首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Caveolin-3, a muscle-specific caveolin-related protein, is the principal structural protein of caveolae membrane domains in striated muscle cell types (cardiac and skeletal). Autosomal dominant limb girdle muscular dystrophy (LGMD-1C) in humans is due to mutations within the caveolin-3 gene: (i) a 9-base pair microdeletion that removes three amino acids within the caveolin scaffolding domain (DeltaTFT) or (ii) a missense mutation within the membrane spanning domain (P --> L). The molecular mechanisms by which these two mutations cause muscular dystrophy remain unknown. Here, we investigate the phenotypic behavior of these caveolin-3 mutations using heterologous expression. Wild type caveolin-3 or caveolin-3 mutants were transiently expressed in NIH 3T3 cells. LGMD-1C mutants of caveolin-3 (DeltaTFT or P --> L) were primarily retained at the level of a perinuclear compartment that we identified as the Golgi complex in double-labeling experiments, while wild type caveolin-3 was efficiently targeted to the plasma membrane. In accordance with these observations, caveolin-3 mutants formed oligomers of a much larger size than wild type caveolin-3 and were excluded from caveolae-enriched membrane fractions as seen by sucrose density gradient centrifugation. In addition, these caveolin-3 mutants were expressed at significantly lower levels and had a dramatically shortened half-life of approximately 45-60 min. However, caveolin-3 mutants were palmitoylated to the same extent as wild type caveolin-3, indicating that targeting to the plasma membrane is not required for palmitoylation of caveolin-3. In conclusion, we show that LGMD-1C mutations lead to formation of unstable high molecular mass aggregates of caveolin-3 that are retained within the Golgi complex and are not targeted to the plasma membrane. Consistent with its autosomal dominant form of genetic transmission, we demonstrate that LGMD-1C mutants of caveolin-3 behave in a dominant-negative fashion, causing the retention of wild type caveolin-3 at the level of the Golgi. These data provide a molecular explanation for why caveolin-3 levels are down-regulated in patients with this form of limb girdle muscular dystrophy (LGMD-1C).  相似文献   

2.
Caveolae are small pockets or invaginations localized at the plasma membrane. Caveolins are the principal protein components of caveolae and play an important structural role in the formation of caveolae membranes. Here, we studied by freeze fracture and immunological techniques the spatial organization of caveolae at the muscle cell plasma membrane and the expression of caveolin-3 in Duchenne muscular dystrophy (DMD) muscle fibers. In DMD muscle, we found an increased number of caveolae at the sarcolemma that corresponds to an overexpression of caveolin-3 by immunohistochemistry and by Western blot analysis. These findings suggest a possible role for caveolae and caveolin-3 in the pathogenesis of DMD.  相似文献   

3.
Caveolae are vesicular invaginations of the plasma membrane. Caveolin-3 is the principal structural component of caveolae in skeletal muscle cells in vivo. We have recently generated caveolin-3 transgenic mice and demonstrated that overexpression of wild-type caveolin-3 in skeletal muscle fibers is sufficient to induce a Duchenne-like muscular dystrophy phenotype. In addition, we have shown that caveolin-3 null mice display mild muscle fiber degeneration and T-tubule system abnormalities. These data are consistent with the mild phenotype observed in Limb-girdle muscular dystrophy-1C (LGMD-1C) in humans, characterized by a approximately 95% reduction of caveolin-3 expression. Thus, caveolin-3 transgenic and null mice represent valid mouse models to study Duchenne muscular dystrophy (DMD) and LGMD-1C, respectively, in humans. Here, we derived conditionally immortalized precursor skeletal muscle cells from caveolin-3 transgenic and null mice. We show that overexpression of caveolin-3 inhibits myoblast fusion to multinucleated myotubes and lack of caveolin-3 enhances the fusion process. M-cadherin and microtubules have been proposed to mediate the fusion of myoblasts to myotubes. Interestingly, we show that M-cadherin is downregulated in caveolin-3 transgenic cells and upregulated in caveolin-3 null cells. For the first time, variations of M-cadherin expression have been linked to a muscular dystrophy phenotype. In addition, we demonstrate that microtubules are disorganized in caveolin-3 null myotubes, indicating the importance of the cytoskeleton network in mediating the phenotype observed in these cells. Taken together, these results propose caveolin-3 as a key player in myoblast fusion and suggest that defects of the fusion process may represent additional molecular mechanisms underlying the pathogenesis of DMD and LGMD-1C in humans.  相似文献   

