首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined whether protein kinase C activation plays a modulatory or an obligatory role in exocytosis of catecholamines from chromaffin cells by using PKC(19-31) (a protein kinase C pseudosubstrate inhibitory peptide), Ca/CaM kinase II(291-317) (a calmodulin-binding peptide), and staurosporine. In permeabilized cells, PKC (19-31) inhibited the phorbol ester-mediated enhancement of Ca2(+)-dependent secretion as much as 90% but had no effect on Ca2(+)-dependent secretion in the absence of phorbol ester. The inhibition of the phorbol ester-induced enhancement of secretion by PKC (19-31) was correlated closely with the ability of the peptide to inhibit in situ phorbol ester-stimulated protein kinase C activity. PKC(19-31) also blocked 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced phosphorylation of numerous endogenous proteins in permeabilized cells but had no effect on Ca2(+)-stimulated phosphorylation of tyrosine hydroxylase. Ca/CaM kinase II(291-317), derived from the calmodulin binding region of Ca/calmodulin kinase II, had no effect on Ca2(+)-dependent secretion in the presence or absence of phorbol ester. The peptide completely blocked the Ca2(+)-dependent increase in tyrosine hydroxylase phosphorylation but had no effect on TPA-induced phosphorylation of endogenous proteins in permeabilized cells. To determine whether a long-lived protein kinase C substrate might be required for secretion, the lipophilic protein kinase inhibitor, staurosporine, was added to intact cells for 30 min before permeabilizing and measuring secretion. Staurosporine strongly inhibited the phorbol ester-mediated enhancement of Ca2(+)-dependent secretion. It caused a small inhibition of Ca2(+)-dependent secretion in the absence of phorbol ester which could not be readily attributed to inhibition of protein kinase C. Staurosporine also inhibited the phorbol ester-mediated enhancement of elevated K(+)-induced secretion from intact cells while it enhanced 45Ca2+ uptake. Staurosporine inhibited to a small extent secretion stimulated by elevated K+ in the absence of TPA. The data indicate that activation of protein kinase C is modulatory but not obligatory in the exocytotoxic pathway.  相似文献   

2.
We applied recombinant forms of the Rho-related small guanosine triphosphatases (GTPases) Rac2 and Cdc42/G25K to permeabilized mast cells to test their ability to regulate exocytotic secretion. Mast cells permeabilized with streptolysin-O leak soluble (cytosol) proteins over a period of 5 min and become refractory to stimulation by Ca2+ and guanosine triphosphate (GTP)γS over about 20–30 min. This loss of sensitivity is likely to be due to loss of key regulatory proteins that are normally tethered at intracellular locations. Exogenous proteins that retard this loss of sensitivity to stimulation may be similar, if not identical, to those secretory regulators that are lost. Recombinant Rac and Cdc42/G25K, preactivated by binding GTPγS, retard the loss of sensitivity (run-down) and, more importantly, enable secretion to be stimulated by Ca2+ alone. Investigation of the concentration dependence of each of these two GTPases applied individually to the permeabilized cells, and of Cdc42/G25K applied in the presence of an optimal concentration of Rac2, has provided evidence for a shared effector pathway and also a second effector pathway activated by Cdc42/G25K alone. Dominant negative mutant (N17) forms of Rac2 and Cdc42/G25K inhibit secretion induced by Ca2+ and GTPγS. Our data suggest that Rac2 and Cdc42 should be considered as candidates for GE, GTPases that mediate exocytosis in cells of hematopoeitic origin.  相似文献   

3.
Mast cells permeabilized by treatment with streptolysin-O in the presence of Ca2+ and GTP-gamma-S can secrete almost 100% of their contained N-acetyl-beta-D-glucosaminidase. If these stimuli are provided to the permeabilized cells after a delay, the response is diminished and the ability of the cells to undergo secretion runs down progressively over a period of about 30 min. This is thought to be due to the loss of key proteins involved in the exocytotic mechanism. Using this effect as the basis of a biological assay, we have isolated a protein from bovine brain cytosol that retards the loss of responsiveness to stimulation by Ca2+ and GTP-gamma-S. Purification of this protein and peptide sequencing have enabled us to identify it as the small GTP-binding protein rac complexed to the guanine nucleotide exchange inhibitor rhoGDI. Both proteins are required to retard the loss of the secretory response, while purified rhoGDI applied alone accelerates the rundown.  相似文献   

