首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Designing enzymes for use in organic solvents.   总被引:1,自引:0,他引:1  
Enzymes are routinely used in organic solvents where numerous reactions of interest to synthetic and polymer chemists can be performed with high selectivity. Recently, it has become apparent that the catalytic properties of an enzyme can be tailored to a specific catalytic requirement by the use of solvent and protein engineering. The former involves altering the polarity, hydrophobicity, water content, etc., of the organic milieu, while the later applies site-directed mutagenesis to alter the physicochemical properties of the biocatalyst. The dominant effects of organic solvents on enzyme structure and function, and the potential of solvent and protein engineering to design enzymes to function optimally in organic media, are the major foci of this review.  相似文献   

2.
We show here that purified chlorocatechol dioxygenase from Pseudomonas putida is able to oxygenate a wide range of substituted catechols with turnover numbers ranging from 2 to 29 s-1. This enzyme efficiently cleaves substituted catechols bearing electron-donating or multiple electron-withdrawing groups in an intradiol manner with kcat/KM values between 0.2 x 10(7) and 1.4 x 10(7) M-1 s-1. These unique catalytic properties prompted a comparison with the related but highly specific enzymes catechol 1,2-dioxygenase and protocatechuate 3,4-dioxygenase. The chlorocatechol dioxygenase gene (clcA) from the Pseudomonas plasmid pAC27 was subcloned into the expression vector pKK223-3, allowing production of chlorocatechol dioxygenase to approximately 7-8% of total cellular protein. An average of 4 mg of purified enzyme has been obtained per gram of wet cells. Protein and iron analyses indicate an iron stoichiometry of 1 iron/57.5-kDa homodimer, alpha 2Fe. The electronic absorption spectrum contains a broad tyrosinate to iron charge transfer transition centered at 430 nm (epsilon = 3095 M-1 cm-1 based on iron concentration) which shifts to 490 nm (epsilon = 3380 M-1 cm-1) upon catechol binding. The resonance Raman spectrum of the native enzyme exhibits characteristic tyrosine ring vibrations. Electron paramagnetic resonance data for the resting enzyme (g = 4.25, 9.83) is consistent with high-spin iron (III) in a rhombic environment. This similarity between the spectroscopic properties of the Fe(III) centers in chlorocatechol dioxygenase and the more specific dioxygenases suggests a highly conserved catalytic site. We infer that the unique catalytic properties of chlorocatechol dioxygenase are due to other characteristics of its substrate binding pocket.  相似文献   

3.
Dicamba (2-methoxy-3,6-dichlorobenzoic acid) O-demethylase (DMO) is the terminal Rieske oxygenase of a three-component system that includes a ferredoxin and a reductase. It catalyzes the NADH-dependent oxidative demethylation of the broad leaf herbicide dicamba. DMO represents the first crystal structure of a Rieske non-heme iron oxygenase that performs an exocyclic monooxygenation, incorporating O2 into a side-chain moiety and not a ring system. The structure reveals a 3-fold symmetric trimer (α3) in the crystallographic asymmetric unit with similar arrangement of neighboring inter-subunit Rieske domain and non-heme iron site enabling electron transport consistent with other structurally characterized Rieske oxygenases. While the Rieske domain is similar, differences are observed in the catalytic domain, which is smaller in sequence length than those described previously, yet possessing an active-site cavity of larger volume when compared to oxygenases with larger substrates. Consistent with the amphipathic substrate, the active site is designed to interact with both the carboxylate and aromatic ring with both key polar and hydrophobic interactions observed. DMO structures were solved with and without substrate (dicamba), product (3,6-dichlorosalicylic acid), and either cobalt or iron in the non-heme iron site. The substitution of cobalt for iron revealed an uncommon mode of non-heme iron binding trapped by the non-catalytic Co2+, which, we postulate, may be transiently present in the native enzyme during the catalytic cycle. Thus, we present four DMO structures with resolutions ranging from 1.95 to 2.2 Å, which, in sum, provide a snapshot of a dynamic enzyme where metal binding and substrate binding are coupled to observed structural changes in the non-heme iron and catalytic sites.  相似文献   

