共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular markers for seed colour in Brassica juncea. 总被引:2,自引:0,他引:2
A detailed RFLP map was used to map QTLs associated with seed colour in Brassica juncea using a doubled-haploid population derived from a cross between a black/brown-seeded cultivar and a yellow-seeded breeding line. Segregation analysis suggested that seed colour was under control of 2 unlinked loci with duplicate gene action. However, QTL analysis revealed 3 QTLs, SC-B4, SC-A10 and SC-A6, affecting seed colour. The QTLs were consistent across environments, and individually explained 43%, 31%, and 16%, respectively, and collectively 62% of the phenotypic variation in the population. Digenic interaction analysis showed that closest flanking locus of QTL SC-B4, wg7b6cNM, had strong epistasis with the locus wg5a1a, which is tightly linked to QTL SC-A6. The interaction of these 2 loci explained 27% of the phenotypic variation in the population, while the whole model explained 84%. In a multiple regression model, the effects of QTL SC-A10, as well as its interaction with other loci, were non-significant, whereas the effects of loci wg7b6cNM and wg5a1a and their interaction were significant. Ninety-eight percent of the DH lines carried the expected alleles of loci wg7b6cNM and wg5a1a for seed colour, confirming that only these 2 loci were linked to seed colour in B. juncea. Four additional digenic interactions significantly affected seed colour, and all 5 digenic interactions were consistent across environments. 相似文献
2.
Identification of a major gene and RAPD markers for yellow seed coat colour in Brassica napus. 总被引:7,自引:0,他引:7
The development of yellow-seeded Brassica napus for improving the canola-meal quality characteristics of lower fibre content and higher protein content has been restricted because no yellow-seeded forms of B. napus exist, and their conventional development requires interspecific introgression of yellow seed coat colour genes from related species. A doubled-haploid (DH) population derived from the F1 generation of the cross 'Apollo' (black-seeded) x YN90-1016 (yellow-seeded) B. napus was analysed via bulked segregant analysis to identify molecular markers associated with the yellow-seed trait in B. napus for future implementation in marker-assisted breeding. A single major gene (pigment 1) flanked by eight RAPD markers was identified co-segregating with the yellow seed coat colour trait in the population. This gene explained over 72% of the phenotypic variation in seed coat colour. Further analysis of the yellow-seeded portion of this DH population revealed two additional genes favouring 'Apollo' alleles, explaining 11 and 8.5%, respectively, of the yellow seed coat colour variation. The data suggested that there is a dominant, epistatic interaction between the pigment I locus and the two additional genes. The potential of the markers to be implemented in plant breeding for the yellow-seed trait in B. napus is discussed. 相似文献
3.
Chuchuan Fan Guangqin Cai Jie Qin Qingyuan Li Minggui Yang Jianzhong Wu Tingdong Fu Kede Liu Yongming Zhou 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2010,121(7):1289-1301
Seed weight is an important component of grain yield in oilseed rape (Brassica napus L.), but the genetic basis for the important quantitative trait is still not clear. In order to identify the genes for seed
weight in oilseed rape, QTL mapping for thousand seed weight (TSW) was conducted with a doubled haploid (DH) population and
an F2 population. A complete linkage map of the DH population was constructed using 297 simple sequence repeat (SSR) markers. Among
nine TSW QTLs detected, two major QTLs, TSWA7a and TSWA7b, were stably identified across years and collectively explained 27.6–37.9% of the trait variation in the DH population. No
significant epistatic interactions for TSW detected in the DH population indicate that the seed weight variation may be primarily
attributed to additive effects. The stability and significance of TSWA7a and TSWA7b were further validated in the F2 population with different genetic backgrounds. By cloning BnMINI3a and BnTTG2a, two B. napus homologous genes to Arabidopsis thaliana, allele-specific markers were developed for TSWA5b and TSWA5c, two TSW QTLs on A5, respectively. The importance of the major and minor QTLs identified was further demonstrated by analysis
of the allelic effects on TSW in the DH population. 相似文献
4.
