observed. Therefore, an avian homolog to the mammalian suprachiasmatic nucleus must differ in its chemoarchitecture from that of mammalian species described to date.  相似文献   

7.
Summary The presence and distribution of nerve fibers expressing immunoreactivity to the neuropeptides vasoactive intestinal polypeptide, peptide HI and cholecystokinin was examined in stretch-prepared rat iris whole mounts. By use of antiserum to vasoactive intestinal polypeptide an irregular, relatively sparse network of varicose, intensely fluorescent fibers was observed innervating both the dilator plate and the sphincter area. Positive fibers were present also in the ciliary body and the choroid membrane. Surprisingly, a large variation in the amount of vasoactive intestinal polypeptide-positive nerves was seen among irides. Furthermore, an uneven distribution of fluorescent nerve fibers was observed within individual irides. Thus, some areas had a relatively dense innervation, whereas others were devoid of immunoreactive nerve fibers. A similar fiber system was detected using antiserum to peptide HI. In all probability, vasoactive intestinal polypeptide and peptide HI coexist within the same nerve population. A denser and more regular network of cholecystokinin-positive fibers was found in normal rat irides. Such fibers were also present in the sphincter area and in high density in the choroid membrane. Neither extirpation of the superior cervical nor the ciliary ganglion caused any detectable decrease in amount of either vasoactive intestinal polypeptide/peptide HI- or cholecystokinin-positive fibers. However, capsaicin, which in the iris causes permanent disappearance of substance-P fibers, had a similar effect on cholecystokinin-positive fibers, whereas no effect was noted on the vasoactive intestinal polypeptide/peptide HI fiber network. It is concluded that the rat iris contains a network of vasoactive intestinal polypeptide/peptide HI-positive nerves that does not originate in either the superior cervical or the ciliary ganglion, and most probably also not in the trigeminal ganglion, and a cholecystokinin-positive network that probably originates in the trigeminal ganglion.  相似文献   

8.
Antisera specific for different regions of porcine VIP have been used in radioimmunoassay and immunohistochemical studies of immunoreactive VIP in rat small and large intestine. Cation exchange chromatography of intestinal extracts separated two major and one minor peak of immunoreactivity. One major peak eluted in a similar position to natural porcine VIP and was read equally by NH2-terminal-specific, and mid- and COOH-terminal-specific antisera. A second major peak, and the minor peak, eluted earlier than porcine VIP, and were read significantly less well with mid- and COOH-terminal antisera compared with NH2-terminal-specific antisera. All forms of VIP occurred mainly in extracts of muscle layers of the gut, and no antiserum revealed more than trace amounts of immunoreactivity in mucosal extracts. In immunohistochemical studies all antisera demonstrated fluorescent nerve fibres in the enteric plexuses, circular smooth muscle and lamina propria; some antisera demonstrated nerve cell bodies predominantly in the submucous plexus. NH2-terminal-specific antisera also demonstrated a sparse population of mucosal endocrine-like cells in the ileum and colon that were not seen with other antisera. It is concluded that VIPergic neurons of the rat gut contain a peptide closely resembling porcine VIP and at least two less basic variants with similar NH2-terminal antigenic determinants. VIP-like peptides may also occur in endocrine cells, but since these peptides appearto fact that the majority of neuronal VIP in rat gut exists in a form that is both chromatographically and immunochemically distinct from porcine VIP, and may well possess different biological properties.  相似文献   

9.
Two forms of pituitary adenylate cyclase activating polypeptides with 38 (PACAP38) and 27 residues (PACAP27) respectively were recently isolated from ovine hypothalamic tissues. The N-terminal 28 amino acids sequence of PACAP was found to have 68% homology with porcine vasoactive intestinal peptide (VIP). In order to determine whether the primary structure of VIP of ovine hypothalamus is identical with porcine VIP or similar to PACAP, VIP immunoreactivity as determined by radioimmunoassay for porcine VIP was isolated in a pure form from ovine hypothalamic extracts. VIP was also isolated from ovine intestine. Amino acid analysis as well as amino acid sequence analysis showed that ovine hypothalamic and intestinal VIP were identical to porcine VIP, but different from PACAP.  相似文献   