4.
Mendel S  Arndt A  Bugg TD 《Biochemistry》2004,43(42):13390-13396
The extradiol catechol dioxygenases catalyze the non-heme iron(II)-dependent oxidative cleavage of catechols to 2-hydroxymuconaldehyde products. Previous studies of a biomimetic model reaction for extradiol cleavage have highlighted the importance of acid-base catalysis for this reaction. Two conserved histidine residues were identified in the active site of the class III extradiol dioxygenases, positioned within 4-5 A of the iron(II) cofactor. His-115 and His-179 in Escherichia coli 2,3-dihydroxyphenylpropionate 1,2-dioxygenase (MhpB) were replaced by glutamine, alanine, and tyrosine. Each mutant enzyme was catalytically inactive for extradiol cleavage, indicating the essential nature of these acid-base residues. Replacement of neighboring residues Asp-114 and Pro-181 gave D114N, P181A, and P181H mutant enzymes with reduced catalytic activity and altered pH/rate profiles, indicating the role of His-179 as a base and His-115 as an acid. Mutant H179Q was catalytically active for the lactone hydrolysis half-reaction, whereas mutant H115Q was inactive, implying a role for His-115 in lactone hydrolysis. A catalytic mechanism involving His-179 and His-115 as acid-base catalytic residues is proposed.  相似文献   

5.
The effects of water on enzyme (protein) hydration and catalytic efficiency of enzyme molecules in organic solvents have been analyzed in terms of the thermodynamic activity of water, which has been estimated by the NRTL or UNIFAC equations. When the amount of water bound to the enzyme was plotted as a function of water activity, the water adsorption isotherms obtained from the water-solvent liquid mixtures were similar to the reported water-vapor adsorption isotherms of proteins. The water adsorption of proteins from the organic media was not significantly dependent on the properties of the solvents or the nature of the proteins. It is also shown that there is a linear relationship between the logarithm of the enzyme reaction rate and water activity. However, the dependence of the enzyme reaction rate on water activity was found to be different depending on the properties of the solvent. The relationship between water activity and other solvent parameters such as solvent hydrophobicity and the solubility of water in the solvent is also discussed.  相似文献   

6.
BACKGROUND: In plants and photosynthetic bacteria, the tyrosine degradation pathway is crucial because homogentisate, a tyrosine degradation product, is a precursor for the biosynthesis of photosynthetic pigments, such as quinones or tocophenols. Homogentisate biosynthesis includes a decarboxylation step, a dioxygenation and a rearrangement of the pyruvate sidechain. This complex reaction is carried out by a single enzyme, the 4-hydroxyphenylpyruvate dioxygenase (HPPD), a non-heme iron dependent enzyme that is active as a homotetramer in bacteria and as a homodimer in plants. Moreover, in humans, a HPPD deficiency is found to be related to tyrosinemia, a rare hereditary disorder of tyrosine catabolism. RESULTS: We report here the crystal structure of Pseudomonas fluorescens HPPD refined to 2.4 A resolution (Rfree 27.6%; R factor 21.9%). The general topology of the protein comprises two barrel-shaped domains and is similar to the structures of Pseudomonas 2,3-dihydroxybiphenyl dioxygenase (DHBD) and Pseudomonas putida catechol 2,3-dioxygenase (MPC). Each structural domain contains two repeated betaalpha betabeta betaalpha modules. There is one non-heme iron atom per monomer liganded to the sidechains of His161, His240, Glu322 and one acetate molecule. CONCLUSIONS: The analysis of the HPPD structure and its superposition with the structures of DHBD and MPC highlight some important differences in the active sites of these enzymes. These comparisons also suggest that the pyruvate part of the HPPD substrate (4-hydroxyphenylpyruvate) and the O2 molecule would occupy the three free coordination sites of the catalytic iron atom. This substrate-enzyme model will aid the design of new inhibitors of the homogentisate biosynthesis reaction.  相似文献   

