首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The synthesis of tritium-labeled N,N-demethyl-2-phenylaziridinium has been described. The specific radioactivity of the product obtained was 1,06 TBq/mmole. Kinetics of incorporation of this radioactive label into acetylcholinesterase of cobra venom (Naja naja oxiana) has been studied at 1,05 mM ligand concentration (25 degrees C, pH 7,50. 0,15 M phosphate buffer). Under these conditions two molecules of the radioactive label have been found to react with the enzyme. One molecule incorporates fast with half-life of 4,8 min, not affecting the enzymatic activity. Incorporation of the second label is a slow reaction with half-life of 6 hr and leads to complete inactivation of acetylcholinesterase. Molecular mass of the modified enzyme is 63 +/- 4 kDa and coincides with that of native one.  相似文献   

2.
Erythrocytes of diabetic subjects (non-insulin dependent) were found to have eight- to ten-fold higher levels of endogenously formed thiobarbituric acid reactive malonyldialdehyde (MDA), thirteen-fold higher levels of phospholipid-MDA adduct, 15-20% reduced Na(+)-K(+)-ATPase activity with unchanged Ca+2-ATPase activity, as compared with the erythrocytes from normal healthy individuals. Incubation of normal erythrocytes with elevated concentrations (15-35 mM) of glucose, similar to that present in diabetic plasma, led to the increased lipid peroxidation, phospholipid-MDA adduct formation, reduction of Na(+)-K(+)-ATPase (25-50%) and Ca+2-ATPase (50%) activities. 2-doxy-glucose was 80% as effective as glucose in the lipid peroxidation and lipid adduct formation. However, other sugars, such as fructose, galactose, mannose, fucose, glucosamine and 3-O-methylmannoside, and sucrose, tested at a concentration of 35 mM, resulted in reduced (20-30%) lipid peroxidation without the formation of lipid-MDA adduct. Kinetic studies show that reductions in Na(+)-K(+)-ATPase and Ca+2-ATPase activities precede the lipid peroxidation as the enzyme inactivation occur within 30 min of incubation of erythrocytes with high concentration (15-35 mM) of glucose, while lipid peroxidation product, MDA appears at 4 hr and lipid-MDA adducts at 8 hr. The lipoxygenase pathway inhibitors, 5,8,11-eicosatriynoic acid and Baicalein (5,6,7-trihydroxyflavone), reduced the glucose-induced lipid peroxidation by 30% and MDA-lipid adduct formation by 26%. Indomethacin, a cyclooxygenase pathway inhibitor, had no discernible effect on the lipid peroxidation in erythrocytes. However, the inhibitors of lipid peroxidation, 3-phenylpyrazolidone, metyrapone, and the inhibitors of lipoxygenase pathways did not ablate the glucose-induced reduction of Na(+)-K(+)-ATPase and Ca+2-ATPase activities in erythrocytes. Erythrocytes produce 15-HETE (15-hydroxy-eicosatetraenoic acid), which is augmented by glucose. These results suggest that the formation of lipoxygenase metabolites potentiate the glucose-induced lipid peroxidation and that the inactivation of Na(+)-K(+)-ATPase and Ca+2-ATPase occurs as a result of non-covalent interaction of glucose with these enzymes.  相似文献   