4.
Caveolin-3, a muscle-specific caveolin-related protein, is the principal structural protein of caveolae membrane domains in striated muscle cells. Recently, we identified a novel autosomal dominant form of limb-girdle muscular dystrophy (LGMD-1C) in humans that is due to mutations within the coding sequence of the human caveolin-3 gene (3p25). These LGMD-1C mutations lead to an approximately 95% reduction in caveolin-3 protein expression, i.e. a caveolin-3 deficiency. Here, we created a caveolin-3 null (CAV3 -/-) mouse model, using standard homologous recombination techniques, to mimic a caveolin-3 deficiency. We show that these mice lack caveolin-3 protein expression and sarcolemmal caveolae membranes. In addition, analysis of skeletal muscle tissue from these caveolin-3 null mice reveals: (i) mild myopathic changes; (ii) an exclusion of the dystrophin-glycoprotein complex from lipid raft domains; and (iii) abnormalities in the organization of the T-tubule system, with dilated and longitudinally oriented T-tubules. These results have clear mechanistic implications for understanding the pathogenesis of LGMD-1C at a molecular level.  相似文献   

5.
Caveolae and their coat proteins, caveolins, co-ordinate multiple signaling pathways. Caveolin-3 is a muscle-specific caveolin isoform that is deficient in limb girdle muscular dystrophy type 1 C (LGMD1C). Paradoxically, overexpression of this protein also causes muscle degeneration in vivo. We hypothesize that altered membrane expression of caveolin-3 in muscle cells causes a degenerative phenotype by disrupting the co-ordination of signaling pathways that are critical to the maintenance of cell survival. Here, we show for the first time that, in normal muscle cells subjected to oxidative stress, the phosphatidylinositol (3) kinase (PI(3) kinase)-associated proteins PDK1 and Akt associate with caveolae where they bind to caveolin-3, and that normal activation of this pathway promotes cell survival. Either increased or decreased expression of caveolin-3 at the membrane caused an increased susceptibility to oxidative stress, and myotube survival was markedly improved by PI(3) kinase inhibition. This occurred concomitantly with altered phosphorylation of the pro-apoptotic proteins GSK3beta and Bad, despite normal levels of Akt activation. Taken together, our results demonstrate that altered caveolin-3 expression can change the outcome of PI(3) kinase activation from cell survival to cell death. These findings indicate that normal expression and localization of caveolin-3 are required to appropriately co-ordinate PI(3) kinase/Akt-mediated cell survival signaling, and suggest that this pathway may be an effective therapeutic target for the treatment of muscular dystrophies associated with caveolin-3 mutations.  相似文献   

6.
Caveolin-3 is the principal structural protein of caveolae in striated muscle. Autosomal dominant limb-girdle muscular dystrophy (LGMD-1C) in humans is due to mutations (DeltaTFT and Pro --> Leu) within the CAV3 gene. We have shown that LGMD-1C mutations lead to formation of unstable aggregates of caveolin-3 that are retained intracellularly and are rapidly degraded. The mechanism by which LGMD-1C mutants of caveolin-3 are degraded remains unknown. Here, we show that LGMD-1C mutants of caveolin-3 undergo ubiquitination-proteasomal degradation. Treatment with proteasomal inhibitors (MG-132, MG-115, lactacystin, or proteasome inhibitor I), but not lysosomal inhibitors, prevented degradation of LGMD-1C caveolin-3 mutants. In the presence of MG-132, LGMD-1C caveolin-3 mutants accumulated within the endoplasmic reticulum and did not reach the plasma membrane. LGMD-1C mutants of caveolin-3 behave in a dominant negative fashion, causing intracellular retention and degradation of wild-type caveolin-3. Interestingly, in cells co-expressing wild-type and mutant forms of caveolin-3, MG-132 treatment rescued wild-type caveolin-3; wild-type caveolin-3 was not degraded and reached the plasma membrane. These results may have clinical implications for treatment of patients with LGMD-1C.  相似文献   

