首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study tests the hypotheses that a recruitment maneuver per se yields and/or intensifies lung mechanical stress. Recruitment maneuver was applied to a model of paraquat-induced acute lung injury (ALI) and to healthy rats with (ATEL) or without (CTRL) previous atelectasis. Recruitment was done by using 40-cmH(2)O continuous positive airway pressure for 40 s. Rats were, then, ventilated for 1 h at zero end-expiratory pressure (ZEEP) or positive end-expiratory pressure (PEEP; 5 cmH(2)O). Atelectasis was generated by inflating a sphygmomanometer around the thorax. Additional groups did not undergo recruitment but were ventilated for 1 h under ZEEP. Lung resistive and viscoelastic pressures and static elastance were computed before and immediately after recruitment, and at the end of 1 h of ventilation. Lungs were prepared for histology. Type III procollagen (PCIII) mRNA expression in lung tissue was analyzed by RT-PCR. Lung mechanics improved after recruitment in the CTRL and ALI groups. One hour of ventilation at ZEEP increased alveolar collapse, static elastance, and lung resistive and viscoelastic pressures. Alveolar collapse was similar in ATEL and ALI, and recruitment opened the alveoli in both groups. ALI showed higher PCIII expression than ATEL or CTRL groups. One hour of ventilation at ZEEP did not increase PCIII expression but augmented it significantly in the three groups when applied after recruitment. However, PEEP ventilation after recruitment avoided any increment in PCIII expression in all groups. In conclusion, recruitment followed by ZEEP was more deleterious in ALI than in mechanical ATEL, although ZEEP alone did not elevate PCIII expression. Ventilation with 5-cmH(2)O PEEP prevented derecruitment and aborted the increase in PCIII expression.  相似文献   

2.
Constant-flow ventilation (CFV) maintains alveolar ventilation without tidal excursion in dogs with normal lungs, but this ventilatory mode requires high CFV and bronchoscopic guidance for effective subcarinal placement of two inflow catheters. We designed a circuit that combines CFV with continuous positive-pressure ventilation (CPPV; CFV-CPPV), which negates the need for bronchoscopic positioning of CFV cannula, and tested this system in seven dogs having oleic acid-induced pulmonary edema. Addition of positive end-expiratory pressure (PEEP, 10 cmH2O) reduced venous admixture from 44 +/- 17 to 10.4 +/- 5.4% and kept arterial CO2 tension (PaCO2) normal. With the innovative CFV-CPPV circuit at the same PEEP and respiratory rate (RR), we were able to reduce tidal volume (VT) from 437 +/- 28 to 184 +/- 18 ml (P less than 0.001) and elastic end-inspiratory pressures (PEI) from 25.6 +/- 4.6 to 17.7 +/- 2.8 cmH2O (P less than 0.001) without adverse effects on cardiac output or pulmonary exchange of O2 or CO2; indeed, PaCO2 remained at 35 +/- 4 Torr even though CFV was delivered above the carina and at lower (1.6 l.kg-1.min-1) flows than usually required to maintain eucapnia during CFV alone. At the same PEEP and RR, reduction of VT in the CPPV mode without CFV resulted in CO2 retention (PaCO2 59 +/- 8 Torr). We conclude that CFV-CPPV allows CFV to effectively mix alveolar and dead spaces by a small bulk flow bypassing the zone of increased resistance to gas mixing, thereby allowing reduction of the CFV rate, VT, and PEI for adequate gas exchange.  相似文献   