10.
The distribution of vasoactive intestinal peptide (VIP)- and calcitonin gene-related peptide (CGRP)-immunoreactive nerves and 125I-labeled VIP- and CGRP-binding sites was studied in the hamster seminal vesicle of 12-, 30- and 60-day-old animals. In addition, the general innervation of the seminal vesicle was examined using the general neuronal marker synaptophysin. Our results show that the densities of the overall (synaptophysin immunoreactive) and CGRP-immunoreactive innervation is constant during the post-natal development of the gland. However, a significant decrease in VIP-containing nerves is observed at the end of puberty. The autoradiographic study revealed that in 12-day-old animals, the epithelium presents VIP binding sites. However, in 30-day-old animals, VIP binding sites are observed in the epithelium of only a few clumps of acini. In 60-day-old animals, the gland is composed of acini with dilated lumina where VIP binding sites are not detected. In all groups studied the epithelium does not exhibit CGRP binding sites. The seminal vesicle muscle layer displays specific binding sites for both VIP and CGRP at all post-natal developmental times, but the density of VIP binding sites is higher in 12- than in 30- and 60-day-old animals. Our results, showing the presence of specific VIP and CGRP binding sites during the development of the hamster seminal vesicle, suggest that these neuropeptides may be involved in the growth and differentiation of the gland.  相似文献   

11.
12.
Neuropeptide Y (NPY) and vasoactive intestinal polypeptide (VIP) immunoreactive nerves were demonstrated in 21-day-old embryonic pancreatic tissue fragments transplanted into the anterior eye chamber of rats for 22, 45 and 109 days and in 60-day-old normal adult pancreas using immunohistochemical technique. In normal adult tissue, NPY-positive neurons lie close to the basal and lateral walls of the acinar cells. NPY-containing nerve fiber plexuses were found around blood vessels. VIP-immunopositive nerves were also discernible in the outer parts of the islets of Langerhans and on pancreatic ducts. In the transplants, it is not only the neural elements that survived but also the pancreatic ducts and the endocrine cells. VIP- and NPY-positive neurons were found in the stroma of the surviving pancreatic tissue. The distribution of these neural elements is similar to that of normal tissue in the surviving pancreatic ducts but different with regards to the acinar tissue. This study confirms that intrinsic nerves can survive and synthesize polypeptides even after 109 days of transplantation into the anterior eye chamber.  相似文献   

13.
The distribution of vasoactive intestinal polypeptide (VIP) immunoreactive nerves and endocrine cells in the gastrointestinal tract and pancreas of a number of mammalian and submammalian species has been examined in order to throw light on the exact localization of this peptide. Seven out of 8 VIP antisera demonstrated numerous nerve fibers in the gut, whereas one antiserum (TR2) revealed only scattered, few nerve fibers. The distribution of endocrine cells demonstrated by the different VIP antisera varied considerably. Thus, some antisera demonstrated only endocrine cells in the feline antrum, others only colonic endocrine cells and still others only endocrine cells of the upper gut and pancreas. The variability in staining pattern of endocrine cells as well as recent radioimmunological data makes it opportune to suggest that true VIP is a neuronal peptide and that endocrine cells store peptides resembling, but not being identical with, VIP (VIPoids).  相似文献   

14.
 Interrelationships between dopaminergic afferents and somatostatinergic neurons of the rat central amygdaloid nucleus were studied using tyrosine hydroxy-lase/somatostatin double immunolabeling for light and electron microscopy. Additionally, morphological features of somatostatin neurons in different subnuclei of the central nucleus were studied, and the results were complemented by codistribution studies of somatostatin and D1 and D2 dopamine receptor mRNA expression. Dense axonal immunolabeling for tyrosine hydroxylase was colocalized with somatostatin-immunoreactive or somatostatin mRNA-reactive neurons in the medial and the central lateral part of the central nucleus. The number of somatostatinergic neurons detected was higher using in situ hybridization than using immunolabeling. Somatostatin-immunoreactive neurons of the medial central nucleus possessed deeply indented nuclei, and immunoreaction product was confined to the Golgi apparatus and its vicinity. On the other hand, those in the central lateral subnucleus possessed nuclei without indentations and showed diffuse staining of the cytoplasm and/or in large vesicles. Double labeling showed that in the central lateral central nucleus, somatostatin-immunoreactive neurons were contacted by tyrosine hydroxylase-immunoreactive terminals, and on the electron microscopic level synaptic contacts between differently labeled structures were observed. D1 and D2 receptor mRNA-reactive neurons were differentially distributed in central nucleus subnuclei. D1 receptor mRNA-expressing neurons were found only in the medial subnucleus, while D2 receptor mRNA was expressed by a number of neurons in the lateral central and a few in the medial one. Thus, the study proves that somatostatin-immunoreactive neurons of the central lateral central nucleus are directly innervated by dopaminergic afferents and may express the D2 dopamine receptor. Accepted: 2 July 1996  相似文献   