4.
The pleckstrin homology (PH) domains of phospholipase C (PLC)-delta1 and a related catalytically inactive protein, p130, both bind inositol phosphates and inositol lipids. The binding to phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] by PLC-delta1 is proposed to be the critical interaction required for membrane localization to where the substrate resides; it is also required for the Ca(2+)-dependent activation of PLC-delta1 observed in the permeabilized cells. In the proximity of the PH domain, both PLC-delta1 and p130 possess the EF-hand domain, containing classical motifs implicated in calcium binding. Therefore, in the present study we examined whether the binding of the PH domain to PtdIns(4,5)P2 is regulated by changes in free Ca2+ concentration within the physiological range. A Ca2+ dependent increase in the binding to PtdIns(4,5)P2 was observed with a full-length PLC-delta1, while the isolated PH domain did not show any Ca2+ dependence. However, the connection of the EF-hand motifs to the PH domain restored the Ca2+ dependent increase in binding, even in the absence of the C2 domain. The p130 protein showed similar properties to PLC-delta1, and the EF-hand motifs were again required for the PH domain to exhibit a Ca2+ dependent increase in the binding to PtdIns(4,5)P2. The isolated PH domains from several other proteins which have been demonstrated to bind PtdIns(4,5)P2 showed no Ca2+ dependent enhancement of binding. However, when present within a chimera also containing PLC-delta1 EF-hand motifs, the Ca2+ dependent binding was again observed. These results suggest that the binding of Ca2+ to the EF-hand motifs can modulate binding to PtdIns(4,5)P2 mediated by the PH domain.  相似文献   

5.
1. Catecholamine secretion from digitonin-treated chromaffin cells is stimulated directly by micromolar Ca2+ in the medium. The permeabilized cells are leaky to proteins. 2. In this study trypsin (30-50 micrograms/ml) added to cells after digitonin treatment completely inhibited subsequent Ca2+-dependent catecholamine secretion. The same concentrations of trypsin did not inhibit secretion from permeabilized cells if trypsin was present only prior to cell permeabilization. 3. The data indicate that trypsin entered digitonin-treated chromaffin cells which were capable of undergoing secretion and that an intracellular, trypsin-sensitive protein is involved in secretion. Chymotrypsin was less potent but had effects similar to those of trypsin. 4. The enhancement of Ca2+-dependent secretion from permeabilized chromaffin cells induced by the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) was inhibited by trypsin added simultaneously with Ca2+ to permeabilized cells at concentrations (3-10 micrograms/ml) which had little or no effect on Ca2+-dependent secretion from cells untreated with TPA. Ca2+-dependent secretion in TPA-treated cells was reduced by trypsin only to the level that would have occurred in cells not treated with TPA. Trypsin reduced the large TPA-induced increment of membrane-bound protein kinase C.  相似文献   

6.
We have used primary gonadotropes permeabilized with the pore-forming protein Staphylococcus aureus alpha-toxin to investigate luteinizing hormone (lutropin, LH) exocytosis. The diameter of the alpha-toxin pores (2-3 nm) allows the exchange of small molecules, whereas larger cytosolic proteins are retained. Because of the slow exchange of small molecules through the pores, we have developed a protocol which combines prolonged pre-equilibration of the permeabilized cells at 0 degrees C before stimulation with strong Ca2+ buffering. Under these conditions, increasing the free Ca2+ concentration from 0.1 microM to 10 microM [EC50 (concentration effecting half-maximal response) 2-3 microM] resulted in a 15-20-fold increase in LH exocytosis. LH exocytosis was maximal in the first 3 min and completed by 12 min. When permeabilized cells were equilibrated for prolonged periods in the absence of MgATP, Ca2(+)-stimulated LH secretion gradually declined (greater than 90% decrease by 60 min). Addition of MgATP (5 mM) rapidly restored full Ca2(+)-stimulated LH secretion. MgATP supported Ca2(+)-stimulated LH secretion at a half-maximal concentration of 1.5 mM. UTP and adenosine 5'-[gamma-thio]triphosphate were 40 and 31% as effective as MgATP, whereas other nucleotide triphosphates were ineffective. The protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA; 50 nM) stimulated LH exocytosis at free Ca2+ concentrations as low as 1 nM and was additive with Ca2+ at higher free Ca2+ concentrations. PMA-stimulated exocytosis required MgATP at concentrations similar to those required for Ca2(+)-stimulated LH exocytosis. These results demonstrate that LH exocytosis can be triggered both by micromolar Ca2+ concentrations or, in the virtual absence of Ca2+, by PKC activation. Both mechanisms of stimulated exocytosis have an absolute requirement for millimolar ATP. Because they retain cytosolic proteins, alpha-toxin-permeabilized cells may have advantages over alternative permeabilization methods provided that conditions are used that compensate for slow diffusion through alpha-toxin pores.  相似文献   