7.
The characteristic features of Fe-type nitrile hydratase (NHase) from Rhodococcus sp. N-771 are described. Through the biochemical analyses, we have found that nitric oxide (NO) regulates the photoreactivity of this enzyme by association with the non-heme iron center and photoinduced dissociation from it. The regulation is realized by a unique structure of the catalytic non-heme iron center composed of post-translationally modified cysteine-sulfinic (Cys-SO2H) and -sulfenic acids (Cys-SOH). To understand the biogenic mechanism and the functional role of these modifications, we constructed an over-expression system of whole NHase and individual subunits in Escherichia coli. The results of the studies on several recombinant NHases have shown that the Cys-SO2H oxidation of alphaC112 is indispensable for the catalytic activity of Fe-type NHase.  相似文献   

8.
BACKGROUND: Sphingomonas paucimobilis SYK-6 utilizes an extradiol-type catecholic dioxygenase, the LigAB enzyme (a protocatechuate 4,5-dioxygenase), to oxidize protocatechuate (or 3,4-dihydroxybenzoic acid, PCA). The enzyme belongs to the family of class III extradiol-type catecholic dioxygenases catalyzing the ring-opening reaction of protocatechuate and related compounds. The primary structure of LigAB suggests that the enzyme has no evolutionary relationship with the family of class II extradiol-type catecholic dioxygenases. Both the class II and class III enzymes utilize a non-heme ferrous center for adding dioxygen to the substrate. By elucidating the structure of LigAB, we aimed to provide a structural basis for discussing the function of class III enzymes. RESULTS: The crystal structure of substrate-free LigAB was solved at 2.2 A resolution. The molecule is an alpha2beta2 tetramer. The active site contains a non-heme iron coordinated by His12, His61, Glu242, and a water molecule located in a deep cleft of the beta subunit, which is covered by the alpha subunit. Because of the apparent oxidation of the Fe ion into the nonphysiological Fe(III) state, we could also solve the structure of LigAB complexed with a substrate, PCA. The iron coordination sphere in this complex is a distorted tetragonal bipyramid with one ligand missing, which is presumed to be the O2-binding site. CONCLUSIONS: The structure of LigAB is completely different from those of the class II extradiol-type dioxygenases exemplified by the BphC enzyme, a 2,3-dihydroxybiphenyl 1,2-dioxygenase from a Pseudomonas species. Thus, as already implicated by the primary structures, no evolutionary relationship exists between the class II and III enzymes. However, the two classes of enzymes share many geometrical characteristics with respect to the nature of the iron coordination sphere and the position of a putative catalytic base, strongly suggesting a common catalytic mechanism.  相似文献   

9.
We attempted to apply the directed evolution approach to enhancing enzyme properties in the presence of organic solvents, in which enzyme stability and activity were often drastically reduced. Stability and catalytic activity of phospholipase A(1) in the presence of an organic solvent were enhanced by error-prone polymerase chain reaction (PCR) and DNA shuffling followed by a filter-based visual screening. Three mutants (SA8, SA17 and SA20) were isolated on indicator plates (i.e., 1% phosphatidylcholine gels containing 30% dimethyl sulfoxide (DMSO)) after a second mutant library was treated in 50% DMSO for 36 h. The half-life values of the three mutants exhibited an approximately 4-fold increase. The three mutants also exhibited increased stability in all organic solvents tested compared with the wild-type enzyme. Thus, an enzyme variant having superior catalytic efficiency in most of the organic solvents could be obtained by using any solvent suitable for designing the efficient screening system, regardless of the properties of the particular solvent.  相似文献   

