首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two SBR reactors were set up to investigate the feasibility of aerobic granulation under the combined selection pressures of hydraulic shear force and substrate loading. Aerobic granulation was studied at superficial upflow air velocity of 3.2 and 2.4 cm/s under an organic loading rate (OLR) range of 6.0-15.0 kg COD/m3d. Good reactor performance and well granule characteristics were achieved in a wide OLR range from 6.0 high up to 15.0 kg COD/m3d at 3.2 cm/s. While under the velocity of 2.4 cm/s, stable operation was limited in the OLR range of 6.0-9.0 kg COD/m3d and failed to operate with granule deterioration under further higher OLRs. The optimal combination of hydrodynamic shear force and loading selection pressure was demonstrated to be an important factor that influence aerobic granulation and govern the granule characteristics and reactor performance.  相似文献   

2.
The possibility of shifting a methanogenic process for hydrogen production by changing the process parameters viz., organic loading rate (OLR) and hydraulic retention time (HRT) was evaluated. At first, two parallel semi-continuously fed continuously stirred tank reactors (CSTR) were operated as methanogenic reactors (M1 and M2) for 78 days. Results showed that a methane yield of 198-218 L/kg volatile solids fed (VS(fed)) was obtained when fed with grass silage at an OLR of 2 kgVS/m3/d and HRT of 30 days. After 78 days of operation, hydrogen production was induced in M2 by increasing the OLR from 2 to 10 kgVS/m3/d and shortening the HRT from 30 to 6 days. The highest H? yield of 42 L/kgVS(fed) was obtained with a maximum H? content of 24%. The present results thus demonstrate that methanogenic process can be shifted towards hydrogen production by increasing the OLR and decreasing HRT.  相似文献   

3.
Solutions of sodium caprate and sodium laurate were digested in upflow anaerobic sludge bed (UASB) reactors inoculated with granular sludge and in expanded granular sludge bed (EGSB) reactors. UASB reactors are unsuitable if lipids contribute 50% or more to the COD of waste water: the gas production rate required to obtain sufficient mixing and contact cannot be achieved. At lipid loading rates exceeding 2–3 kg COD m−3 day−1, total sludge wash-out occurred. At lower loading rates the system was unreliable, due to unpredictable sludge flotation. EGSB reactors do fulfil the requirements of mixing and contact. They accommodate space loading rates up to 30 kg COD m−3 day−1 during digestion of caprate or laurate as sole substrate, at COD removal efficiencies of 83–91%, and can be operated at hydraulic residence times of 2 h without any problems. Augmentation of granular sludge in lab-scale EGSB reactors was demonstrated. The new granules had excellent settling properties. Floating layer formation, as well as mixing characteristics in full-scale EGSB reactors require further research.  相似文献   

4.
The effect of temperature and organic loading rate on the rate of methane production from acidic petrochemical wastewater without neutralization was investigated by continuously feeding an anaerobic upflow fixed-film reactor. The temperatures selected for the studies were 25, 37, 45 and 55 degrees C. Organic loading rate (OLR) for each temperature was varied from 3.6 to 21.7 kg COD m(-3) d(-1). Best performance with respect to COD and BOD reduction, total gas production and methane yield was obtained with the reactor operating at 37 degrees C. OLR could be increased to a maximum of 21.7 kg COD m(-3) d(-1) with 90-95% COD and BOD reduction and methane yield of 0.450 m3 kg(-1) COD d(-1) added. The reactor operating at 55 degrees C gave the highest methane yield of 0.666 m3 kg(-1) COD d(-1) at an OLR of 6 kg COD m(-3) d(-1). This decreased to 0.110 m3 kg(-1) COD d(-1) when the OLR was increased to 18.1 kg COD m(-3) d(-1). The reactor operating at 45 degrees C gave a maximum methane yield of 0.416 m3 kg(-1) COD d(-1) added at an OLR of 6 kg COD m(-3) d(-1). On further increasing the OLR to 9 kg COD m(-3) d(-1), COD reduction was 89%, however, methane yield decreased to 0.333 m3 kg(-1) COD d(-1) added. The highest methane yield of 0.333 m3 kg(-1) COD d(-1) added at an OLR of 6 kg COD m(-3) d(-1) was obtained with reactors operating at 25 degrees C. These studies indicate potential rates of methane production from acidic petrochemical wastewater under different temperatures. This provides a guideline for various kinetic analyses and economic evaluation of the potential feasibility of fermenting acidic wastewater to methane.  相似文献   