3.
The aim of this study was to assess the utility of (3)He MRI to noninvasively probe the effects of positive end-expiratory pressure (PEEP) maneuvers on alveolar recruitment and atelectasis buildup in mechanically ventilated animals. Sprague-Dawley rats (n = 13) were anesthetized, intubated, and ventilated in the supine position ((4)He-to-O(2) ratio: 4:1; tidal volume: 10 ml/kg, 60 breaths/min, and inspiration-to-expiration ratio: 1:2). Recruitment maneuvers consisted of either a stepwise increase of PEEP to 9 cmH(2)O and back to zero end-expiratory pressure or alternating between these two PEEP levels. Diffusion MRI was performed to image (3)He apparent diffusion coefficient (ADC) maps in the middle coronal slices of lungs (n = 10). ADC was measured immediately before and after two recruitment maneuvers, which were separated from each other with a wait period (8-44 min). We detected a statistically significant decrease in mean ADC after each recruitment maneuver. The relative ADC change was -21.2 ± 4.1 % after the first maneuver and -9.7 ± 5.8 % after the second maneuver. A significant relative increase in mean ADC was observed over the wait period between the two recruitment maneuvers. The extent of this ADC buildup was time dependent, as it was significantly related to the duration of the wait period. The two postrecruitment ADC measurements were similar, suggesting that the lungs returned to the same state after the recruitment maneuvers were applied. No significant intrasubject differences in ADC were observed between the corresponding PEEP levels in two rats that underwent three repeat maneuvers. Airway pressure tracings were recorded in separate rats undergoing one PEEP maneuver (n = 3) and showed a significant relative difference in peak inspiratory pressure between pre- and poststates. These observations support the hypothesis of redistribution of alveolar gas due to recruitment of collapsed alveoli in presence of atelectasis, which was also supported by the decrease in peak inspiratory pressure after recruitment maneuvers.  相似文献   

4.
Effect of PEEP on discharge of pulmonary C-fibers in dogs   总被引:1,自引:0,他引:1  
Although positive end-expiratory pressure (PEEP) is believed to depress cardiac output and arterial pressure by compressing the vena cava and the heart, it is unclear whether PEEP also depresses these variables by a reflex arising from an inflation-induced stimulation of pulmonary C-fibers. We therefore recorded the impulse activity of 17 pulmonary C-fibers in barbiturate-anesthetized dogs with closed chests, while we placed the expiratory outlet of a ventilator under 5-30 cmH2O. Increasing PEEP in a ramp-like manner stimulated 12 of the 17 pulmonary C-fibers, with activity increasing from 0.0 +/- 0.1 to 0.9 +/- 0.2 imp/s when end-expiratory pressure equaled 15 cmH2O. When PEEP was increased in a stepwise manner to 15-20 cmH2O and maintained at this pressure for 15 min, pulmonary C-fibers increased their firing rates, but the effect was small averaging 0.2-0.3 imp/s after the 1st min of this maneuver. We conclude that pulmonary C-fibers are unlikely to be responsible for causing much of the decreases in cardiac output and arterial pressure evoked by sustained periods of PEEP in both patients and laboratory animals. These C-fibers, however, are likely to be responsible for causing the reflex decreases in these variables evoked by sudden application of PEEP.  相似文献   