3.
We have previously described the irreversible inhibition of cobra venom phospholipase A2 (PLA2) by the marine natural product manoalide (MLD) (Lombardo, D., and Dennis, E. A. (1985) J. Biol. Chem. 260, 7234-7240) and by its synthetic analog, manoalogue (MLG) (Reynolds L. J., Morgan, B. P., Hite, G. A., Mihelich, E. D., and Dennis, E. A. (1988) J. Am. Chem. Soc. 110, 5172-5177). We have now made a direct comparison of the action of these two inhibitors on PLA2 from cobra, bee, and rattlesnake venoms and have found that MLG behaves kinetically similarly to MLD in all cases with only minor differences. The time courses of inactivation differ significantly between the three enzymes, however, with the inactivation of bee and rattlesnake PLAs2, occurring much faster than does the inactivation of the cobra venom enzyme. The enzymes also differ in their sensitivity to the presence of Ca2+ during the inactivation. Of the three enzymes, the most Ca(2+)-sensitive is the rattlesnake enzyme, which shows a much faster rate of inactivation in the presence of Ca2+ than in the presence of EGTA. However, the same rate of inactivation was also observed when the inhibitor Ba2+ was substituted for Ca2+, indicating that catalytic activity is not required for inactivation of the enzyme. To probe the mechanism of inactivation and to determine the stoichiometry of incorporation, we have synthesized 3H-labeled MLG and have found that inactivation of cobra PLA2 is accompanied by an incorporation of 3.8 mol of [3H]MLG/mol of enzyme. The same amount of 3H incorporation was observed when p-bromophenacyl bromide-inactivated PLA2 was incubated with [3H]MLG, again indicating that catalytic activity is not required for the reaction of PLA2 with MLG. All together, these results suggest that MLD and MLG are not suicide inhibitors of PLA2. A portion of the incorporated radioactivity was acid-labile, and dialysis of the radiolabeled PLA2 under acidic conditions resulted in a loss of about one-third of the enzyme-associated radioactivity, leaving 2.4 mol of [3H]MLG/mol of PLA2. In previous studies, amino acid analysis, which also included acid treatment, indicated that MLG-modified cobra phospholipase A2 contained 2.8 mol of Lys less than the native enzyme. Thus, 1 mol of [3H]MLG is incorporated per mol of Lys lost. The implications of this 1:1 stoichiometry of MLG to Lys on the mechanism of reaction of these inhibitors is discussed.  相似文献   

4.
The amino acid residue(s) involved in the activity of buckwheat α-glucosidase was modified by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide in the presence of glycine ethyl ester. The modification resulted in the decrease in the hydrolytic activity of the enzyme following pseudo-first order kinetics. Competitive inhibitors, such as Tris and turanose, protected the enzyme against the inactivation. Protection was provided also by alkali metal, alkaline-earth metal and ammonium ions, though these cations are non-essential for the activity of the enzyme. Turanose or K+ protected one carboxyl group per enzyme from the modification with carbodiimide and glycine ethyl ester. Free sulfhydryl group of the enzyme was also partially modified with carbodiimide, but the inactivation was considered to be mainly attributed to the modification of essential carboxyl group rather than to that of free sulfhydryl group.  相似文献   

5.
When pyrroline-5-carboxylate (PC) synthase activity in the membrane of mitochondria of rat small intestine mucosa was assayed in the presence of 0.5 mM ornithine, the time course of inactivation showed that the activity disappeared entirely by about 8 min at 30 degrees C, whereas there was no decrease in the activity at 15 degrees C. A prior incubation of the enzyme with ornithine at 30 or 37 degrees C in the presence of 50% sorbitol as a thermal stabilizer resulted in a marked loss of the activity, while that at 0 or 15 degrees C did not lose any. This suggests that PC synthase is inactivated by ornithine regardless of the presence of substrates. The inactivation at 30 degrees C proceeded gradually for about 7 h, until an equilibrium was attained. Extensive dialysis allowed the inactivated enzyme to regain about 60% of the original activity. These results suggest that the inactivation is reversible. The concentration of ornithine and the percentage of inactivation at equilibrium was correlated by the Hill equation and displayed a sigmoidicity with n = 1.47 and [S]50 = 0.036 mM. In the presence of sorbitol, the inactivation was prevented by 0.2 mM ATP or ADP. The role of the nucleotides in PC synthase regulation is discussed.  相似文献   

6.
Properties and partial purification of the bovine adrenal cholesterol esterase from the 100000 X g supernatant fraction were investigated. Variations of the enzyme activity with time-dependent (enzymatic) and time-dependent (non enzymatic) effects have been demonstrated. Mg2 has been proved to inhibit the enzyme activity by a non-enzymatic effect in 50mM Tris/HCl buffer, pH 7.4. A time-dependent inactivation of the cholesterol esterase has been observed in the same buffer. The enzyme could be protected from this enzymatic inactivation by its substrate, cholesterol oleate. cAMP, ATP and Mg2 cuase a time-dependent stimulation of the enzyme in 50mM Tris/HCl buffer, pH 7.4. This result suggests that corticotropin activates the soluble cholesterol esterase from bovine adrenals via cAMP-dependent protein kinase. This view is strengthened by the incorporation of 32P radioactivity from [gamma-32P] ATP into the protein fraction of the 100,000 X g supernatant. The protein-bound 32P radioactivity could be co-purified with the enzyme activity during the partial purification of the soluble cholesterol esterase.  相似文献   