5.
The effect of cationic polymer additives on biomass granulation and COD removal efficiency had been examined in lab-scale upflow anaerobic sludge blanket (UASB) reactors, treating low strength synthetic wastewater (COD 300-630 mg/l). Under identical conditions, two reactors were operated with and without polymer additives in inoculum under four different organic loading rates (OLRs). The optimum polymer dose was adopted based upon the results of jar test and settling test carried out with inoculum seed sludge. With the use of thick inoculum, SS greater than 110 g/l and VSS/SS ratio less than 0.3, granulation was observed in UASB reactor treating synthetic wastewater as well as actual sewage, when OLR was greater than 1.0 kg COD/m(3) d. Polymer additive with such thick inoculum was observed to deteriorate percentage granules and COD removal efficiency compared to inoculum without polymer additives. At OLR less than 1.0 kg COD/m(3) d, proper granulation could not be achieved in both the reactors inoculated with and without polymer additive. Also, under this low loading, drastic reduction in COD removal efficiency was observed with polymer additives in inoculum. Hence, it is rational to conclude that biomass granulation for treatment of low strength biodegradable wastewater depends on the applied loading rate and selection of thick inoculum sludge.  相似文献   

6.
固定载体卧式厌氧反应器处理糖蜜废水的快速启动   总被引:1,自引:0,他引:1  
为高效处理高浓度有机废水而设计了固定载体卧式厌氧反应器R1和R2, 它是厌氧折流板反应器(ABR)的改进, 以活性炭纤维作为生物膜载体固定并充当反应器的折流板, 在实验室规模上对R1和R2处理糖蜜废水进行快速启动运行。HRT和ORL是影响R1和R2稳定高效运行及启动的2个重要工艺参数。实验证明: HRT为2 d时, 反应器运行最佳。在第30天时, R1的COD去除率达到84.88%, R2达到81.72%。随着进水ORL由1.25 kg/(m3·d)提升到10 kg/(m3·d), 沼气容积产气率由0.35 L/(L·d)逐渐增加到4.98 L/(L·d)。进水pH值为3.9?4.5之间, 整个启动运行过程中, 未调节pH值, R1和R2的出水pH值均在6.7?7.6之间, 2个反应器均有较强的抗酸能力, R1的pH波动更为平缓。在整个实验过程中, 污泥流失量小, 没有发生堵塞现象, 在处理酸性高浓度有机废水时, 2个反应器均表现出较强的抗负荷冲击能力。  相似文献   

7.
Four organic loading disturbances were performed in lab-scale EGSB reactors fed with ethanol. In load disturbance 1 (LD1) and 2 (LD2), the organic loading rate (OLR) was increased between 5 and 18.5 kg COD m(-3) day(-1), through the influent ethanol concentration increase, and the hydraulic retention time decrease from 7.8 to 2.5 h, respectively. Load disturbances 3 (LD3) and 4 (LD4) were applied by increasing the OLR to 50 kg COD m(-3) day(-1) during 3 days and 16 days, respectively. The granular sludge morphology was quantified by image analysis and was related to the reactor performance, including effluent volatile suspended solids, indicator of washout events. In general, it was observed the selective washout of filamentous forms associated to granules erosion/fragmentation and to a decrease in the specific acetoclastic activity. These phenomena induced the transitory deterioration of reactor performance in LD2, LD3, and LD4, but not in LD1. Extending the exposure time in LD4 promoted acetogenesis inhibition after 144 h. The application of Principal Components Analysis determined a latent variable that encompasses a weighted sum of performance, physiological and morphological information. This new variable was highly sensitive to reactor efficiency deterioration, enclosing variations between 27% and 268% in the first hours of disturbances. The high loadings raised by image analysis parameters, especially filaments length per aggregates area (LfA), revealed that morphological changes of granular sludge, should be considered to monitor and control load disturbances in high rate anaerobic (granular) sludge bed digesters.  相似文献   