Identification of AFLP fragments linked to seed coat colour in Brassica juncea and conversion to a SCAR marker for rapid selection 总被引:12,自引:0,他引:12
M. S. Negi M. Devic M. Delseny M. Lakshmikumaran 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2000,101(1-2):146-152
A Brassica juncea mapping population was generated and scored for seed coat colour. A combination of bulked segregant analysis and AFLP methodology
was employed to identify markers linked to seed coat colour in B. juncea. AFLP analysis using 16 primer combinations revealed seven AFLP markers polymorphic between the parents and the bulks. Individual
plants from the segregating population were analysed, and three AFLP markers were identified as being tightly linked to the
seed coat colour trait and specific for brown-seeded individuals. Since AFLP markers are not adapted for large-scale application
in plant breeding, our objective was to develop a fast, cheap and reliable PCR-based assay. Towards this goal, we employed
PCR-walking technology to isolate sequences adjacent to the linked AFLP marker. Based on the sequence information of the cloned
flanking sequence of marker AFLP8, primers were designed. Amplification using the locus-specific primers generated bands at
0.5 kb and 1.2 kb with the yellow-seeded parent and a 1.1-kb band with the brown-seeded parent. Thus, the dominant AFLP marker
(AFLP8) was converted into a simple codominant SCAR (Sequence Characterized Amplified Region) marker and designated as SCM08.
Scoring of this marker in a segregating population easily distinguished yellow- and brown-seeded B. juncea and also differentiated between homozygous (BB) and heterozygous (Bb) brown-seeded individuals. Thus, this marker will be
useful for the development of yellow seed B. juncea cultivars and facilitate the map-based cloning of genes responsible for seed coat colour trait.
Received: 2 October 1999 / Accepted: 11 November 1999 相似文献
5.
6.
Inheritance of seed colour and identification of RAPD and AFLP markers linked to the seed colour gene in rapeseed (Brassica napus L.) 总被引:6,自引:0,他引:6
Zhi-wen L Ting-dong F Jin-xing T Bao-yuan C 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2005,110(2):303-310
In China Polima cytoplasmic male sterility (cms) is currently the most important hybrid system used for the breeding of hybrids. In an effort to develop yellow-seeded Polima cms restorer lines, we used yellow-seeded, doubled haploid (DH) line No.2127-17 as the gene source in crosses with two elite black-seeded Polima cms R lines, Hui5148-2 and 99Yu42, which originated from our breeding programme. The inheritance of seed colour was investigated in the F2, BC1 and F1-derived DH progenies of the two crosses. Seed colour was found to be under the control of the maternal genotype and the yellow seed trait to be partially dominant over the black seed trait. Segregation analysis revealed a single gene locus for the partial dominance of yellow seed colour. Of 810 randomly amplified polymorphic DNA (RAPD) primers, 240 (29.6%) revealed polymorphisms between the parents. Of the 240 RAPD primers and 512 amplified fragment length polymorphism (AFLP) primer pairs, four RAPDs and 16 AFLP pairs showed polymorphisms between the bulks, with two RAPD and eight AFLP markers being identified in the vicinity of the seed-coat colour gene locus using a DH progeny population—derived from the cross Hui5148-2×No.2127-17—of 127 individuals in combination with the bulked segregant analysis strategy. Seven of these latter ten markers were linked to the allele for yellow seed, whereas the other three were linked to the allele for black seed. The seed-coat colour gene locus was bracketed by two tightly linked markers, EA02MG08 (2.4 cM) and S1129 (3.9 cM). The partial dominance and single gene control of the yellow seed-coat colour trait together with the available molecular markers will greatly facilitate the future breeding of yellow-seeded hybrid varieties. 相似文献
7.