7.
The effects of phorbol esters, dioctanoylglycerol (DiC8), and micromolar Ca2+ on protein phosphorylation and catecholamine secretion in digitonin-treated chromaffin cells were investigated. [gamma-32P]ATP was used as a substrate for phosphorylation in the permeabilized cells. 12-O-Tetradecanoylphorbol-13-acetate (TPA) enhanced Ca2+-dependent catecholamine secretion from digitonin-permeabilized cells. The enhancement required MgATP. Only those phorbol esters which activate protein kinase C in vitro enhanced both catecholamine secretion and protein phosphorylation. DiC8, which activates protein kinase C in vitro and mimics phorbol ester effects in situ, also enhanced both catecholamine secretion and protein phosphorylation. Preincubation of intact cells with TPA or DiC8 was necessary for maximal effects on both catecholamine secretion and protein phosphorylation in subsequently digitonin-treated chromaffin cells. The TPA-induced enhancement of protein phosphorylation was almost entirely Ca2+-independent, whereas DiC8-induced enhancement of protein phosphorylation was mainly Ca2+-dependent. Micromolar Ca2+ alone also enhanced the phosphorylation of a large number of proteins. Most of the proteins phosphorylated in response to TPA or potentiated by DiC8 in combination with Ca2+ were also phosphorylated by micromolar Ca2+ in the absence of exogenous protein kinase C activators. In intact cells, 1,1-dimethyl-4-phenylpiperazinium (DMPP) induced Ca2+-dependent phosphorylation of at least 17 proteins which were detected by two-dimensional gel electrophoresis. All of the proteins phosphorylated upon incubation with 1,1-dimethyl-4-phenylpiperazinium were phosphorylated upon incubation with micromolar Ca2+ in digitonin-treated cells. These results demonstrate that TPA- or DiC8-enhanced Ca2+-dependent catecholamine secretion is associated with enhanced protein phosphorylation which is probably mediated by protein kinase C and that activation of protein kinase C modulates catecholamine secretion from digitonin-treated chromaffin cells.  相似文献   

8.
The MgATP dependency of secretion was investigated in digitonin-permeabilized adrenal chromaffin cells. Shortly after permeabilization there is a component of Ca2+-dependent secretion that occurs in the absence of MgATP in the medium. This secretion occurs from cells which are permeable to Ca2+/[ethylene-bis(oxyethylenenitrilo)]tetraacetic acid buffers, to nucleotides, and to proteins. It is prevented by treatment of cells with metabolic inhibitors to reduce cellular ATP prior to permeabilization. The rate of MgATP-independent secretion is rapid and terminates by approximately 2 min after introduction of Ca2+. MgATP-independent secretion is labile and is lost unless Ca2+ is introduced within 8 min of permeabilization. MgATP-dependent secretion occurs at a slower rate than MgATP-independent secretion and continues at a constant rate for 12 min. Preincubation of permeabilized cells with MgATP enhances Ca2+-dependent secretion during a subsequent incubation in the absence of MgATP. Similar MgATP sensitivities are observed when MgATP is present only prior to or only during stimulation with Ca2+ with half-maximal stimulation occurring at 0.4-0.5 and 0.6 mM MgATP, respectively. The data indicate that intact cells are primed by intracellular ATP so that immediately upon permeabilization, there is a component of secretion which is independent of medium MgATP. MgATP partially maintains the primed state after permeabilization by acting before Ca2+ in the secretory pathway.  相似文献   