8.
Summary A high-strength baker's yeast effluent was anaerobically treated using a hybrid digester under mesophilic conditions. The digester was subjected to a substrate COD concentration of 21 767 mg/I at three different HRTs. At HRTs of 3.0, 2.0 and 1.0 d, the digester reduced the substrate COD by 76, 61 and 33%, respectively. Although the best COD removal was obtained at an OLR of 7.30 kg COD/m3.d, the highest COD removal rate (6.51 kg COD/M3-d) was found at 10.65 kg COD/m3.d at an HRT of 2.0 d. The low methane yield and VFA accumulation found in the digester effluent, indicated inhibition on methanogenic level and this was considered to be the rate-limiting step during the anaerobic treatment process. The overall efficiency of the digester indicated that this digester design and support medium was suitable for the treatment of a high-strength, sulfate-rich baker's yeast effluent.  相似文献   

9.
The primary objective of this study was to evaluate the effects of the organic loading rate on the performance of an up-flow anaerobic sludge blanket (UASB) reactor treating olive mill effluent (OME), based on the following indicators: (i) chemical oxygen demand (COD) removal efficiency; and (ii) effluent variability (phenol, suspended solids, volatile fatty acids, and pH stability). The UASB reactor was operated under different operational conditions (OLRs between 0.45 and 32 kg COD/m3·day) for 477 days. The results demonstrated that the UASB reactor could tolerate high influent COD concentrations. Removal efficiencies for the studied pollution parameters were found to be as follows: COD, 47∼92%; total phenol, 34∼75%; color, 6∼46%; suspended solids, 34∼76%. The levels of VFAs in the influent varied between 310 and 1,750 mg/L. Our measurements of the VFA levels indicated that some of the effluent COD could be attributed to VFAs (principally acetate, butyrate, iso-butyrate, and propionate) in the effluent, which occurred at levels between 345 and 2,420 mg/L. As the OLRs were increased, more VFAs were measured in the effluent. A COD removal efficiency of 90% could be achieved as long as OLR was kept at a level of less than 10 kg COD/m3·day. However, a secondary treatment unit for polishing purposes is necessary to comply with discharge standards.  相似文献   

10.
Influence of recirculation on the performance of anaerobic sequencing batch biofilm reactor (AnSBBR) was studied in the process of treating hypersaline (total dissolved inorganic solids (TDIS) approximately 26 g/l) and low biodegradable (BOD/COD approximately 0.3) composite chemical wastewater. Significant enhancement in the substrate removal efficiency and biogas yield was observed after introducing the recirculation to the system. Maximum efficiency (COD removal efficiency - 51%; SDR - 3.14 kg COD/cum-day) was observed at recirculation to feed (R/F) ratio of 2 (OLR - 6.15 kg C OD/cum-day; HLR - 2.30 cum (liquid)/cum day; UFV(A) - 0.023 m/h). Subsequent increase of R/F to 3 (OLR - 6.15 kg COD/cum-day; HLR - 3.07cum (liquid)/cum-day; UFV(A) - 0.035 m/h) resulted in reduction in COD removal efficiency (32%; SDR - 1.97 kg COD/cum-day). The enhanced performance of the system due to the introduction of recirculation was attributed to the improvement in the mass transfer between the substrate present in the bulk liquid and the attached biofilm. The hydrodynamic behavior due to recirculation mode of operation reduced the concentration gradient (substrate inhibition) of substrate and reaction by-products (VFA) resulting in mixed flow conditions.  相似文献   