10.
The insolubility of nitrile substrates in aqueous reaction mixture decreases the enzymatic reaction rate. We studied the interaction of fourteen water miscible organic solvents with immobilized nitrile hydrolyzing biocatalyst. Correlation of nitrilase function with physico-chemical properties of the solvents has allowed us to predict the enzyme behavior in such non-conventional media. Addition of organic solvent up to a critical concentration leads to an enhancement in reaction rate, however, any further increase beyond the critical concentration in the latter leads to the decrease in catalytic efficiency of the enzyme, probably due to protein denaturation. The solvent dielectric constant (epsilon) showed a linear correlation with the critical concentration of the solvent used and the extent of nitrile hydrolysis. Unlike alcohols, the reaction rate in case of aprotic solvents could be linearly correlated to solvent log P. Further, kinetic analysis confirmed that the affinity of the enzyme for its substrate (K (m)) was highly dependent upon the aprotic solvent used. Finally, the prospect of solvent engineering also permitted the control of enzyme enantioselectivity by regulating enantiomer traffic at the active site.  相似文献   

11.
作为相容性物质,5-羟化四氢嘧啶不仅可以调节渗透压,还可以稳定蛋白结构,在医药、生物制造和化工行业具有广阔的发展前景。四氢嘧啶羟化酶属于Fe2+与2-酮戊二酸依赖型双加氧酶超家族,主要催化四氢嘧啶生成5-羟化四氢嘧啶。我们简要介绍了四氢嘧啶羟化酶的基因来源、活性检测、蛋白结构、催化机理及活性中心等方面的研究进展。  相似文献   

12.
The alkylsulfatase AtsK from Pseudomonas putida S-313 belongs to the widespread and versatile non-heme iron(II) alpha-ketoglutarate-dependent dioxygenase superfamily and catalyzes the oxygenolytic cleavage of a variety of different alkyl sulfate esters to the corresponding aldehyde and sulfate. The enzyme is only expressed under sulfur starvation conditions, providing a selective advantage for bacterial growth in soils and rhizosphere. Here we describe the crystal structure of AtsK in the apo form and in three complexes: with the cosubstrate alpha-ketoglutarate, with alpha-ketoglutarate and iron, and finally with alpha-ketoglutarate, iron, and an alkyl sulfate ester used as substrate in catalytic studies. The overall fold of the enzyme is closely related to that of the taurine/alpha-ketoglutarate dioxygenase TauD and is similar to the fold observed for other members of the enzyme superfamily. From comparison of these structures with the crystal structure of AtsK and its complexes, we propose a general mechanism for the catalytic cycle of the alpha-ketoglutarate-dependent dioxygenase superfamily.  相似文献   

13.
Abstract Amino acid sequence alignment of the Cephalosporium acremonium isopenicillin N synthase (cIPNS) to similar non-heme Fe2+-containing enzymes from 28 different sources (bacterial, fungal, plant and animals) revealed a homologous region of high sequence conservation containing an invariant histidine residue at position 272 in cIPNS. The importance of this histidine residue in cIPNS was investigated through site-directed mutagenesis by replacing the histidine residue with leucine. The mutated gene was verified by DNA sequence analysis and expressed in Escherichia coli . When analyzed by denaturing gel electrophoresis and immunoblotting, the mutant cIPNS had identical mobility as that of the wild-type enzyme. Enzyme studies on the mutant enzyme showed loss of enzymatic activity indicating that His272 is essential for the catalytic function of cIPNS, possibly as a ligand for iron binding.  相似文献   