9.
ADP-ribosylation factor (ARF) proteins are monomeric GTPases that are essential for membrane transport and exocytosis in a number of secretory cells. We investigated ARF6, the activation of which is insensitive to brefeldin A, to determine whether it regulates membrane traffic in gastric parietal cells. ARF6 translocated from cytosol to tubulovesicle in the presence of GTPgammaS, a potential inhibitor of acid secretion in permeabilized cells, whereas under the Mg2+-chelated condition where activity of ARF-GTPase activating protein is inhibited, ARF6 translocated to the apical secretory membrane. Immunohistochemical examination revealed that ARF6 mainly located in parietal cell within the gastric glands, and it translocated from the cytosol to the intracellular canaliculi when the glands were stimulated. These results indicated that the distribution of ARF6 between cytosol and the two different membranes was regulated by its GTPase activity. In cultured gastric glands infected with adenovirus expressing ARF6 Q67L, a mutant lacking GTP hydrolysis activity, gastric acid secretion was inhibited. These results suggest that ARF6 regulates gastric acid secretion in parietal cell and that the GTP hydrolysis cycle of ARF6 is essential for the activation pathway.  相似文献   

10.
The incorporation of 32P from [gamma-32P]ATP into intracellular proteins was studied in electrically permeabilized rat islets of Langerhans. Ca2+ (10 microM), cyclic AMP (100 microM) and a protein kinase C-activating phorbol ester, phorbol 13-myristate 12-acetate (PMA; 100 nM) produced marked changes in the phosphorylation state of a number of proteins in permeabilized islets after incubation for 1 min at 37 degrees C. Ca2+ modified the effects of cyclic AMP and PMA on protein phosphorylation. Noradrenaline (10 microM) had no detectable effects on Ca2+-dependent protein phosphorylation, but significantly inhibited Ca2+-induced insulin secretion from electrically permeabilized islets. These results suggest that electrically permeabilized islets offer a useful model in which to study rapid events in protein phosphorylation as a mechanism of stimulus-secretion coupling. If the rapid Ca2+-induced effects on protein phosphorylation are involved in the control of insulin secretion, the results of this study also imply that part of the catecholamine inhibition of insulin secretion occurs at a stage in the secretory pathway beyond the activation of the regulated protein kinases.  相似文献   

11.
Non-hydrolyzable GTP analogues, such as guanosine 5'-(beta, gamma-imido)triphosphate (GppNHp), induce granule secretion from permeabilized platelets in the absence of increased intracellular Ca(2+). Here, we show that the GppNHp-induced dense granule secretion from permeabilized platelets occurred concomitantly with the activation of small GTPase Ral. This secretion was inhibited by the addition of GTP-Ral-binding domain (RBD) of Sec5, which is a component of the exocyst complex known to function as a tethering factor at the plasma membrane for vesicles. We generated an antibody against Sec5-RBD, which abolished the interaction between GTP-Ral and the exocyst complex in vitro. The addition of this antibody inhibited the GppNHp-induced secretion. These data indicate that Ral mediates the GppNHp-induced dense granule secretion from permeabilized platelets through interaction with its effector, the exocyst complex. Furthermore, GppNHp enhanced the Ca(2+) sensitivity of dense granule secretion from permeabilized platelets, and this enhancement was inhibited by Sec5-RBD. In intact platelets, the association between Ral and the exocyst complex was induced by thrombin stimulation with a time course similar to that of dense granule secretion and Ral activation. Taken together, our results suggest that the Ral-exocyst pathway participates in the regulation of platelet dense granule secretion by enhancing the Ca(2+) sensitivity of the secretion.  相似文献   

12.
Calcium, initially considered as the universal link between receptor stimulation and the onset of exocytosis in secretory cells, is now recognised as only one of a number of intracellular activators. In cells of haematopoietic origin (including mast cells), the key activator is one or more GTPases. Cells of this class, stimulated with GTPgammaS can undergo exocytosis in the effective absence of Ca(2+). A number of GTP-binding proteins that mediate exocytosis (G(E)) have been proposed but the best evidence supports roles for members of the Rho family of monomeric GTPases and for betagamma-subunits derived from G(i3). While preactivated Rac and Cdc42 can induce secretion from permeabilised mast cells in the absence of a guanine nucleotide betagamma-subunits only act to enhance the secretion induced by other GTP-binding proteins (likely to be members of the Rho family of monomeric GTPases). Further work is required to identify downstream effectors activated by these GTP-binding proteins and to show how they interact with the SNAP and SNARE isoforms known to be present in these cells.  相似文献   