11.
Treatment of simulated wastewater containing 40 mg/l of 4-chlorophenol (4-CP) was carried out in an upflow anaerobic sludge blanket (UASB) reactor under methanogenic condition. The performance of this test UASB reactor was evaluated in terms of 4-CP removal. Hydraulic retention time (HRT) and substrate:co-substrate ratio for the 4-CP removal was optimized by varying the influent flow rate (13-34.7 ml/min) and sodium acetate concentration (2-5 g/l), respectively. A control UASB reactor, which was not exposed to 4-CP was also operated under similar conditions. Organic loading rate (OLR) was varied in the range of 2-5.3 kg/m(3)/d and 1.7-4.2 kg/m(3)/d, respectively, for HRT and substrate:co-substrate ratio studies, respectively. The optimum HRT and substrate:co-substrate ratio for the removal of 4-CP was 12h and 1:75, respectively. Removal of 4-CP achieved at optimum HRT and substrate:co-substrate ratio was 88.3+/-0.7%. Removal of 4-CP occurred through dehalogenation and caused increase in chloride ion concentration in the effluent by 0.23-0.27 mg/mg 4-CP removed. The ring cleavage test showed the ortho mode of ring cleavage of 4-CP. Change in the elemental composition of the anaerobic biomass of UASB reactors was observed during the study period. Concentration of Ca(2+) increased in the biomass and this could be attributed to the biosoftening. Specific methanogenic activity of the sludge of control and test UASB reactor was 0.832 g CH(4) COD/g VSS d and 0.694 g CH(4) COD/g VSS d, respectively.  相似文献   

12.
The application of the expanded granular sludge bed (EGSB) reactor for the anaerobic treatment of low-strength soluble wastewaters using ethanol as a model substrate was investigated in laboratory-scale reactors at 30oC. Chemical oxygen demand (COD) removal efficiency was above 80% at organic loading rates up to12 g COD/L . d with influent concentrations as low as 100 to 200 mg COD/L. These results demonstrate the suitability of the EGBS reactor for the anaerobic treatment of low-strength wastewaters. The high treatment performance can be attributed to the intense mixing regime obtained by high hydraulic and organic loads. Good mixing of the bulk liquid phase for the substrate-biomass contact and adequate expansion of the substrate-biomass contact and adequate expansion of the sludge bed for the degassing were obtained when the liquid upflow velocity (V(up)) was greater than 2.5 m/h. Under such conditions, an extremely low apparent K(s) value for acetoclastic methanogenesis of 9.8 mg COD/L was observed. The presence of dissolved oxygen in the wastewater had no detrimental effect on the treatment performance. Sludge piston flotation from pockets of biogas accumulating under the sludge bed occurred at V(up) lower than 2.5 m/h due to poor bed expansion. This problem is expected only in small diameter laboratory-scale reactors. A. more important restriction of the EGSB reactor was the sludge washout occurring at V(up) higher than 5.5 m/h and which was intensified at organic loads higher than 7 g COD/L. d due to buoyancy forces from the gas production. To achieve an equilibrium between the mixing intensity and the sludge hold-up, the operation should be limited to an organic loading rate of 7 g COD/L d. and to a liquid up-flow velocity between 2.5 and 5.5 m/h (c) 1994 John Wiley & Sons, Inc.  相似文献   

13.
E. Coli was cultivated in batch and continuous operations in the presence of an antifoam agent in stirred-tank and in single- and ten-stage airlift tower reactors with an outer loop. The maximum specific growth rate, mu(m), the substrate yield coefficient, Y(x/s), the respiratory quotient, RQ, substrate conversion, U(s), the volumetric mass transfer coefficient, K(L)a, the specific interfacial area, a, and the specific power input, P/V(L), were measured and compared. If a medium is used with a concentration of complex substrates (extracts) 2.5 times higher than that of glucose, a spectrum of C sources is available and cell regulation influences reactor performance. Both mu(m) and Y(X/S), which were evaluated in batch reactors, cannot be used for continuous reactors or, when measured in stirred-tank reactors, cannot be employed for tower-loop reactors: mu(m) is higher in the stirred-tank batch than in the tower-loop batch reactor, mu(m) and Y(x/s) are higher in the continuous reactor than in the batch single-stage tower-loop reactor. The performance of the single-stage is better than that of the ten-stage reactor due to the inefficient trays employed. A reduction of the medium recirculation rate reduces OTR, U(s), Pr, and Y(X/S) and causes cell sedimentation and flocculation. The volumetric mass transfer coefficient is reduced with increasing cultivation time; the Sauter bubble diameter, d(s), remains constant and does not depend on operational conditions. An increase in the medium recirculation rate reduces k(L)a. The specific power input, P/V(L), for the single-stage tower loop is much lower with the same k(L)a value than for a stirred tank. The relationship k(L)a vs. P/V(L) evaluated for model media in stirred tanks, can also be used for cultivations in these reactors.  相似文献   