T. Mohapatra A. Upadhyay A. Sharma R. P. Sharma 《Journal of plant biochemistry and biotechnology.》2002,11(1):37-42
Restriction fragment length polymorphism (RFLP) analysis of Brassica juncea genome using 39 random homologous genomic DNA clones and chlorophyll a, b binding polypeptide (cab-3c) cDNA of tomato as probes revealed high degree of sequence duplication. The average number of hybridizing fragments per probe (8) was much higher than that earlier reported using cDNA probes in B. juncea. Null alleles observed for majority (56.2%) of the polymorphic duplicate loci suggested a significant role of insertion/deletion events in evolution of mustard genome. Distortion in segregation was evident in respect of only 9.6% of the segregating loci indicating that the mapping population used was relatively unbiased and thus can be used efficiently for genome mapping as well as for location of genes. Forty-nine polymorphic duplicate loci could be mapped to 15 linkage groups. Arrangement of these loci on different linkage groups revealed intra and inter-chromosomal duplications as well as duplication of chromosome blocks.Three of the eight cab loci could be mapped on three different linkage groups. Null allelic situation for seven of the cab loci suggested the role of DNA rearrangement in evolution of this multigene family in B. juncea. 相似文献
8.
Sabharwal V Negi MS Banga SS Lakshmikumaran M 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2004,109(1):160-166
Association mapping of the seed-coat colour with amplified fragment length polymorphism (AFLP) markers was carried out in 39 Brassica juncea lines. The lines had genetically diverse parentages and varied for seed-coat colour and other morphological characters. Eleven AFLP primer combinations were used to screen the 39 B. juncea lines, and a total of 335 polymorphic bands were detected. The bands were analysed for association with seed-coat colour using multiple regression analysis. This analysis revealed 15 markers associated with seed-coat colour, obtained with eight AFLP primer combinations. The marker E-ACA/M-CTG350 explained 69% of the variation in seed-coat colour. This marker along with markers E-AAC/M-CTC235 and E-AAC/M-CTA250 explained 89% of the total variation. The 15 associated markers were validated for linkage with the seed-coat colour loci using a recombinant inbred line (RIL) mapping population. Bands were amplified with the eight AFLP primer combinations in 54 RIL progenies. Of the 15 associated markers, 11 mapped on two linkage groups. Eight markers were placed on linkage group 1 at a marker density of 6.0 cM, while the remaining three were mapped on linkage group 2 at a marker density of 3.6 cM. Marker E-ACA/M-CTG350 co-segregated with Gene1 controlling seed-coat colour; it was specific for yellow seed-coat colour and mapped to linkage group 1. Marker E-AAC/M-CTC235 (AFLP8), which had been studied previously, was present on linkage group 2; it was specific for brown seed-coat colour. Since AFLP markers are not adapted for large-scale applications in plant breeding, it is important to convert these to sequence-characterised amplified region (SCAR) markers. Marker E-AAC/M-CTC235 (AFLP8) had been previously converted into a SCAR. Work is in progress to convert the second of the linked markers, E-ACA/M-CTG350, to a SCAR. The two linked AFLP markers converted to SCARs will be useful for developing yellow-seeded B. juncea lines by means of marker-assisted selection.Communicated by H.F. Linskens 相似文献
9.
Mapping economic trait loci for somatic cell score in Holstein cattle using microsatellite markers and selective genotyping 总被引:10,自引:0,他引:10
Marker-assisted selection (MAS) uses genetic marker genotypes to predict an animal's production potential and will provide additional selection information for progeny testing. With the discovery of highly polymorphic microsatellite markers, the tools now exist to begin the search for economic trait loci (ETL), which is the first step toward MAS. The objective of this study was to identify ETL for somatic cell score in an existing Holstein population. Using the granddaughter design, sons from seven grandsire families were genotyped with 20 autosomal microsatellites from five chromosomes (4, 8, 13, 17, 23), with an emphasis on chromosome 23, which is the location of the bovine major histocompatibility complex (BoLA). Selective genotyping was used to reduce the number of genotypes required, in which the 10 highest and 10 lowest sons from the phenotypic distribution curve were tested (140 sons in seven families). One marker (513), located near BoLA, showed evidence of an ETL in three of five polymorphic families. Additional sons were genotyped from the five families to estimate the effect and to compare selective and ‘complete’ genotyping. Both methods detected an ETL at marker 513, but in different families. This study provides evidence of the usefulness of microsatellite markers and the granddaughter design in the detection of ETL; however, additional markers need to be evaluated to determine the usefulness of selective genotyping. Based on the results from the 20 studied markers, the most likely position of a somatic cell score ETL lies near marker 513, located on chromosome 23. 相似文献
10.
