首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
The Wnt signaling pathway regulates multiple aspects of the development of stem cell-like epithelial seam cells in Caenorhabditis elegans, including cell fate specification and symmetric/asymmetric division. In this study, we demonstrate that lit-1, encoding the Nemo-like kinase in the Wnt/β-catenin asymmetry pathway, plays a role in specifying temporal identities of seam cells. Loss of function of lit-1 suppresses defects in retarded heterochronic mutants and enhances defects in precocious heterochronic mutants. Overexpressing lit-1 causes heterochronic defects opposite to those in lit-1(lf) mutants. LIT-1 exhibits a periodic expression pattern in seam cells within each larval stage. The kinase activity of LIT-1 is essential for its role in the heterochronic pathway. lit-1 specifies the temporal fate of seam cells likely by modulating miRNA-mediated silencing of target heterochronic genes. We further show that loss of function of other components of Wnt signaling, including mom-4, wrm-1, apr-1, and pop-1, also causes heterochronic defects in sensitized genetic backgrounds. Our study reveals a novel function of Wnt signaling in controlling the timing of seam cell development in C. elegans.  相似文献   

9.
An identification key for 20 common strand-forming indoor wood decay fungi is given. The key is based on observations of material from affected buildings and on wood samples that have been incubated in the laboratory. The key is with macro- and microscopic photographs.  相似文献   

10.
11.
Mammals with more rapid and agile locomotion have larger semicircular canals relative to body mass than species that move more slowly. Measurements of semicircular canals in extant mammals with known locomotor behaviours can provide a basis for testing hypotheses about locomotion in fossil primates that is independent of postcranial remains, and a means of reconstructing locomotor behaviour in species known only from cranial material. Semicircular canal radii were measured using ultra high resolution X-ray CT data for 9 stem primates (“plesiadapiforms”; n = 11), 7 adapoids (n = 12), 4 omomyoids (n = 5), and the possible omomyoid Rooneyia viejaensis (n = 1). These were compared with a modern sample (210 species including 91 primates) with known locomotor behaviours. The predicted locomotor agilities for extinct primates generally follow expectations based on known postcrania for those taxa. “Plesiadapiforms” and adapids have relatively small semicircular canals, suggesting they practiced less agile locomotion than other fossil primates in the sample, which is consistent with reconstructions of them as less specialized for leaping. The derived notharctid adapoids (excluding Cantius) and all omomyoids sampled have relatively larger semicircular canals, suggesting that they were more agile, with Microchoerus in particular being reconstructed as having had very jerky locomotion with relatively high magnitude accelerations of the head. Rooneyia viejaensis is reconstructed as having been similarly agile to omomyids and derived notharctid adapoids, which suggests that when postcranial material is found for this species it will exhibit features for some leaping behaviour, or for a locomotor mode requiring a similar degree of agility.  相似文献   

12.
13.
Photorhabdus temperata strain K122 exhibited oral toxicity against Prays oleae with an LC50 of 58.1 x 10(6) cells ml(-1). Recombinant P. temperata strains expressing the cry1Aa and/or cry1Ia genes of Bacillus thuringiensis have been constructed. The two cry genes, encoding delta-endotoxins, were placed under the control of the lac promoter and IPTG dependent expression in P. temperata was demonstrated. The presence of the cry genes in K122 resulted in a clear improvement of oral toxicity. This improvement was of 6.2-, 6.6-, and 14.6-fold for the strains K122(pBCcry1Aa), K122(pBScry1Ia), and K122(pBCcry1Aa + pBScry1Ia), respectively. Furthermore, determination of the Synergistic Factor between Cry1Aa and Cry1Ia showed that they act synergistically. This work demonstrates that the heterologous expression of B. thuringiensis cry genes in P. temperata can be used to improve and broaden its host range for insect control.  相似文献   

14.
Here, we have studied how Sox genes and BMP signaling are functionally coupled during limb chondrogenesis. Using the experimental model of TGFbeta1-induced interdigital digits, we dissect the sequence of morphological and molecular events during in vivo chondrogenesis. Our results show that Sox8 and Sox9 are the most precocious markers of limb cartilage, and their induction is independent and precedes the activation of BMP signaling. Sox10 appears also to cooperate with Sox9 and Sox8 in the establishment of the digit cartilages. In addition, we show that experimental induction of Sox gene expression in the interdigital mesoderm is accompanied by loss of the apoptotic response to exogenous BMPs. L-Sox5 and Sox6 are respectively induced coincident and after the expression of Bmpr1b in the prechondrogenic aggregate, and their activation correlates with the induction of Type II Collagen and Aggrecan genes in the differentiating cartilages. The expression of Bmpr1b precedes the appearance of morphological changes in the prechondrogenic aggregate and establishes a landmark from which the maintenance of the expression of all Sox genes and the progress of cartilage differentiation becomes dependent on BMPs. Moreover, we show that Ventroptin precedes Noggin in the modulation of BMP activity in the developing cartilages. In summary, our findings suggest that Sox8, Sox9, and Sox10 have a cooperative function conferring chondrogenic competence to limb mesoderm in response to BMP signals. In turn, BMPs in concert with Sox9, Sox6, and L-Sox5 would be responsible for the execution and maintenance of the cartilage differentiation program.  相似文献   