14.
The liquid superficial up_ow velocity (Vup) and hydraulic retention time (HRT) on the thermophilic treatment of oleate in expanded granular sludge bed (EGSB) reactors were investigated. The highest methane conversion rate of oleate, 93 mg CH4-COD/g VSS.d, was attained in a reactor operating at a Vup of 1 m/h and an HRT of 24 h. The typical EGSB reactor hydrodynamics (Vup > 4 m/h and HRT < 10 h) inhibited the treatment performance, mainly due to biomass washout in particulate form. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

15.
A fuzzy logic control (FLC) system was developed at the Hamburg University of Applied Sciences (HAW Hamburg) for operation of biogas reactors running on energy crops. Three commercially available measuring parameters, namely pH, the methane (CH4) content, and the specific gas production rate (spec. GPR = m(3)/kg VS/day) were included. The objective was to avoid stabilization of pH with use of buffering supplements, like lime or manure. The developed FLC system can cover most of all applications, such as a careful start-up process and a gentle recovery strategy after a severe reactor failure, also enabling a process with a high organic loading rate (OLR) and a low hydraulic retention time (HRT), that is, a high throughput anaerobic digestion process with a stable pH and CH4 content. A precondition for a high load process was the concept of interval feeding, for example, with 8 h of interval. The FLC system was proved to be reliable during the long term fermentation studies over 3 years in one-stage, completely stirred tank reactors (CSTR) with acidic beet silage as mono-input (pH 3.3-3.4). During fermentation of the fodder beet silage (FBS), a stable HRT of 6.0 days with an OLR of up to 15 kg VS/m(3)/day and a volumetric GPR of 9 m(3)/m(3)/day could be reached. The FLC enabled an automatic recovery of the digester after two induced severe reactor failures. In another attempt to prove the feasibility of the FLC, substrate FBS was changed to sugar beet silage (SBS), which had a substantially lower buffering capacity than that of the FBS. With SBS, the FLC accomplished a stable fermentation at a pH level between 6.5 and 6.6, and a volatile fatty acid level (VFA) below 500 mg/L, but the FLC had to interact and to change the substrate dosage permanently. In a further experiment, the reactor temperature was increased from 41 to 50 degrees C. Concomitantly, the specific GPR, pH and CH4 dropped down. Finally, the FLC automatically enabled a complete recovery in 16 days.  相似文献   

16.
In this study, performance of a lab-scale hybrid up-flow anaerobic sludge blanket (UASB) reactor, treating a chemical synthesis-based pharmaceutical wastewater, was evaluated under different operating conditions. This study consisted of two experimental stages: first, acclimation to the pharmaceutical wastewater and second, determination of maximum loading capacity of the hybrid UASB reactor. Initially, the carbon source in the reactor feed came entirely from glucose, applied at an organic loading rate (OLR) 1 kg COD/m(3) d. The OLR was gradually step increased to 3 kg COD/m(3) d at which point the feed to the hybrid UASB reactor was progressively modified by introducing the pharmaceutical wastewater in blends with glucose, so that the wastewater contributed approximately 10%, 30%, 70%, and ultimately, 100% of the carbon (COD) to be treated. At the acclimation OLR of 3 kg COD/m(3) d the hydraulic retention time (HRT) was 2 days. During this period of feed modification, the COD removal efficiencies of the anaerobic reactor were 99%, 96%, 91% and 85%, and specific methanogenic activities (SMA) were measured as 240, 230, 205 and 231 ml CH(4)/g TVS d, respectively. Following the acclimation period, the hybrid UASB reactor was fed with 100% (w/v) pharmaceutical wastewater up to an OLR of 9 kg COD/m(3) d in order to determine the maximum loading capacity achievable before reactor failure. At this OLR, the COD removal efficiency was 28%, and the SMA was measured as 170 ml CH(4)/g TVS d. The hybrid UASB reactor was found to be far more effective at an OLR of 8 kg COD/m(3) d with a COD removal efficiency of 72%. At this point, SMA value was 200 ml CH(4)/g TVS d. It was concluded that the hybrid UASB reactor could be a suitable alternative for the treatment of chemical synthesis-based pharmaceutical wastewater.  相似文献   