Ultra-simple DNA extraction method for marker-assisted selection using microsatellite markers in rice 总被引:2,自引:1,他引:2
Nobuyuki Ikeda Nonnatus S. Bautista Tetsuya Yamada Osamu Kamijima Takashige Ishii 《Plant Molecular Biology Reporter》2001,19(1):27-32
We prevent an ultra-simple DNA extraction method for microsatellite analysis of rice. Each extraction requires only one microtube,
one disposable pipette tip, TE buffer and few pieces (about 5 mm) of rice leaf tissue. This is sufficient for 200 PCR reactions.
The extract can be kept in the freezer for long-term storage. Also, DNA can be extracted from 200–300 individuals in a few
hours. These features enabled us to perform rapid largescale seedling genotyping required for marker-assisted selection. We
have also examined the applicability of this method for other PCR-based markers: RAPDs, nuclear STS, chloroplast STS and chloroplast
microsatellites. 相似文献
11.
Blackleg disease of crucifers, caused by the fungus Leptosphaeria maculans, is a major concern to oilseed rape producers worldwide. Brassica species containing the B genome have high levels of resistance to blackleg. Brassica juncea F2 and first-backcross (B1) populations segregating for resistance to a PG2 isolate of L. maculans were created. Segregation for resistance to L. maculans in these populations suggested that resistance was controlled by two independent genes, one dominant and one recessive in nature. A map of the B. juncea genome was constructed using segregation in the F2 population of a combination of restriction fragment length polymorphism (RFLP) and microsatel lite markers. The B. juncea map consisted of 325 loci and was aligned with previous maps of the Brassica A and B genomes. The gene controlling dominant resistance to L. maculans was positioned on linkage group J13 based on segregation for resistance in the F2 population. This position was confirmed in the B1 population in which the resistance gene was definitively mapped in the interval flanked by pN199RV and sB31143F. The provisional location of the recessive gene controlling resistance to L. maculans on linkage group J18 was identified using a subset of informative F2 individuals. 相似文献
12.
The yellow mustard plant in Northern Shaanxi is a precious germplasm, and the yellow seed trait is controlled by a single recessive gene. In this report, amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) techniques were used to identify markers linked to the brown seed locus in an F(2) population consisting of 1258 plants. After screening 256 AFLP primer combinations and 456 pairs of SSR primers, we found 14 AFLP and 2 SSR markers that were closely linked to the brown seed locus. Among these markers, the SSR marker CB1022 showed codominant inheritance. By integrating markers previously found to be linked to the brown seed locus into the genetic map of the F(2) population, 23 markers were linked to the brown seed locus. The two closest markers, EA02MC08 and P03MC08, were located on either side of the brown seed locus at a distance of 0.3 and 0.5 cM, respectively. To use the markers for the breeding of yellow-seeded mustard plants, two AFLP markers (EA06MC11 and EA08MC13) were converted into sequence-characterized amplified region (SCAR) markers, SC1 and SC2, with the latter as the codominant marker. The two SSR markers were subsequently mapped to the A9/N9 linkage group of Brassica napus L. by comparing common SSR markers with the published genetic map of B. napus. A BLAST analysis indicated that the sequences of seven markers showed good colinearity with those of Arabidopsis chromosome 3 and that the homolog of the brown seed locus might exist between At3g14120 and At3g29615 on this same chromosome. To develop closer markers, we could make use of the sequence information of this region to design primers for future studies. Regardless, the close markers obtained in the present study will lay a solid foundation for cloning the yellow seed gene using a map-based cloning strategy. 相似文献
13.