5.
Nonlinear hemodynamic responses on positive end-expiratory pressure (PEEP) have been attributed to a rise of mean central venous pressure (Pcv), to compensatory cardiovascular control mechanisms, and to the occurrence of a lung stretch depressor reflex above a threshold lung stretch. We tested the hypothesis that the contribution of each of these mechanisms is dependent on the preexisting volemic load. PEEP was applied as a continuous rise (ramp) in piglets in three different volemic loads. In the normovolemic circulation cardiac output (CO) decreased nonlinearly in three phases during the PEEP ramp up to 15 cmH2O. CO decreased gradually in phase I, followed by a sharp decrease in phase II between a PEEP of 3 and 9 cmH2O and again a more gradual decrease in phase III up to a PEEP of 15 cmH2O. Heart rate (HR) and mean aortic pressure (PaO) also decreased during phase II, indicating the predominance of a lung stretch depressor reflex. In the hypervolemic circulation (loading 15 ml . kg-1 dextran) only phases I and II were observed with the onset of phase II at a higher level of PEEP (6 cmH2O). More lung stretch appeared to be necessary to elicit the lung stretch depressor reflex. In the hypovolemic circulation (hemorrhage 15 ml . kg-1) CO decreased linearly, Pao was stable after an initial decrease, and HR increased continuously, indicating a predominance of cardiovascular compensatory mechanisms.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
We have previously shown (Am. Rev. Respir. Dis. 136: 886-891, 1987) improved cardiac output in dogs with pulmonary edema ventilated with external continuous negative chest pressure ventilation (CNPV) using negative end-expiratory pressure (NEEP), compared with continuous positive-pressure ventilation (CPPV) using equivalent positive end-expiratory pressure (PEEP). The present study examined the effect on lung water of CNPV compared with CPPV to determine whether the increased venous return created by NEEP worsened pulmonary edema in dogs with acute lung injury. Oleic acid (0.06 ml/kg) was administered to 27 anesthetized dogs. Supine animals were then divided into three groups and ventilated for 6 h. The first group (n = 10) was treated with intermittent positive-pressure ventilation (IPPV) alone; the second (n = 9) received CNPV with 10 cmH2O NEEP; the third (n = 8) received CPPV with 10 cmH2O PEEP. CNPV and CPPV produced similar improvements in oxygenation over IPPV. However, cardiac output was significantly depressed by CPPV, but not by CNPV, when compared with IPPV. Although there were no differences in extravascular lung water (Qwl/dQl) between CNPV and CPPV, both significantly increased Qwl/dQl compared with IPPV (7.81 +/- 0.21 and 7.87 +/- 0.31 vs. 6.71 +/- 0.25, respectively, P less than 0.01 in both instances). CNPV and CPPV, but not IPPV, enhanced lung water accumulation in the perihilar areas where interstitial pressures may be most negative at higher lung volumes.  相似文献   

7.
Effects of positive end-expiratory pressure on the right ventricle   总被引:2,自引:0,他引:2  
Transmural cardiac pressures, stroke volume, right ventricular volume, and lung water content were measured in normal dogs and in dogs with oleic acid-induced pulmonary edema (PE) maintained on positive-pressure ventilation. Measurements were performed prior to and following application of 20 cmH2O positive end-expiratory pressure (PEEP). Colloid fluid was given during PEEP for ventricular volume expansion before and after the oleic acid administration. PEEP significantly increased pleural pressure and pulmonary vascular resistance but decreased right ventricular volume, stroke volume, and mean arterial pressure in both normal and PE dogs. Although the fluid infusion during PEEP raised right ventricular diastolic volumes to the pre-PEEP level, the stroke volumes did not significantly increase in either normal dogs or the PE dogs. The fluid infusion, however, significantly increased the lung water content in the PE dogs. Following discontinuation of PEEP, mean arterial pressure, cardiac output, and stroke volume significantly increased, and heart rate did not change. The failure of the stroke volume to increase despite significant right ventricular volume augmentation during PEEP indicates that positive-pressure ventilation with 20 cmH2O PEEP decreases right ventricular function.  相似文献   

8.
We investigated the dose-response effect of positive end-expiratory pressure (PEEP) and increased lung volume on the pulmonary clearance rate of aerosolized technetium-99m-labeled diethylenetriaminepentaacetic acid (99mTc-DTPA). Clearance of lung radioactivity was expressed as percent decrease per minute. Base-line clearance was measured while anesthetized sheep (n = 20) were ventilated with 0 cmH2O end-expiratory pressure. Clearance was remeasured during ventilation at 2.5, 5, 10, 15, or 20 cmH2O PEEP. Further studies showed stepwise increases in functional residual capacity (FRC) (P less than 0.05) measured at 0, 2.5, 5, 10, 15, and 20 cmH2O PEEP. At 2.5 cmH2O PEEP, the clearance rate was not different from that at base line (P less than 0.05), although FRC was increased from base line. Clearance rate increased progressively with increasing PEEP at 5, 10, and 15 cmH2O (P less than 0.05). Between 15 and 20 cmH2O PEEP, clearance rate was again unchanged, despite an increase in FRC. The pulmonary clearance of aerosolized 99mTc-DTPA shows a sigmoidal response to increasing FRC and PEEP, having both threshold and maximal effects. This relationship is most consistent with the hypothesis that alveolar epithelial permeability is increased by lung inflation.  相似文献   