17.
A mathematical model consisting of mass balance equations and accounting for bioreaction and mass transfer is presented to describe both unsteady and steady-state degradation of phenol in a biofilter. The model has been validated for the steady-state situation with literature work. The model has been able to predict the dynamics of the biofiltration process with variations in system and operating conditions as inlet substrate concentration, liquid phase mass transfer coefficients, particle size, Henry's constant, inlet velocity, growth and half saturation constants and bed void fraction. The results show that inlet substrate concentration, inlet velocity, growth and half saturation constants and liquid phase mass transfer coefficients significantly control the operational dynamics. It is also shown that inhibition effects can be neglected for low concentrations (<0.5 kg m(-3)) of phenol. Thus, the model can be used as a design tool for a biofilter.  相似文献   

18.
Biological phenol degradation in a draft tube gas-liquid-solid fluidized bed (DTFB) bioreactor containing a mixed culture immobilized on spherical activated carbon particles was investigated. The characteristics of biofilms including the biofilm dry density and thickness, the volumetric oxygen mass transfer coefficient, and the phenol removal rates under different operating conditions in the DTFB were evaluated. A phenol degradation rate as high as 18 kg/m(3)-day with an effluent phenol concentration less than 1 g/m(3) was achieved, signifying the high treatment efficiency of using a DTFB.  相似文献   

19.
Liu X  Ren N  Yuan Y 《Bioresource technology》2009,100(1):104-110
A four-compartment periodic anaerobic baffled reactor (PABR) was run in a 'clockwise sequential' switching manner continuously fed on chinese traditional medicine industrial wastewater under an alkalinity concentration between 1000 and 1500 mg CaCO(3)/L of the feed with average organic load rate (OLR) at about 1, 2, 4 and 6 kg COD/(m(3)d) for 12, 24, 24 and 6d, respectively. Hydraulic residence time was 2d, while switching period was 4d. As the average OLR increased to 6 kg COD/(m(3)d), the time of the sharp fall in pH, chemical oxygen demand (COD) removal, gas production and methane percentage of the biogas of all the compartments and the time of rapid volatile fatty acids accumulation in effluent coincided, hence the PABR became sour. Denaturing gradient gel electrophoresis (DGGE) community fingerprints and their cluster analysis revealed that community structures of each compartment tended to be more closely related if the PABR was not overloaded.  相似文献   

20.
Anaerobic co-digestion is a well established process for treating many types of organic wastes, both solid and liquid. In this study we have investigated, on a laboratory scale, the anaerobic co-digestion of olive mill wastewater (OMW) with olive mill solid waste (OMSW) using semi-continuous, feeding, tubular digesters operated at mesophilic temperatures. Each digester was fed with an influent, composed of OMW and OMSW, at an organic loading rate (OLR) varying between 0.67 and 6.67 g COD/l/d. The hydraulic retention times (HRT) were 12, 24 and 36 days. The TCOD concentrations of OMW used as the main substrate were 24, 56 and 80 g COD/l; the amount of the dry OMSW used as a co-substrate was fixed to approximately 56 g/l of OMW. The results indicated that the best methane production was about 0.95 l/l/day obtained at an OLR = 4.67 g COD/l/d, corresponding to influent TCOD = 56 g COD/l at an HRT = 12d. In contrast, the maximum TCOD removal efficiency (89%) was achieved at an OLR = 0.67 g COD/l/d, corresponding to influent TCOD = 24 g COD/l at an HRT = 36 d. Moreover, the inhibition of biogas production was observed at the highest OLR studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号