7.
8.
Caveolin-3 is the striated muscle specific isoform of the scaffolding protein family of caveolins and has been shown to interact with a variety of proteins, including ion channels. Mutations in the human CAV3 gene have been associated with several muscle disorders called caveolinopathies and among these, the P104L mutation (Cav-3(P104L)) leads to limb girdle muscular dystrophy of type 1C characterized by the loss of sarcolemmal caveolin. There is still no clear-cut explanation as to specifically how caveolin-3 mutations lead to skeletal muscle wasting. Previous results argued in favor of a role for caveolin-3 in dihydropyridine receptor (DHPR) functional regulation and/or T-tubular membrane localization. It appeared worth closely examining such a functional link and investigating if it could result from the direct physical interaction of the two proteins. Transient expression of Cav-3(P104L) or caveolin-3 specific siRNAs in C2C12 myotubes both led to a significant decrease of the L-type Ca(2+) channel maximal conductance. Immunolabeling analysis of adult skeletal muscle fibers revealed the colocalization of a pool of caveolin-3 with the DHPR within the T-tubular membrane. Caveolin-3 was also shown to be present in DHPR-containing triadic membrane preparations from which both proteins co-immunoprecipitated. Using GST-fusion proteins, the I-II loop of Ca(v)1.1 was identified as the domain interacting with caveolin-3, with an apparent affinity of 60nM. The present study thus revealed a direct molecular interaction between caveolin-3 and the DHPR which is likely to underlie their functional link and whose loss might therefore be involved in pathophysiological mechanisms associated to muscle caveolinopathies.  相似文献   

9.
Caveolin, a 20-24 kDa integral membrane protein, is a principal component of caveolar domains. Caveolin-1 is expressed predominantly in endothelial cells, fibroblasts, and adipocytes, while the expression of caveolin-3 is confined to muscle cells. However, their localization in various muscles has not been well documented. Using double-immunofluorescence labeling and confocal laser microscopy, we examined the localization of caveolins-1 and 3 in adult monkey skeletal, cardiac and uterine smooth muscles and the co-immunolocalization of these caveolins with dystrophin, which is a product of the Duchenne muscular dystrophy gene. In the skeletal muscle tissue, caveolin-3 was localized along the sarcolemma except for the transverse tubules, and co-immunolocalized with dystrophin, whereas caveolin-1 was absent except in the blood vessels of the muscle tissue. In cardiac muscle cells, caveolins-1 and -3 and dystrophin were co-immunolocalized on the sarcolemma and transverse tubules. In uterine smooth muscle cells, caveolin-1, but not caveolin-3, was co-immunolocalized with dystrophin on the sarcolemma.  相似文献   

10.
Caveolin-3, a muscle-specific caveolin-related protein, is the principal structural protein of caveolae membrane domains in striated muscle cell types (cardiac and skeletal). Recently, we identified an autosomal dominant form of limb girdle muscular dystrophy in humans that is due to mutations within exon 2 of the caveolin-3 gene (3p25). However, the detailed location of the human caveolin-3 gene and its position with regard to neighboring genes remains unknown. Here, we have isolated three independent BAC clones containing the human caveolin-3 gene. Using a PCR-based approach, we determined that these clones contain both exons 1 and 2 of the human caveolin-3 gene. In addition, we performed microsatellite marker analysis of these BAC clones, using a panel of 13 markers that are known to map within the 3p25 region. Our results indicate that these BAC clones contain the following three markers: D3S18, SHGC-1079 (also known as D3S4163) and D3S4539. Interestingly, D3S18 is a marker for two known human diseases, von Hippel-Lindau disease and 3p-syndrome. As D3S4163 and D3S4539 are known to map in the vicinity of the 3' end of the human oxytocin receptor gene, we determined if these caveolin-3 positive BACs also contain the oxytocin receptor gene. We show that (i) these BACs contain all four exons of the oxytocin receptor gene and (ii) that the genes encoding caveolin-3 and the oxytocin receptor are located approximately 7-10 kb apart and in the opposite orientation. As 3p-syndrome is characterized by cardiac septal defects and caveolin-3 is expressed primarily in the heart and skeletal muscle, caveolin-3 is a candidate gene that may be deleted in 3p-syndrome.  相似文献   