9.
The lower inflection point (LIP) on the total respiratory system pressure-volume (P-V) curve is widely used to set positive end-expiratory pressure (PEEP) in patients with acute respiratory failure (ARF) on the assumption that LIP represents alveolar recruitment. The aims of this work were to study the relationship between LIP and recruited volume (RV) and to propose a simple method to quantify the RV. In 23 patients with ARF, respiratory system P-V curves were obtained by means of both constant-flow and rapid occlusion technique at four different levels of PEEP and were superimposed on the same P-V plot. The RV was measured as the volume difference at a pressure of 20 cm H(2)O. A third measurement of the RV was done by comparing the exhaled volumes after the same distending pressure of 20 cm H(2)O was applied (equal pressure method). RV increased with PEEP (P < 0.0001); the equal pressure method compares favorably with the other methods (P = 0.0001 by correlation), although individual data cannot be superimposed. No significant difference was found when RV was compared with PEEP in the group of patients with a LIP < or =5 cm H(2)O and the group with a LIP >5 cm H(2)O (76.9 +/- 94.3 vs. 61.2 +/- 51.3, 267.7 +/- 109.9 vs. 209.6 +/- 73.9, and 428.2 +/- 216.3 vs. 375.8 +/- 145.3 ml with PEEP of 5, 10, and 15 cm H(2)O, respectively). A RV was found even when a LIP was not present. We conclude that the recruitment phenomenon is not closely related to the presence of a LIP and that a simple method can be used to measure RV.  相似文献   

10.
Effects of differential ventilation with general vs. selective right (R) and left (L) positive end-expiratory pressure (PEEP) on left (LV) and right ventricular (RV) end-diastolic dimensions were compared in seven pentobarbital-anesthetized dogs. All three modes of PEEP reduced LV cross-sectional area: general PEEP more than RPEEP and RPEEP more than LPEEP. General PEEP and, to a lesser degree, RPEEP decreased both the LV anteroposterior diameter and LV septum-free wall diameter, whereas LPEEP reduced the LV septum-free wall diameter only. Cardiac output was unaffected by LPEEP, whereas general PEEP (20 cmH2O) reduced cardiac output by 48%, and RPEEP (20 cmH2O) reduced it by 23%. RV septum-free wall diameter was not changed by any mode of PEEP. In conclusion, cardiac output was better maintained with selective PEEP than with general PEEP because LV filling was less impeded with selective PEEP. During LPEEP LV assumed a different configuration than during RPEEP and general PEEP, probably reflecting a different pattern of heart-lung interaction.  相似文献   

11.
We have investigated the effect of positive end-expiratory pressure ventilation (PEEP) on regional splanchnic vascular capacitance. In 12 anesthetized dogs hepatic and splenic blood volumes were assessed by sonomicrometry. Vascular pressure-diameter curves were defined by obstructing hepatic outflow. With 10 and 15 cmH2O PEEP portal venous pressure increased 3.1 +/- 0.3 and 5.1 +/- 0.4 mmHg (P less than 0.001) while hepatic venous pressure increased 4.9 +/- 0.4 and 7.3 +/- 0.4 mmHg (P less than 0.001), respectively. Hepatic blood volume increased (P less than 0.01) 3.8 +/- 0.9 and 6.3 +/- 1.4 ml/kg body wt while splenic volume decreased (P less than 0.01) 0.8 +/- 0.2 and 1.3 +/- 0.2 ml/kg body wt. The changes were similar with closed abdomen. The slope of the hepatic vascular pressure-diameter curves decreased with PEEP (P less than 0.01), possibly reflecting reduced vascular compliance. There was an increase (P less than 0.01) in unstressed hepatic vascular volume. The slope of the splenic pressure-diameter curves was unchanged, but there was a significant (P less than 0.05) decrease in unstressed diameter during PEEP. In conclusion, hepatic blood volume increased during PEEP. This was mainly a reflection of passive distension due to elevated venous pressures. The spleen expelled blood and thus prevented a further reduction in central blood volume.  相似文献   