14.
Pseudomonas aeruginosa expresses a secreted LOX-isoform (PA-LOX, LoxA) capable of oxidizing polyenoic fatty acids to hydroperoxy derivatives. Here we report high-level expression of this enzyme in E. coli and its structural and functional characterization. Recombinant PA-LOX oxygenates polyenoic fatty acids including eicosapentaenoic acid and docosahexaenoic acid to the corresponding (n-6)S-hydroperoxy derivatives. This reaction involves abstraction of the proS-hydrogen from the n-8 bisallylic methylene. PA-LOX lacks major leukotriene synthase activity but converts 5S-HETE and 5S,6R/S-DiHETE to anti-inflammatory and pro-resolving lipoxins. It also exhibits phospholipid oxygenase activity as indicated by the formation of a specific pattern of oxygenation products from different phospholipid subspecies. Multiple mutagenesis studies revealed that PA-LOX does not follow classical concepts explaining the reaction specificity of mammalian LOXs. The crystal structure of PA-LOX was solved with resolutions of up to 1.48 Å and its polypeptide chain is folded as single domain. The substrate-binding pocket consists of two fatty acid binding subcavities and lobby. Subcavity-1 contains the catalytic non-heme iron. A phosphatidylethanolamine molecule occupies the substrate-binding pocket and its sn1 fatty acid is located close to the catalytic non-heme iron. His377, His382, His555, Asn559 and the C-terminal Ile685 function as direct iron ligands and a water molecule (hydroxyl) completes the octahedral ligand sphere. Although the biological relevance of PA-LOX is still unknown its functional characteristics (lipoxin synthase activity) implicate this enzyme in a bacterial evasion strategy aimed at downregulating the hosts' immune system.  相似文献   

15.
Mammalian lipoxygenases (LOXs) have been implicated in cell differentiation and in the pathogenesis of inflammatory and hyperproliferative diseases. The available structural information indicated that lipoxygenases constitute single polypeptide chain enzymes consisting of a small N-terminal β-barrel domain and a larger C-terminal subunit that harbors the catalytic non-heme iron. Because of its structural similarity to C2-domains of lipases the N-terminal β-barrel domain of lipoxygenases, which comprises about 110 amino acids, has been implicated in membrane binding and activity regulation. To explore the functional relevance of the C2-domain in more detail and to develop a more comprehensive hypothesis on the biological role of this structural subunit we performed gene technical truncation on various mammalian LOX isoforms (12/15-LOXs of various species, human 15-LOX2, mouse 5-LOX) and quantified catalytic activity and membrane binding properties of the truncated recombinant enzyme species. We found that the C2-domain is not essential for catalytic activity and does hardly impact reaction specificity. Truncated enzyme species exhibit impaired membrane binding properties and altered reaction kinetics. Taken together, our data suggests a regulatory importance of the N-terminal β-barrel domain for mammalian lipoxygenase isoforms.  相似文献   

16.
The effect of concentration of ethanol and dimethyl sulfoxide on the catalytic activity of laccase is studied for the enzymatic reaction of catechol oxidation and bioelectrocatalytic reaction of oxygen reduction under the conditions of direct electron transfer. Laccase-Nafion composite is elaborated ensuring the enzyme stability in a wide potential range and a content of organic solvents. Based on the STM measurements, the structure of composite layer is proposed. It is shown that the mechanism of oxygen reduction reaction by laccase in organo-aqueous mixtures is similar to that earlier proposed for aqueous solutions. A decrease in the electrocatalytic activity of laccase in the oxygen reduction correlates with a decrease in the laccase enzymatic activity in the substrate oxidation. However, a decrease in the laccase activity in the composite is observed at a higher content of organic solvent in the mixture. The mechanism of laccase inactivation by organic solvents is proposed.  相似文献   