13.
The nonhydrolyzable GTP analogue guanosine 5'-(beta, gamma-imido)triphosphate (GMP-PNP) produced an ATP-dependent but Ca2+-independent stimulation of [3H]norepinephrine release from permeabilized chromaffin cells. This stimulation of secretion was 25-35% of the secretion induced by 10 microM Ca2+. A similar Ca2+-independent stimulation was produced by other non-hydrolyzable GTP analogues. No effect was seen with a variety of other nucleotides, including GTP. The GMP-PNP effect was specifically inhibited by low concentrations of guanine nucleotides. Addition of cAMP did not mimic the Ca2+-independent GMP-PNP effect, but did slightly enhance Ca2+-dependent secretion. Pretreatment with pertussis toxin had no effect on Ca2+-dependent secretion or on the GMP-PNP effect. There was no detectable diglyceride or inositol phosphate produced during GMP-PNP treatment, and addition of diglyceride and inositol trisphosphate did not induce secretion. Guanosine 5'-(beta-thio)diphosphate (GDP-beta-S), in addition to its ability to inhibit the GMP-PNP effect, partially inhibited Ca2+-dependent secretion. At 10 microM free Ca2+, the effects of GMP-PNP and Ca2+ were nonadditive. In fact, secretion in the presence of both GMP-PNP and 10 microM Ca2+ was slightly less than secretion due to Ca2+ alone. These data suggest that a guanine nucleotide-dependent process interacts in some way with one or more components of the normal Ca2+-dependent secretory pathway. However, it may not be an intrinsic part of the mechanism underlying Ca2+-dependent secretion.  相似文献   

14.
Electropermeabilized human platelets containing 5-hydroxy[14C]tryptamine ([14C]5-HT) were suspended in a glutamate medium containing ATP and incubated for 10 min with (in various combinations) Ca2+ buffers, phorbol 12-myristate 13-acetate (PMA), guanine nucleotides, and thrombin. Release of [14C]5-HT and beta-thromboglobulin (beta TG) were used to measure secretion from dense and alpha-granules, respectively. Ca2+ alone induced secretion from both granule types; half-maximal effects were seen at a -log [Ca2+ free] (pCa) of 5.5 and maximal secretion at a pCa of 4.5, when approximately 80% of 5-HT and approximately 50% of beta TG were released. Addition of PMA, guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S), GTP, or thrombin shifted the Ca2+ dose-response curves for secretion of both 5-HT and beta TG to the left and caused small increases in the maximum secretion observed. These results suggested that secretion from alpha-granules, like that from dense granules, is a Ca(2+)-dependent process stimulated by the sequential activation of a G-protein, phospholipase C, and protein kinase C (PKC). However, high concentrations of PMA and GTP gamma S had distinct effects in the absence of Ca2+ (pCa greater than 9); 100 nM PMA released approximately 20% of platelet 5-HT but little beta TG, whereas 100 microM GTP gamma S stimulated secretion of approximately 25% of each. Simultaneous addition of PMA greatly enhanced these effects of GTP gamma S. Phosphorylation of pleckstrin in permeabilized platelets incubated with [gamma-32P]ATP was used as an index of the activation of PKC during secretion. In the absence of Ca2+, 100 nM PMA caused maximal phosphorylation of pleckstrin and 100 microM GTP gamma S was approximately 50% as effective as PMA; neither GTP gamma S nor Ca2+ enhanced the phosphorylation of pleckstrin caused by 100 nM PMA. These results indicate that, although activation of PKC promoted secretion, GTP gamma S exerted additional stimulatory effects on secretion from both dense and alpha-granules that were not mediated by PKC. Measurement of [3H]inositol phosphate formation in permeabilized platelets containing [3H]phosphoinositides showed that GTP gamma S did not stimulate phosphoinositide-specific phospholipase C in the absence of Ca2+. It follows that in permeabilized platelets, GTP gamma S can both stimulate PKC and enhance secretion via G-protein-linked effectors other than this phospholipase.  相似文献   