12.
The hemodynamic effects of increases in airway pressure (Paw) are related in part to Paw-induced increases in right atrial pressure (Pra), the downstream pressure for venous return, thus decreasing the pressure gradient for venous return. However, numerous animal and clinical studies have shown that venous return is often sustained during ventilation with positive end-expiratory pressure (PEEP). Potentially, PEEP-induced diaphragmatic descent increases abdominal pressure (Pabd). We hypothesized that an increase in Paw induced by PEEP would minimally alter venous return because the associated increase in Pra would be partially offset by a concomitant increase in Pabd. Thus we studied the acute effects of graded increases of Paw on Pra, Pabd, and cardiac output by application of inspiratory-hold maneuvers in sedated and paralyzed humans. Forty-two patients were studied in the intensive care unit after coronary artery bypass surgery during hemodynamically stable, fluid-resuscitated conditions. Paw was progressively increased in steps of 2 to 4 cmH(2)O from 0 to 20 cmH(2)O in sequential 25-s inspiratory-hold maneuvers. Right ventricular (RV) cardiac output (CO(td)) and RV ejection fraction (EF(rv)) were measured at 5 s into the inspiratory-hold maneuver by the thermodilution technique. RV end-diastolic volume and stroke volume were calculated from EF(rv) and heart rate data, and Pra was measured from the pulmonary artery catheter. Pabd was estimated as bladder pressure. We found that, although increasing Paw progressively increased Pra, neither CO(td) nor RV end-diastolic volume changed. The ratio of change (Delta) in Paw to Delta Pra was 0.32 +/- 0.20. The ratio of Delta Pra to Delta CO(td) was 0.05 +/- 00.15 l x min(-1) x mmHg(-1). However, Pabd increased such that the ratio of Delta Pra to Delta Pabd was 0.73 +/- 0.36, meaning that most of the increase in Pra was reflected in increases in Pabd. We conclude that, in hemodynamically stable fluid-resuscitated postoperative surgical patients, inspiratory-hold maneuvers with increases in Paw of up to 20 cmH(2)O have minimal effects on cardiac output, primarily because of an in-phase-associated pressurization of the abdominal compartment associated with compression of the liver and squeezing of the lungs.  相似文献   

13.
We have reported that left atrial blood refluxes through the pulmonary veins to gas-exchanging tissue after pulmonary artery ligation. This reverse pulmonary venous flow (Qrpv) was observed only when lung volume was changed by ventilation. This was believed to drive Qrpv by alternately distending and compressing the alveolar and extra-alveolar vessels. Because lung and pulmonary vascular compliances change with lung volume, we studied the effect of positive end-expiratory pressure (PEEP) on the magnitude of Qrpv during constant-volume ventilation. In prone anesthetized goats (n = 8), using the right lung to maintain normal blood gases, we ligated the pulmonary and bronchial arterial inflow to the left lung and ventilated each lung separately. A solution of SF6, an inert gas, was infused into the left atrium. SF6 clearance from the left lung was determined by the Fick principle at 0, 5, 10, and 15 and again at 0 cmH2O PEEP and was used to measure Qrpv. Left atrial pressure remained nearly constant at 20 cmH2O because the increasing levels of PEEP were applied to the left lung only. Qrpv was three- to fourfold greater at 10 and 15 than at 0 cmH2O PEEP. At these higher levels of PEEP, there were greater excursions in alveolar pressure for the same ventilatory volume. We believe that larger excursions in transpulmonary pressure during tidal ventilation at higher levels of PEEP, which compressed alveolar vessels, resulted in the reflux of greater volumes of left atrial blood, through relatively noncompliant extra-alveolar veins into alveolar corner vessels, and more compliant extra-alveolar arteries.  相似文献   