17.
The ring-hydroxylating dioxygenase (RHD) from Sphingomonas CHY-1 is remarkable due to its ability to initiate the oxidation of a wide range of polycyclic aromatic hydrocarbons (PAHs), including PAHs containing four- and five-fused rings, known pollutants for their toxic nature. Although the terminal oxygenase from CHY-1 exhibits limited sequence similarity with well characterized RHDs from the naphthalene dioxygenase family, the crystal structure determined to 1.85 A by molecular replacement revealed the enzyme to share the same global alpha(3)beta(3) structural pattern. The catalytic domain distinguishes itself from other bacterial non-heme Rieske iron oxygenases by a substantially larger hydrophobic substrate binding pocket, the largest ever reported for this type of enzyme. While residues in the proximal region close to the mononuclear iron atom are conserved, the central region of the catalytic pocket is shaped mainly by the side chains of three amino acids, Phe350, Phe404 and Leu356, which contribute to the rather uniform trapezoidal shape of the pocket. Two flexible loops, LI and LII, exposed to the solvent seem to control the substrate access to the catalytic pocket and control the pocket length. Compared with other naphthalene dioxygenases residues Leu223 and Leu226, on loop LI, are moved towards the solvent, thus elongating the catalytic pocket by at least 2 A. An 11 A long water channel extends from the interface between the alpha and beta subunits to the catalytic site. The comparison of these structures with other known oxygenases suggests that the broad substrate specificity presented by the CHY-1 oxygenase is primarily due to the large size and particular topology of its catalytic pocket and provided the basis for the study of its reaction mechanism.  相似文献   

18.
The homogeneous bovine heart mitochondrial high-molecular-mass oxaloacetate keto-enol tautomerase [(1988) Biochim. Biophys. Acta 936, 10-19] is shown to be an iron-sulfur protein as revealed by the enzyme spectral properties and direct chemical determination of non-heme iron and acid-labile sulfur. The protein is capable of catalysing the aconitase reaction after treatment with ferrous ions under anaerobic conditions. Treatment of the 'activated' protein with N-ethylmaleimide results in the simultaneous irreversible loss of the oxaloacetate keto-enol tautomerase and aconitase activities. The effects of some substrates and inhibitors on both activities show that the same catalytic site is involved in the oxaloacetate tautomerase and aconitase reactions. It is concluded that the protein previously described as a 80 kDa oxaloacetate keto-enol tautomerase is inactive aconitase.  相似文献   

19.
Intradiol dioxygenase are iron-containing enzymes involved in the bacterial degradation of natural and xenobiotic aromatic compounds. The wild-type and mutants forms of catechol 1,2-dioxygenase Iso B from Acinetobacter radioresistens LMG S13 have been investigated in order to get an insight on the structure–function relationships within this system. 4K CW-EPR spectroscopy highlighted different oxygen binding properties of some mutants with respect to the wild-type enzyme, suggesting that a fine tuning of the substrate-binding determinants in the active site pocket may indirectly result in variations of the iron reactivity. A thermostability investigation by optical spectroscopy, that reports on the state of the metal center, showed that the structural stability is more influenced by the type rather than by the position of the mutation. Finally, the influence of pH and temperature on the catalytic activity was monitored and discussed in terms of perturbations induced on the tertiary contact network of the enzyme.  相似文献   

20.
Previously we purified an enzyme from Phenylobacterium immobilis DSM 1986, which cleaves the catechol derivative of the herbicide Chloridazon [5-amino-4-chloro-2-phenyl-3 (2H)-pyridazinone] in the meta position. The enzyme, which could be crystallized, proved in Ouchterlony double-diffusion tests to consist of a single protein species. No cross-reaction was observed with other meta-cleaving enzymes. Its light absorption spectrum showed a maximum at 279 nm (epsilon = 310 mM -1 cm -1), shoulders at 289 nm and 275 nm and a very weak band at around 430 nm (epsilon = 1.14 mM -1 cm -1). The amino acid analysis showed a slight excess of acidic amino acids, in agreement with the pl of 4.5. Surprisingly the enzyme per se is completely inactive, although it contains one non-dialysable iron atom per submit. It has to be activated by preincubation with ferrous ions or ascorbate. The enzyme activated this way is autoxidizable and returns to its non-activated state in the presence of oxygen. During the reaction with the substrate, this inactivation seems to be enhanced about 100 times. Since this kind of activation and inactivation is not observed in other meta-cleaving enzymes, this enzyme seems to represent a new type of a non-heme iron dioxygenase. We tentatively propose the name Chloridazon-catechol dioxygenase for this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号