15.
Prostaglandin E(2) (PGE(2)) stimulates secretion of tick salivary gland proteins via a phosphoinositide signaling pathway and mobilization of intracellular Ca(2+) (). Highly conserved intracellular SNARE (soluble NSF attachment protein receptors) complex proteins are associated with the mechanism of protein secretion in vertebrate and invertebrate neuronal and non-neuronal cells. Proteins in the salivary glands of partially fed female lone star ticks cross-react individually with antibodies to synaptobrevin-2 (vesicle (v)-SNARE), syntaxin-1A, syntaxin-2 and SNAP-25 (target (t)-SNAREs), cytosolic alpha/beta SNAP and NSF (N-ethylmaleimide-sensitive fusion protein), Ca(2+) sensitive synaptotagmin, vesicle associated synaptophysin, and regulatory cell trafficking GTPases Rab3A and nSec1. V-SNARE and t-SNARE proteins form an SDS-resistant, boiling sensitive core complex in the salivary glands. Antibodies to SNARE complex proteins inhibit PGE(2)-stimulated secretion of anticoagulant protein in permeabilized tick salivary glands. We conclude that SNARE and cell trafficking regulatory proteins are present and functioning in the process of PGE(2)-stimulated Ca(2+) regulated protein secretion in tick salivary glands.  相似文献   

16.
We compared the characteristics of secretion stimulated by EGTA-buffered Ba(2+)- and Ca(2+)-containing solutions in digitonin-permeabilized bovine adrenal chromaffin cells. Half-maximal secretion occurred at approximately 100 microM Ba2+ or 1 microM Ca2+. Ba(2+)-stimulated release was not due to release of sequestered intracellular Ca2+ because at a constant free Ba2+ concentration, increasing unbound EGTA did not diminish the extent of release due to Ba2+. The maximal extents of Ba(2+)- and Ca(2+)-dependent secretion in the absence of MgATP were identical. MgATP enhanced Ba(2+)-induced secretion to a lesser extent than Ca(2+)-induced secretion. Half-maximal concentrations of Ba2+ and Ca2+, when added together to cells, yielded approximately additive amounts of secretion. Maximal concentrations of Ba2+ and Ca2+ when added together to cells for 2 or 15 min were not additive. Tetanus toxin inhibited Ba(2+)- and Ca(2+)-dependent secretion to a similar extent. Ba2+, unlike Ca2+, did not activate polyphosphoinositide-specific phospholipase C. These data indicate that (1) Ba2+ directly stimulates exocytosis, (2) Ba(2+)-induced secretion is stimulated to a lesser extent than Ca(2+)-dependent secretion by MgATP, (3) Ba2+ and Ca2+ use similar pathways to trigger exocytosis, and (4) exocytosis from permeabilized cells does not require activation of polyphosphoinositide-specific phospholipase C.  相似文献   

17.
The non-hydrolyzable GTP analogue, guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) and cyclic AMP potentiated the Ca2+-evoked secretion of alpha-melanocyte-stimulating hormone (alpha-MSH) from permeabilized neurointermediate lobe (IL) cells of rat pituitary gland. The enhancement by Mg-GTP gamma S (100 microM) and cyclic AMP (1 microM) depended on the intracellular Ca2+ concentration (EC50 = 4.8 +/- 1.8 and 4.6 +/- 1.7 microM; mean +/- SE, with and without Mg-GTP gamma S and cyclic AMP, respectively). A similar effect was observed with guanine nucleotide triphosphate (GTP and GppNHp). Mg was absolutely required for this event. Neither Mg-GTP gamma S nor cyclic AMP alone was effective in potentiating alpha-MSH secretion. GDP beta S blocked the Mg-GTP gamma S (100 microM) and cyclic AMP augmented secretion of alpha-MSH. Neither neomycin (which affects the process of inositol 1,4,5-triphosphate-mediated Ca2+ mobilization) or colchicine (which influences microtubule assembly) had an effect on the cyclic AMP and Mg-GTP gamma S potentiation of alpha-MSH secretion. These data suggest that the GTP-binding protein may be involved in the regulation of alpha-MSH secretion after Ca2+ entry into the cells, since the intracellular environment is controlled in the permeabilized cells.  相似文献   