15.
Distribution of pancreatic polypeptide-like immunoreactivity in rat tissues   总被引:1,自引:0,他引:1  
The distribution of pancreatic polypeptide (PP)-like immunoreactivity (LI) in rat tissue was determined by a specific radioimmunoassay (RIA) after extraction with boiling 1 N acetic acid. The concentration of PP-LI in the ventral area of the pancreas (0.917 +/- 0.106 micrograms/g tissue) was about 10 times greater than that in the dorsal area of the pancreas (0.085 +/- 0.006 micrograms/g tissue). Extrapancreatic PP-LI was present in the colon (0.034 +/- 0.010 micrograms/g tissue) and rectum (0.019 +/- 0.001 micrograms/g tissue). The remainder of the gastrointestinal tract, the lung, kidney, liver, spleen, heart, adrenal gland, and central nervous system contained no measurable PP-LI. Reverse-phase high performance liquid chromatography analysis of the PP-LI materials from the pancreas, colon, and rectum revealed one peak which corresponds to the rat PP standard, under conditions of elution which clearly separated PP, NPY, PYY. These results show that distribution of PP-LI in the rat is different from other known distributions in the PP family of peptides.  相似文献   

16.
Cryostat- and vibratome-cut sections of rat kidneys were singly or doubly labeled to visualize immunoreactive tyrosine hydroxylase (THI), dopamine beta-hydroxylase (DBHI), vasoactive intestinal peptide (VIPI), and neuropeptide Y (NPYI). Rats were perfusion fixed with 2-4% paraformaldehyde with or without 0.15% picric acid and rinsed in buffer for 18-48 hr. Single antigens were labeled with horseradish peroxidase in vibratome sections, whereas cryostat sections were used to label one antigen with peroxidase and another with a fluorophore in the same tissue section. A dense plexus of DBHI noradrenergic nerves innervates the renal arterial tree, and such nerves innervate the interlobar veins and renal calyx as well. Immunoreactive NPY is colocalized in most of these nerves, but some intrarenal noradrenergic nerves do not contain NPY but do contain VIP immunoreactivity. The distribution of NPYI nerves resembles that of DBHI nerves, whereas most perivascular noradrenergic nerves immunoreactive for VIP innervate selected arcuate and interlobular arteries. A small population of nonadrenergic, VIPI nerves innervates the renal calyx.  相似文献   

17.
Ample evidence implicates corticotropin-releasing factor (CRF)-producing neurons of the central amygdaloid nucleus (CeA) in vegetative, endocrine, and behavioral responses to stress and anxiety in laboratory rats. Monoaminergic systems are involved in modulating these responses. In the present paper, interrelations between CRF-immunoreactive (ir) neurons, and noradrenergic, serotonergic, and dopaminergic afferents were studied using single and double immunolabeling for light and electron microscopy in the rat CeA. Dopaminergic axons formed dense plexus in the CeA overlapping with the localization of CRF-ir neurons, and their terminals formed frequent associations with CRF-ir somata. Contacts of serotonergic axons on CRF-ir neurons were few, and contacts of noradrenergic axons were the exception. Ultrastructurally, symmetric synapses of dopaminergic terminals on CRF-ir somata and dendrites were found. More than 83% of CRF-ir somata were contacted in single ultrathin sections. About half of these possessed two or more contacts. Of non-ir somata, 37% were contacted by dopaminergic terminals, and only 13% of these had two or more contacts. Correlative in situ hybridization indicated that CeA CRF-ir neurons may express receptor subtype dopamine receptor subtype 2. In conclusion, dopaminergic afferents appear to specifically target CeA CRF neurons. They are thus in a position to exert significant influence on the rat amygdaloid CRF stress system.  相似文献   