11.
Caveolin-3, the most recently recognized member of the caveolin gene family, is muscle-specific and is found in both cardiac and skeletal muscle, as well as smooth muscle cells. Several independent lines of evidence indicate that caveolin-3 is localized to the sarcolemma, where it associates with the dystrophin-glycoprotein complex. However, it remains unknown which component of the dystrophin complex interacts with caveolin-3. Here, we demonstrate that caveolin-3 directly interacts with beta-dystroglycan, an integral membrane component of the dystrophin complex. Our results indicate that caveolin-3 co-localizes, co-fractionates, and co-immunoprecipitates with a fusion protein containing the cytoplasmic tail of beta-dystroglycan. In addition, we show that a novel WW-like domain within caveolin-3 directly recognizes the extreme C terminus of beta-dystroglycan that contains a PPXY motif. As the WW domain of dystrophin recognizes the same site within beta-dystroglycan, we also demonstrate that caveolin-3 can effectively block the interaction of dystrophin with beta-dystroglycan. In this regard, interaction of caveolin-3 with beta-dystroglycan may competitively regulate the recruitment of dystrophin to the sarcolemma. We discuss the possible implications of our findings in the context of Duchenne muscular dystrophy.  相似文献   

12.
Two autosomal recessive muscle diseases, limb girdle muscular dystrophy type 2B (LGMD2B) and Miyoshi myopathy (MM), are caused by mutations in the dysferlin gene. These mutations result in poor ability to repair cell membrane damage, which is suggested to be the cause for this disease. However, many patients who share clinical features with MM-type muscular dystrophy do not carry mutations in dysferlin gene. To understand the basis of MM that is not due to mutations in dysferlin gene, we analyzed cells from patients in one such family. In these patients, we found no defects in several potential candidates - annexin A2, caveolin-3, myoferlin and the MMD2 locus on chromosome 10p. Similar to dysferlinopathy, these cells also exhibit membrane repair defects and the severity of the defect correlated with severity of their disease. However, unlike dysferlinopathy, none of the conventional membrane repair pathways are defective in these patient cells. These results add to the existing evidence that cell membrane repair defect may be responsible for MM-type muscular dystrophy and indicate that a previously unsuspected genetic lesion that affects cell membrane repair pathway is responsible for the disease in the non-dysferlin MM patients.  相似文献   

13.
Specific point mutations in caveolin-3, a predominantly muscle-specific member of the caveolin family, have been implicated in limb-girdle muscular dystrophy and in rippling muscle disease. We examined the effect of these mutations on caveolin-3 localization and function. Using two independent assay systems, Raf activation in fibroblasts and neurite extension in PC12 cells, we show that one of the caveolin-3 point mutants, caveolin-3-C71W, specifically inhibits signaling by activated H-Ras but not by K-Ras. To gain insights into the effect of the mutant protein on H-Ras signaling, we examined the localization of the mutant proteins in fibroblastic cells and in differentiating myotubes. Unlike the previously characterized caveolin-3-DGV mutant, the inhibitory caveolin-3-C71W mutant reached the plasma membrane and colocalized with wild type caveolins. In BHK cells, caveolin-3-C71W associated with caveolae and in differentiating muscle cells with the developing T-tubule system. In contrast, the caveolin-3-P104L mutant accumulated in the Golgi complex and had no effect on H-Ras-mediated Raf activation. Inhibition by caveolin-3-C71W was rescued by cholesterol addition, suggesting that the mutant protein perturbs cholesterol-rich raft domains. Thus, we have demonstrated that a naturally occurring caveolin-3 mutation can inhibit signaling involving cholesterol-sensitive raft domains.  相似文献   