14.
Patients suffering from chronic obstructive pulmonary diseases, frequently exhibit expiratory airflow limitation. We propose a mathematical model describing the mechanical behavior of the ventilated respiratory system. This model has to simulate applied positive end-expiratory pressure (PEEP) effects during expiration, a process used by clinicians to improve airflow. The proposed model consists of a nonlinear two-compartment system. One of the compartments represents the collapsible airways and mimics its dynamic compression, the other represents the lung and chest wall compartment. For all clinical conditions tested (n=16), the mathematical model simulates the removal of expiratory airflow limitation at PEEP lower than 70–80% of intrinsic end-expiratory pressure (PEEPi), i.e. the end-expiratory alveolar pressure (PAet) without PEEP. It also shows the presence of an optimal PEEP. The optimal PEEP contributes to decrease PAet from 7.4 ± 0.9 (SD) to 5.4 ± 0.9 hPa (p < 0.0001; mild flow limitation) and from 11.8 ± 1.1 to 7.8 ± 0.7 hPa (p < 0.0001; severe flow limitation). Resistance of the collapsible compartment is decreased from 53 ± 7 to 8.2 ± 5.9 hPa.L–1.s (p < 0.0001; mild flow limitation) and from 80 ± 11 to 6.9 ± 5.4 hPa.L–1.s (p < 0.0001; severe flow limitation). This simplistic mathematical model gives a plausible explanation of the expiratory airflow limitation removal with PEEP and a rationale to the practice of PEEP application to airflow limited patients.  相似文献   

15.
Involvement of ANF in the acute antidiuresis during PEEP ventilation   总被引:1,自引:0,他引:1  
To investigate the potential role of natriuretic factor (ANF) on changes on renal excretory function in response to increased intrathoracic pressure, seven patients were studied during three successive 60-min periods of 1) mechanical ventilation (MV) and zero end-expiratory pressure (ZEEP), 2) MV with 12 cmH2O positive end-expiratory pressure (PEEP), and 3) MV with the same level of PEEP while lower-body positive pressure (LBPP) was applied to restore venous return and increase central blood volume without fluid loading. Hemodynamics, renal excretory function parameters, and plasma immunoreactive atrial natriuretic factor (irANF) levels were recorded at the end of each period. Compared with ZEEP, PEEP induced a significant reduction of diuresis (from 134 +/- 17 to 59 +/- 13 ml/h, P less than 0.01) and natriuresis (from 8.37 +/- 3.5 to 3.83 +/- 2 mmol/h, P less than 0.01), whereas plasma irANF fell from 520 +/- 292 to 155 +/- 40 pg/ml (P less than 0.01) and transmural right atrial pressure decreased from 3.9 +/- 0.5 to 2.4 +/- 0.3 mmHg (P less than 0.01). Opposite changes were observed during application of LBPP, which restored diuresis and plasma irANF to near control ZEEP values, despite continuation of PEEP. Changes in renal excretory function parameters thus paralleled changes in right atrial pressure and plasma irANF. We suggest that changes in plasma irANF in response to hemodynamic variations induced by changes in intrathoracic pressure may contribute to alterations of renal excretory function during PEEP.  相似文献   

16.

Introduction

Lung-protective ventilation aims at using low tidal volumes (VT) at optimum positive end-expiratory pressures (PEEP). Optimum PEEP should recruit atelectatic lung regions and avoid tidal recruitment and end-inspiratory overinflation. We examined the effect of VT and PEEP on ventilation distribution, regional respiratory system compliance (CRS), and end-expiratory lung volume (EELV) in an animal model of acute lung injury (ALI) and patients with ARDS by using electrical impedance tomography (EIT) with the aim to assess tidal recruitment and overinflation.