18.
Summary The distribution of nerve fibers in molars, periodontal ligament and gingiva of the rat shows a complex pattern. Decalcified material including the alveolar bone was sectioned in three different planes and stained by means of immunohistochemistry for detection of the neurofilament protein (NFP); the immunoreactive neural elements were clearly visualized in three-dimensional analyses. NFP-positive nerve fibers formed a subodontoblastic plexus in the roof area of the dental pulp; some of them entered the predentin and dentin directly through the dentinal tubules. This penetration was found mainly in the pulp horn, and was limited to a distance of about 100 m from the pulpo-dentinal junction. In the periodontal ligament, NFP-positive nerve fibers were found densely distributed in the lower half of the alveolar socket. Two types of nerve terminals were recognized in the periodontal ligament: free nerve endings with tree-like ramifications, and expanded nerve terminals showing button- or glove-like shapes. The former tapered among the periodontal fibers, some even reaching the cementoblastic layer. The latter were located, frequently in groups, within the ligament restricted to the lower third of the alveolar socket. A well-developed plexus of NFP-positive nerves was revealed in the lamina propria of the free gingiva, the innervation being denser toward the epithelium of the gingival crevice. The characteristic distribution of NFP-immunoreactive nerve fibers revealed in this study is discussed in relation to region-specific sensations in the teeth and surrounding tissues.  相似文献   

19.
Summary The present study investigated the distribution of neuropeptide Y-immunoreactive fibers to the penis of the rat. In the corpora cavernosa penis, a dense plexus of fibers was asociated with arteries, intrinsic cavernosal muscle, and veins including the deep dorsal vein. In the corpus spongiosum, immunoreactive fibers were present around vascular smooth muscle and at the periphery of the acini of the paraurethral glands. Immunohistochemistry of penile neurons identified by retrograde tracer injection into the penis indicates that about 5% of the penile neurons in the pelvic plexus contained the neuropeptide while larger percentages of penile neurons in the sympathetic chains were immunoreactive for neuropeptide Y. Chemical and surgical sympathectomy greatly reduced the neuropeptide Y- and catecholamine-containing fibers in the erectile tissue but had no clear effect on the neuropeptide Y fibers around the paraurethral glands; a tissue that is not innervated by adrenergic fibers. It is concluded that (1) the widespread distribution of neuropeptide Y indicates that it may function in the control of penile blood flow, (2) with the possible exception of the paraurethral glands, the sympathetic chain is the most likely source of neuropeptide Y fibers in both erectile bodies of the penis, and (3) this peptide may play a role in the secretory functions of the paraurethral glands.  相似文献   

20.
In mammals, the suprachiasmatic nuclei are involved in the generation of biological rhythms and are synchronized by light input coming from the retina. The targets of retinal afferents and the involvement of neurons containing gastrin-releasing and vasoactive intestinal peptides in photic reception were investigated in the suprachiasmatic nuclei of the Syrian hamster by using light- and electron-microscopic immunocytochemistry. Cholera toxin was used to trace retinal fibers and Fos immunoreactivity to visualize cellular response to light stimulation. Ultrastructural observations were made in the intermediate third of the nuclei, the area of highest overlap for the immunoreactivities investigated. Gastrin-releasing peptide and vasoactive intestinal peptide cell bodies were localized in the ventral part of the nuclei; their dense immunoreactive fiber network often displayed synaptic contacts. Both neuropeptides were colocalized in elongated cells observed near the optic chiasm. Following a light pulse in the middle of the subjective night, Fos protein was expressed in most gastrin-releasing peptide perikarya and in some vasoactive intestinal peptide cells. Retinal terminals mostly occurred in the midline zone between the suprachiasmatic nuclei. Symmetrical or asymmetrical retinal synapses were observed on gastrin-releasing peptide-immunoreactive dendrites and somata, but never on vasoactive intestinal peptide neurons. These results are discussed in relation to the photic entrainment of the circadian clock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号