18.
In bovine adrenal chromaffin cells nicotinic stimulation or a depolarizing concentration of K+ caused a rapid, transient translocation to membranes of as much as 14% of the total cellular protein kinase C activity. The quantitative relationship between membrane-bound protein kinase C and Ca2+-dependent secretion was determined in cells rendered leaky by digitonin treatment. Intact cells were incubated with various concentrations of 12-O-tetradecanoylphorbol-13-acetate (TPA) to activate and cause translocation of protein kinase C to membrane before permeabilization in the presence of Ca2+. For the same amount of membrane-bound protein kinase C, a similar degree of enhancement of Ca2+-dependent secretion occurred in cells incubated for 1 or 30 min with TPA. Translocation of as little as 2-3% of the cellular protein kinase C to the membrane enhanced Ca2+-dependent secretion by 25-30%. Muscarinic agonists caused a 5% increase in membrane-bound protein kinase C at 2 s which rapidly reversed. Nicotinic and muscarinic receptor-mediated increases in membrane-bound protein kinase C were additive at 10 s and synergistic at 3 min. Muscarinic stimulation enhanced nicotinic receptor-dependent secretion. Prior incubation with TPA caused a similar enhancement of nicotinic-mediated secretion. The data indicate that protein kinase C which is translocated within seconds of stimulation of the cells with a nicotinic agonist or elevated K+ probably enhances the secretory response immediately or soon after exocytosis begins. In addition, the muscarinic receptor-mediated enhancement of nicotinic receptor-stimulated secretion may be due to newly activated protein kinase C.  相似文献   

19.
Most investigations of the mechanism of regulated exocytosis have involved the use of secretory cells permeabilized in glutamate-based electrolyte solutions. In our previous work we have used NaCl-based electrolyte solutions. For secretion to occur from rat mast cells under these latter conditions, a dual effector system comprising Ca2+ and a guanine nucleotide are required; together they are sufficient. Here we compare the secretion from mast cells permeabilized in solutions of different electrolytes. Replacement of Na+ by K+ had little effect. Replacement of Cl- by Br-, SO4-, gluconate, isethionate, acetate, tartrate, succinate, etc. affected the maximal extent of secretion elicited by the dual effectors Ca2+ and guanosine-5'-O-(3-thiotriphosphate) (Ca2(+)-plus-GTP-gamma-S) but had little influence on the effective affinity for Ca2+. The dicarboxylic amino acids (L- and D-glutamate, and L-aspartate) permitted exocytosis to be elicited by Ca2+ or GTP-gamma-S alone. Secretion stimulated by GTP-gamma-S is strongly inhibited by Cl- (50% inhibition by 20 mM Cl-), whereas the extent of Ca2(+)-induced secretion is proportional to the concentration of glutamate in mixed electrolyte buffers. Unlike dual-effector stimulation, secretion due to the single effectors requires adenosine triphosphate (ATP) and is prevented by inhibitors of protein kinase C. These results point to the existence of two parallel pathways for control of exocytosis in permeabilized cells, one ATP dependent, the other ATP independent.  相似文献   

20.
Guanosine triphosphate (GTP) has been implicated in the regulation of Ca(2+)-mediated secretion from neutrophils. We further examined the role of GTP in neutrophil secretion using streptolysin O permeabilized cells. We found that, in the presence of GTP, 1.0 microM free Ca(2+) causes maximum secretion-equivalent to that achieved with 100 microM free Ca(2+)-whereas GTPgammaS inhibits Ca(2+)-stimulated secretion. Interestingly, GTP by itself stimulates secretion. These results indicate the existence of a GTP-regulated mechanism of secretion in neutrophils that requires GTP hydrolysis to stimulate secretion in the presence and absence of Ca(2+). The stimulatory effect of GTP is only observed when GTP is present during permeabilization. Addition of GTP after permeabilization, when the cytosolic contents have leaked out from cells, gives no stimulatory response, implying that the GTP-dependent secretory apparatus requires at least one cytosolic protein. GTP-dependent secretion can be reconstituted with crude HL-60 and bovine liver cytosol. The reconstituting activity binds to GTP-agarose, suggesting that the cytosolic factor is a GTP-binding protein or forms a complex with a GTP-binding protein. However, it is not a member of the rho or rac families of GTPases. By gel filtration chromatography, the secretion-reconstituting activity eluted at 870 and 200 kDa, but in the presence of GTP, eluted at 120 kDa, indicating that it is part of a high-molecular-weight complex that dissociates in the presence of GTP. Retention of adenosine diphosphate-ribosylation factor (ARF) in permeabilized cells and insensitivity of the cytosolic reconstituting activity to brefeldin A led to our speculation that ARF6 may be the GTPase involved in GTP-dependent secretion, and that activity from a BFA-insensitive ARF6 guanine nucleotide exchange factor reconstitutes secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号