14.
Four different phenotypes have been associated with CAV3 mutations: limb girdle muscular dystrophy-1C (LGMD-1C), rippling muscle disease (RMD), and distal myopathy (DM), as well as idiopathic and familial hyperCKemia (HCK). Detailed molecular characterization of two caveolin-3 mutations (P104L and TFT), associated with LGMD-1C, shows them to impart a dominant-negative effect on wild-type caveolin-3, rendering it dysfunctional through sequestration in the Golgi complex. Interestingly, substitution of glutamine for arginine at amino acid position 26 (R26Q) of caveolin-3 is associated not only with RMD but also with DM and HCK. However, the phenotypic behavior of the caveolin-3 R26Q mutation has never been evaluated in cultured cells. Thus we characterized the cellular and molecular properties of the R26Q mutant protein to better understand how this mutation can manifest as such distinct disease phenotypes. Here, we show that the caveolin-3 R26Q mutant is mostly retained at the level of the Golgi complex. The caveolin-3 R26Q mutant formed oligomers of a much larger size than wild-type caveolin-3 and was excluded from caveolae-enriched membranes. However, caveolin-3 R26Q did not behave in a dominant-negative fashion when coexpressed with wild-type caveolin-3. Thus the R26Q mutation behaves differently from other caveolin-3 mutations (P104L and TFT) that have been previously characterized. These data provide a possible explanation for the scope of the various disease phenotypes associated with the caveolin-3 R26Q mutation. We propose a haploinsufficiency model in which reduced levels of wild-type caveolin-3, although not rendered dysfunctional due to the caveolin-3 R26Q mutant protein, are insufficient for normal muscle cell function. muscle cell caveolae; caveolin-3; muscular dystrophy  相似文献   

15.
Defective membrane repair can contribute to the progression of muscular dystrophy. Although mutations in caveolin-3 (Cav3) and dysferlin are linked to muscular dystrophy in human patients, the molecular mechanism underlying the functional interplay between Cav3 and dysferlin in membrane repair of muscle physiology and disease has not been fully resolved. We recently discovered that mitsugumin 53 (MG53), a muscle-specific TRIM (Tri-partite motif) family protein (TRIM72), contributes to intracellular vesicle trafficking and is an essential component of the membrane repair machinery in striated muscle. Here we show that MG53 interacts with dysferlin and Cav3 to regulate membrane repair in skeletal muscle. MG53 mediates active trafficking of intracellular vesicles to the sarcolemma and is required for movement of dysferlin to sites of cell injury during repair patch formation. Mutations in Cav3 (P104L, R26Q) that cause retention of Cav3 in Golgi apparatus result in aberrant localization of MG53 and dysferlin in a dominant-negative fashion, leading to defective membrane repair. Our data reveal that a molecular complex formed by MG53, dysferlin, and Cav3 is essential for repair of muscle membrane damage and also provide a therapeutic target for treatment of muscular and cardiovascular diseases that are linked to compromised membrane repair.Membrane recycling and remodeling contribute to multiple cellular functions, including cell fusion events during myogenesis and maintenance of sarcolemma integrity in striated muscle. During the life cycle of striated muscle, membrane repair is a fundamental process in maintaining cellular integrity, as shown by recent studies that link defective membrane repair to the progression of muscular dystrophy (13). Repair of the plasma membrane damage requires recruitment of intracellular vesicles to injury sites (4, 5). One protein that has been linked to membrane repair in skeletal muscle is dysferlin (6, 7), which is thought to fuse intracellular vesicles to patch the damaged membrane and restore sarcolemmal integrity following muscle injury. Like dysferlin, caveolin-3 (Cav3)3 is a muscle-specific protein, and many mutations in Cav3, including P104L, R26Q, and C71W, have been linked to muscular dystrophy (811). Despite extensive research efforts on Cav3 and dysferlin (1214), the molecular function of these two proteins in membrane repair in muscle physiology and dystrophy have not been fully defined.Animal model studies reveal that either loss or gain of Cav3 function both result in dystrophic phenotypes in skeletal muscle (15, 16), suggesting that associated cellular components may be involved in the etiology of Cav3-related dystrophy. Although the discovery of dysferlin highlights the importance of membrane repair in the etiology of muscular dystrophy, dysferlin itself does not appear to participate in recruitment of intracellular vesicles because dysferlin−/− muscle retains accumulation of vesicles near membrane damage sites (7). This indicates that proteins other than dysferlin are required for nucleation of intracellular vesicles at the sites of acute membrane damage. Recently, we discovered that MG53, a muscle-specific TRIM family protein (TRIM72), is an essential component of the acute membrane repair machinery. MG53 acts as a sensor of oxidation to nucleate recruitment of intracellular vesicles to the injury site for membrane patch formation (17). We also found that MG53 can regulate membrane budding and exocytosis in muscle cells, and this membrane-recycling function of MG53 can be modulated through a functional interaction with Cav3 (18).Here we present evidence that MG53 interacts with dysferlin to facilitate intracellular vesicle trafficking during repair of acute membrane damage. In addition, we show that transgenic overexpression of P104L-Cav3 in striated muscle produces defects in membrane repair that are linked to altered subcellular distribution of MG53 and dysferlin. Our results suggest that altered MG53 localization can be used as a marker for muscular dystrophy involving reduced sarcolemmal membrane repair capacity due to Cav3 mutation, and potentially, in other forms of dystrophy as well.  相似文献   