An RFLP genomic map with 316 loci was used to study the inheritance of aliphatic glucosinolates in Brassica juncea using doubled-haploid (DH) populations developed from a cross between RLM-514, an agronomically superior non-canola quality B. juncea (high erucic acid and high glucosinolates), and an agronomically poor canola quality B. juncea breeding line. Two QTLs (GSL-A2a and GSL-A2b) associated with 3-butenyl were consistent across years and locations, and explained 75% of the phenotypic variance in the population. Three QTLs (GSL-A2a, GSL-F, GSL-B3) affected 2-propenyl and explained 78% of the phenotypic variance in the population. For total aliphatic glucosinolates, five QTLs explained 30% to 45% of the total phenotypic variance in the population in different environments. Several QTLs (GSL-A7 and GSL-A3) were highly inconsistent in different environments. Major QTLs (GSL-A2a and GSL-A2b) associated with individual glucosinolates were non-significant for total aliphatic glucosinolates. A marker-assisted selection strategy based on QTLs associated with individual glucosinolates rather than total aliphatic glucosinolates is proposed for B. juncea. 相似文献
14.
Mahmood T Rahman MH Stringam GR Yeh F Good AG 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2006,113(7):1211-1220
A detailed RFLP-genomic map was used to study the genetics of oil, seed and meal protein and sum of oil and seed/meal protein contents in a recombinant doubled-haploid population developed by crossing black- and yellow-seeded Brassica juncea lines. Two yellow seed color genes (SC-B4, SC-A6) and one QTL for erucic acid content (E1b) showed pleiotropic effect for oil, protein and sum of oil and seed/meal protein contents. Six (O-A1, O-A6, O-A9, O-B3, O-B4, O-B5) and five (SP-A1, SP-A9, SP-B4, SP-B6, SP-C) QTLs were significant for oil and seed protein contents, respectively. Tight linkage of three of these QTLs (SP-A1, SP-A9, SP-B4, O-A1, O-A9, O-B4), with opposite effects, poses challenge to the plant breeders for simultaneous improvement of negatively correlated (r = −0.7**) oil and seed protein contents. However, one QTL for oil content (O-B3) and two for seed protein content (SP-B6, SP-C) were found to be unlinked, which offer the possibility for simultaneous improvement of these two traits. QTLs significant for meal protein (MP-A1, MP-A6, MP-A9, MP-B5, MP-B6) were significant at least for oil, seed protein or sum of oil and seed/meal protein contents (T-A6, T-A7, T-B4, T-B5). Sum of oil and seed protein contents and sum of oil and meal protein contents had a perfect correlation, as well as same epistatic interactions and QTLs with similar additive effect. This indicates that protein in seed or meal has practically the same meaning for breeding purposes. Epistatic interactions were significant for the quality traits, and their linkage reflected association among the traits. 相似文献
15.
We detected growth-related QTL and associated markers from the backcross population of Exopalaemon carinicauda in the previous study. Based on our previous study, the 47 SNP markers associated with candidate growth trait QTL were selected to analyze the association between these markers and body weight (BW), body length and abdominal segment length traits in four different populations including wild population, a full-sib family, a half-sib family and a backcross population for evaluating their potential application of marker-assisted selection in E. carinicauda. The general linear model (GLM) and mixed linear model were applied and the associations between SNP loci and three growth-related traits verified. The results showed that the Marker79268 and Marker100644 were significantly associated with the BW trait in more than three populations by the GLM method. The Marker100644 was significantly associated with BW in the full-sib family, half-sib family and backcross populations by the GLM and mixed linear model methods. Our findings will provide useful SNP markers to go forward to improve growth performance through more refined marker-assisted selection in E. carinicauda. 相似文献
16.