15.
In the Drosophila segmentation hierarchy, periodic expression of pair-rule genes translates gradients of regional information from maternal and gap genes into the segmental expression of segment polarity genes. In Tribolium, homologs of almost all the eight canonical Drosophila pair-rule genes are expressed in pair-rule domains, but only five have pair-rule functions. even-skipped, runt and odd-skipped act as primary pair-rule genes, while the functions of paired (prd) and sloppy-paired (slp) are secondary. Since secondary pair-rule genes directly regulate segment polarity genes in Drosophila, we analyzed Tc-prd and Tc-slp to determine the extent to which this paradigm is conserved in Tribolium. We found that the role of prd is conserved between Drosophila and Tribolium; it is required in both insects to activate engrailed in odd-numbered parasegments and wingless (wg) in even-numbered parasegments. Similarly, slp is required to activate wg in alternate parasegments and to maintain the remaining wg stripes in both insects. However, the parasegmental register for Tc-slp is opposite that of Drosophila slp1. Thus, while prd is functionally conserved, the fact that the register of slp function has evolved differently in the lineages leading to Drosophila and Tribolium reveals an unprecedented flexibility in pair-rule patterning.  相似文献   

16.
17.
Differential bacterial counts were made on the intestinal and caecal contents of chickens after inoculation with a standard dose of 320 000 freshly sporulated oocysts of Eimeria brunetti.  相似文献   

18.
The zebrafish muscle segment homeobox genes msxB, msxC and msxE are expressed in partially overlapping domains in the neural crest and preplacodal ectoderm. We examined the roles of these msx genes in early development. Disrupting individual msx genes causes modest variable defects, whereas disrupting all three produces a reproducible severe phenotype, suggesting functional redundancy. Neural crest differentiation is blocked at an early stage. Preplacodal development begins normally, but placodes arising from the msx expression domain later show elevated apoptosis and are reduced in size. Cell proliferation is normal in these tissues. Unexpectedly, Msx-deficient embryos become ventralized by late gastrulation whereas misexpression of msxB dorsalizes the embryo. These effects appear to involve Distal-less (Dlx) protein activity, as loss of dlx3b and dlx4b suppresses ventralization in Msx-depleted embryos. At the same time, Msx-depletion restores normal preplacodal gene expression to dlx3b-dlx4b mutants. These data suggest that mutual antagonism between Msx and Dlx proteins achieves a balance of function required for normal preplacodal differentiation and placement of the neural-nonneural border.  相似文献   

19.
The late-third-instar labial disc is comprised of two disc-proper cell layers, one representing mainly the ventral half of the anterior compartment (L-layer) and the other, the dorsal half of the anterior compartment and most, if not all, of the posterior compartment (M-layer). In the L-layer, Distal-less represses homothorax whereas no Distal-less-dependent homothorax repression occurs in the M-layer where Distal-less is coexpressed with homothorax. In wild-type labial discs, clawless, one of the two homeobox genes expressed in distal cells receiving maximum (Decapentaplegic+Wingless) signaling activity in leg and antennal discs, is specifically repressed by proboscipedia. A fate map, inferred from data on basic patterning gene expression in larval and pupal stages and mutant phenotypes, indicates the inner surface of the labial palpus, which includes the pseudotracheal region, to be a derivative of the distal portion of the M-layer expressing wingless, patched, Distal-less and homothorax. The outer surface of the labial palpus with more than 30 taste bristles derives from an L-layer area consisting of dorsal portions of the anterior and posterior compartments, each expressing Distal-less. Our analysis also indicates that, in adults and pupae, the anterior-posterior boundary, dividing roughly equally the outer surface of the distiproboscis, runs along the outer circumference of the inner surface of distiproboscis.  相似文献   

20.
The body wall muscles in the Drosophila larva arise from interactions between Duf/Kirre and Irregular chiasm C-roughest (IrreC-rst)-expressing founder myoblasts and sticks-and-stones (SNS)-expressing fusion competent myoblasts in the embryo. Herein, we demonstrate that SNS mediates heterotypic adhesion of S2 cells with Duf/Kirre and IrreC-rst-expressing S2 cells, and colocalizes with these proteins at points of cell contact. These properties are independent of their transmembrane and cytoplasmic domains, and are observed quite readily with GPI-anchored forms of the ectodomains. Heterotypic interactions between Duf/Kirre and SNS-expressing S2 cells occur more rapidly and to a greater extent than homotypic interactions with other Duf/Kirre-expressing cells. In addition, Duf/Kirre and SNS are present in an immunoprecipitable complex from S2 cells. In the embryo, Duf/Kirre and SNS are present at points of contact between founder and fusion competent cells. Moreover, SNS clustering on the cell surface is dependent on Duf/Kirre and/or IrreC-rst. Finally, although the cytoplasmic and transmembrane domains of SNS are expendable for interactions in culture, they are essential for fusion of embryonic myoblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号