16.
Muscular dystrophies include a diverse group of genetically heterogeneous disorders that together affect 1 in 2000 births worldwide. The diseases are characterized by progressive muscle weakness and wasting that lead to severe disability and often premature death. Rostrocaudal muscular dystrophy (rmd) is a new recessive mouse mutation that causes a rapidly progressive muscular dystrophy and a neonatal forelimb bone deformity. The rmd mutation is a 1.6-kb intragenic deletion within the choline kinase beta (Chkb) gene, resulting in a complete loss of CHKB protein and enzymatic activity. CHKB is one of two mammalian choline kinase (CHK) enzymes (alpha and beta) that catalyze the phosphorylation of choline to phosphocholine in the biosynthesis of the major membrane phospholipid phosphatidylcholine. While mutant rmd mice show a dramatic decrease of CHK activity in all tissues, the dystrophy is only evident in skeletal muscle tissues in an unusual rostral-to-caudal gradient. Minor membrane disruption similar to dysferlinopathies suggest that membrane fusion defects may underlie this dystrophy, because severe membrane disruptions are not evident as determined by creatine kinase levels, Evans Blue infiltration, and unaltered levels of proteins in the dystrophin-glycoprotein complex. The rmd mutant mouse offers the first demonstration of a defect in a phospholipid biosynthetic enzyme causing muscular dystrophy, representing a unique model for understanding mechanisms of muscle degeneration.  相似文献   

17.
The muscle-specific intermediate filament protein desmin is expressed in mononucleated myoblasts and in differentiated myotubes. Desmin has been shown to associate with the sarcolemma in specific structures, such as neuromuscular junctions and the dystrophin-associated protein complex. Since these are specialized membrane regions, the study of a possible association between desmin and liquid-ordered membrane microdomains is of particular interest. We have carried out an analysis of the association between desmin and the muscle-specific protein caveolin-3, a major component of caveolar microdomains. Our results demonstrate that (1) desmin precisely co-localizes with caveolin-3 in myoblasts and multinucleated myotubes, (2) caveolin-3 is up-regulated during in vitro chick muscle development, (3) desmin is detectable in caveolae-enriched membrane fractions prepared from skeletal muscle, and (4) caveolin-3 co-immunoprecipitates with desmin. We have thus shown, for the first time, an association between the intermediate filament protein desmin and caveolin-3 in myogenic cells.  相似文献   

18.
19.
The myodystrophy (myd) mutation arose spontaneously and has an autosomal recessive mode of inheritance. Homozygous mutant mice display a severe, progressive muscular dystrophy. Using a positional cloning approach, we identified the causative mutation in myd as a deletion within the Large gene, which encodes a putative glycosyltransferase with two predicted catalytic domains. By immunoblotting, the alpha-subunit of dystroglycan, a key muscle membrane protein, is abnormal in myd mice. This aberrant protein might represent altered glycosylation of the protein and contribute to the muscular dystrophy phenotype. Our results are discussed in the light of recent reports describing mutations in other glycosyltransferase genes in several forms of human muscular dystrophy.  相似文献   

20.
Small interfering RNA (siRNA)-mediated silencing of gene expression is rapidly becoming a powerful tool for molecular therapy. However, the rapid degradation of siRNAs and their limited duration of activity require efficient delivery methods. Atelocollagen (ATCOL)-mediated administration of siRNAs is a promising approach to disease treatment, including muscular atrophy. Herein, we report that ATCOL-mediated systemic administration of a myostatin-targeting siRNA into a caveolin-3-deficient mouse model of limb-girdle muscular dystrophy 1C (LGMD1C) induced a marked increase in muscle mass and a significant recovery of contractile force. These results provide evidence that ATCOL-mediated systemic administration of siRNAs may be a powerful therapeutic tool for disease treatment, including muscular atrophy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号