Molecular mechanism of manipulating seed coat coloration in oilseed Brassica species 总被引:2,自引:0,他引:2
Cheng-Yu Yu 《Journal of applied genetics》2013,54(2):135-145
Yellow seed is a desirable characteristic for the breeding of oilseed Brassica crops, but the manifestation of seed coat color is very intricate due to the involvement of various pigments, the main components of which are flavonols, proanthocyanidin (condensed tannin), and maybe some other phenolic relatives, like lignin and melanin. The focus of this review is to examine the genetics mechanism regarding the biosynthesis and regulation of these pigments in the seed coat of oilseed Brassica. This knowledge came largely from recent researches on the molecular mechanism of TRANSPARENT TESTA (tt) and similar mutations in the ancestry model plant of Brassica, Arabidopsis. Some key enzymes in the flavonoid (flavonols and proanthocyanidin) biosynthetic pathway have been characterized in tt mutants. Some orthologs to these TRANSPARENT TESTA genes have also been cloned in Brassica species. However, it is suggested that some alterative metabolism pathways, including lignin and melanin, might also be involved in seed color manifestation. Polyphenol oxidases, such as laccase, tyrosinase, or even peroxidase, participate in the oxidation step in proanthocyanidin, lignin, and melanin biosynthesis. Moreover, some researches also suggested that melanic pigment in black-seeded Brassica was several fold higher than in yellow-seeded Brassica. Although more experiments are required to evaluate the importance of lignin and melanin in seed coat browning, the current results suggest that the flavonols and proanthocyanidin are not the only roles affecting seed color. 相似文献
17.
Vikas Koundall Swarup K. Parida Devendra K. Yadava Arif Ali Kirpa Ram Koundal Trilochan Mohapatra 《Journal of plant biochemistry and biotechnology.》2008,17(1):69-72
Microsatellites are robust markers for genome mapping, gene tagging and marker assisted selection. The genus Brassica, having a large and complex genome, requires such type of markers for various applications in genetics and breeding. A set of 202 microsatellite markers were used to screen two parental genotypes of Indian mustard (Brassica juncea) namely, ‘Varuna’, an indigenous cultivar and BEC144, an exotic collection from Poland, of which 36 (17.8%) were informative and usable for segregation analysis. The polymorphic markers detected heterozygosity in advanced generation recombinant inbred lines (RILs) developed earlier from the cross Varuna × BEC144 with a varying frequency that ranged from 0% to 23.5%. Normal Mendelian segregation for majority of microsatellite markers was observed. Eleven markers showed significant deviation from the expected 1:1 segregation ratio. Twelve markers were assigned to six different linkage groups of Indian mustard genome map. The level of polymorphism between the parents and the percentage of useful informative markers as observed in this study, suggested that many more markers are needed to achieve a reasonable coverage of mustard genome. This is the first report on the evaluation of microsatellite markers for genome mapping in B. juncea. 相似文献
18.
19.
20.
Generation and mapping of SCAR and CAPS markers linked to the seed coat color gene in Brassica napus using a genome-walking technique. 总被引:2,自引:0,他引:2
Shushu Xiao Jinsong Xu Yuan Li Lei Zhang Shijun Shi Shuwen Shi Jiangsheng Wu Kede Liu 《Génome》2007,50(7):611-618
The yellow seed coat trait in No. 2127-17, a resynthesized purely yellow Brassica napus line, is controlled by a single partially dominant gene, Y. A double-haploid population derived from the F1 of No. 2127-17 x 'ZY821' was used to map the seed coat color phenotype. A combination of AFLP analysis and bulked segregant analysis identified 18 AFLP markers linked to the seed coat color trait. The 18 AFLP markers were mapped to a chromosomal region of 37.0 cM with an average of 2.0 cM between adjacent markers. Two markers, AFLP-K and AFLP-H, bracketed the Y locus in an interval of 1.0 cM, such that each was 0.5 cM away from the Y locus. Two other markers, AFLP-A and AFLP-B, co-segregated with the seed color gene. For ease of use in breeding programs, these 4 most tightly linked AFLP markers were converted into reliable PCR-based markers. SCAR-K, which was derived from AFLP-K, was assigned to linkage group 9 (N9) of a B. napus reference map consisting of 150 commonly used SSR (simple sequence repeat) markers. Furthermore, 2 SSR markers (Na14-E08 and Na10-B07) linked to SCAR-K on the reference map were reversely mapped to the linkage map constructed in this study, and also showed linkage to the Y locus. These linked markers would be useful for the transfer of the dominant allele Y from No. 2127-17 to elite cultivars using a marker-assisted selection strategy and would accelerate the cloning of the seed coat color gene. 相似文献