Methods

EIT examinations were performed in 10 anaesthetized pigs with normal lungs ventilated at 5 and 10 ml/kg body weight VT and 5 cmH2O PEEP. After ALI induction, 10 ml/kg VT and 10 cmH2O PEEP were applied. Afterwards, PEEP was set according to the pressure-volume curve. Animals were randomized to either low or high VT ventilation changed after 30 minutes in a crossover design. Ventilation distribution, regional CRS and changes in EELV were analyzed. The same measures were determined in five ARDS patients examined during low and high VT ventilation (6 and 10 (8) ml/kg) at three PEEP levels.

Results

In healthy animals, high compared to low VT increased CRS and ventilation in dependent lung regions implying tidal recruitment. ALI reduced CRS and EELV in all regions without changing ventilation distribution. Pressure-volume curve-derived PEEP of 21±4 cmH2O (mean±SD) resulted in comparable increase in CRS in dependent and decrease in non-dependent regions at both VT. This implied that tidal recruitment was avoided but end-inspiratory overinflation was present irrespective of VT. In patients, regional CRS differences between low and high VT revealed high degree of tidal recruitment and low overinflation at 3±1 cmH2O PEEP. Tidal recruitment decreased at 10±1 cmH2O and was further reduced at 15±2 cmH2O PEEP.

Conclusions

Tidal recruitment and end-inspiratory overinflation can be assessed by EIT-based analysis of regional CRS.  相似文献   

17.
Altered cardiovascular reflex responses during positive pressure breathing   总被引:2,自引:0,他引:2  
Cardiovascular responses during hyperinflation produced by positive end-expiratory pressure (PEEP) are considered to be reflexly influenced by pulmonary mechanoreceptors. Numerous studies have indicated heart and vascular effects attributed to mechanical events and cardiopulmonary mechanoreflexes. Yet interactions of these modalities with the systemic baroreflexes are not clear. We examined aspects of these modulatory interactions by distinguishing changes in pulmonary, heart, and vascular responses during PEEP-hyperinflation before and after progressive elimination of chemo-, mechano-, and baroreflex influences in the closed-chest anesthetized rabbit. During respiratory alkalosis PEEP was imposed in increments of 2.5 cm H2O (range 0.0 to 7.5 cm H2O) before and during control of carotid intrasinus pressure and following aortic denervation and vagotomy. Heart rate responses during PEEP increased prior to aortic denervation, decreased following elimination of baroreflexes, and were abolished after vagotomy. The fall in mean arterial pressure (MAP) during PEEP was accentuated during elimination of the baroreflexes and ameliorated following vagotomy. Mean right atrial (MRAP), intrapleural (MIP), and right atrial transmural pressure increased during PEEP prior to vagotomy. Regression analyses of MAP versus MRAP and MAP versus MIP suggest that vagally receptors reflexly influence venous as well as systemic arterial vascular pressure. Conclusion indicate that when superimposed on mechanical events, cardiopulmonary mechanoreceptors and arterial baroreceptors effect conflicting facilitory reflex influences on heart and vascular responses during PEEP-hyperinflation.  相似文献   

18.
Positive end-expiratory pressure (PEEP) has generally been withheld from the treatment of patients with chronic airflow obstruction (CAO), in view of the risk of hyperinflation and lack of documented benefit. We studied 10 mechanically ventilated patients with exacerbated CAO and air trapping to determine the impact of PEEP on lung mechanics, alveolar pressure, and the work of breathing. PEEP levels of 5 and 10 cmH2O were applied to patients whose end-expiratory alveolar pressures were documented to be positive when breathing against ambient pressure (the auto-PEEP effect). All patients were studied under two conditions: every breath machine assisted (AMV) and every breath machine controlled (paralyzed, CMV). PEEP improved expiratory resistance without substantially increasing peak static pressure. Inspiratory resistance remained unchanged. The difference between the end-expiratory values of alveolar and central airway pressure narrowed as PEEP increased. Adding PEEP improved the effective triggering sensitivity of the ventilator, diminished ventilatory drive, and reduced the mechanical work of breathing during the machine-assisted ventilatory cycle. Our results indicate that low levels of PEEP may improve lung mechanics and reduce the effort required of mechanically ventilated patients with severe airflow obstruction, without substantially increasing the hazards of hyperinflation.  相似文献   

19.
We have shown previously that excessive distention of the rat trachea during mechanical ventilation results in enhanced leukocyte recruitment to the airway (Lim LH and Wagner EM. Am J Respir Crit Care Med 168:1068-1074, 2003). The objectives of this study were to develop a mouse model of positive end-expiratory pressure (PEEP)-induced leukocyte recruitment to the airway and begin to pursue molecular mechanisms that may contribute to the in vivo observation of increased leukocyte adhesion after PEEP exposure. We studied C57BL/6 wild-type mice and mice deficient in P-selectin or intercellular adhesion molecule-1 (ICAM-1) exposed to intermittent PEEP (8 cmH(2)O) applied five times for a 1-min duration, at 10-min intervals. After the imposed ventilatory stress, during normal ventilation (0.2 ml/breath, no PEEP), leukocyte adhesion in tracheal postcapillary venules was determined using intravital microscopy. PEEP induced a time-dependent increase in leukocyte adhesion that was significantly increased between 0 and 60 min (P < 0.01). Furthermore, PEEP-induced leukocyte adhesion at 60 min was ablated in P-selectin- and ICAM-1-deficient mice. These findings demonstrate the essential nature of both P-selectin and ICAM-1 within airway postcapillary venular endothelium for leukocyte recruitment after airway distension.  相似文献   

20.
On-line monitoring of intrinsic PEEP in ventilator-dependent patients.   总被引:2,自引:0,他引:2  
Measurement of the intrinsic positive end-expiratory pressure (PEEP(i)) is important in planning the management of ventilated patients. Here, a new recursive least squares method for on-line monitoring of PEEP(i) is proposed for mechanically ventilated patients. The procedure is based on the first-order model of respiratory mechanics applied to experimental measurements obtained from eight ventilator-dependent patients ventilated with four different ventilatory modes. The model PEEP(i) (PEEP(i,mod)) was recursively constructed on an inspiration-by-inspiration basis. The results were compared with two well-established techniques to assess PEEP(i): end-expiratory occlusion to measure static PEEP(i) (PEEP(i, st)) and change in airway pressure preceding the onset of inspiratory airflow to measure dynamic PEEP(i) (PEEP(i,dyn)). PEEP(i, mod) was significantly correlated with both PEEP(i,dyn) (r = 0.77) and PEEP(i,st) (r = 0.90). PEEP(i,mod) (5.6 +/- 3.4 cmH(2)O) was systematically >PEEP(i,dyn) and PEEP(i,st) (2.7 +/- 1.9 and 8.1 +/- 5.5 cmH(2)O, respectively), in all the models without external PEEP. Focusing on the five patients with chronic obstructive pulmonary disease, PEEP(i,mod) was significantly correlated with PEEP(i,st) (r = 0.71), whereas PEEP(i,dyn) (r = 0.22) was not. When PEEP was set 5 cmH(2)O above PEEP(i,st), all the methods correctly estimated total PEEP, i.e., 11.8 +/- 5.3, 12.5 +/- 5.0, and 12.0 +/- 4.7 cmH(2)O for PEEP(i,mod), PEEP(i,st), and PEEP(i,dyn), respectively, and were highly correlated (0.97-0.99). We interpreted PEEP(i,mod) as the lower bound of PEEP(i,st) and concluded that our method is suitable for on-line monitoring of PEEP(i) in mechanically ventilated patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号