7.
L H Matherly  A T Phillips 《Biochemistry》1980,19(25):5814-5818
Incubation of urocanase from Pseudomonas putida with either its substrate, urocanic acid, or product, 4'(5')-imidazolone-5'(4')-propionic acid, resulted in an oxygen-dependent inhibition of enzyme activity. Coincident with the inactivation was the stoichiometric incorporation of radioactivity from [14C]urocanate into the protein. NAD+ which is required for activity or urocanase was not directly involved in the inactivation process. The inactivation of urocanase was irreversible, could be partially blocked by the competitive inhibitor imidazolepropionate, and involved the modification of a single active-site thiol. The inhibition resulted from oxidative decomposition of 4'(5')-imidazolone-5'(4')-propionate but was not due to the formation of the major degradative product, 4-ketoglutaramate, since this compound was not an irreversible inactivator of urocanase although it did produce some inhibition at high concentrations. A mechanism is presented in which a reactive imine intermediate in the decomposition scheme is subject to nucleophilic attack by an active-site thiol, thereby generating a covalent enzyme--thioaminal adduct. These results emphasize the importance of a catalytic center sulfhydryl group for urocanase activity.  相似文献   

8.
[1-3H]Allylamine was synthesized by sodium boro[3H]hydride reduction of acrolein followed by direct conversion of the [1-3H]allyl alcohol to N-allylphthalimide with triphenylphosphine, diethylazodicarboxylate, and phthalimide. The protecting group was removed with hydrazine. Inactivation of beef liver mitochondrial monoamine oxidase with [1-3H]allylamine led to incorporation of 1-6 eq of inactivator/active site depending upon the length of incubation time. Inactivation and radioactivity incorporation coincided; however, after 1 eq of tritium was incorporated and 5% enzyme activity remained, additional radioactivity continued to become incorporated into the enzyme. The optical spectrum of the FAD coenzyme changed during inactivation from that of oxidized to reduced flavin. Following dialysis of the inactivated enzyme, the spectrum remained reduced, but denaturation in urea rapidly resulted in reoxidation of the flavin. Under these same denaturing conditions, 96% of the radioactivity associated with the enzyme remained bound, therefore indicating that allylamine attachment is not to the flavin coenzyme but rather to an active site amino acid residue. The adduct also was stable to base and, to a lesser degree, acid treatment. Although allylamine and N-cyclopropylbenzylamine appear to be oxidized by monoamine oxidase to give 3-(amino acid residue) propanal adducts, two different amino acids seem to be involved because of a difference in stability of the adducts. The mechanisms for inactivation of monoamine oxidase by allylamine and reactivation by benzylamine are discussed in relation to previously reported results.  相似文献   

9.
Ribulose 1,5-bisphosphate carboxylase [3-phospho-D-glyceratecarboxy-lyase (dimerizing), EC 4.1.1.39] is rapidly and irreversibly inactivated by micromolar concentrations of dimethyl (2-hydroxy-5-nitrobenzyl) sulphonium bromide (DMHNB), a tryptophan selective reagent, after reversible protection of the reactive sulphydryl groups. The inactivation followed pseudo-first-order reaction kinetics. Replots of the kinetic data indicated that no reversible enzyme-inhibitor complex was formed prior to irreversible modification. Kinetic analysis and the correlation of the spectral data at 410 nm with enzyme activity indicated that inactivation by DMHNB resulted from modification of on an average one tryptophan per 67 kDa combination of large and small subunits. Several competitive inhibitors and substrate RuBP offered strong protection against inhibition. The k1/2 (protection) for RuBP was 1.3 mM, indicating that the tryptophan residues may be located at or near the substrate binding site. Free and total sulphydryl groups were not affected by the reagent. The modified enzyme exhibited significantly reduced intrinsic fluorescence, indicating that the microenvironment of the tryptophans at the active site is significantly perturbed. Tryptic peptide profiles and CD spectral analyses suggested that inactivation may not be due to the extensive conformational changes in the enzyme molecule during modification.  相似文献   

10.
Mammalian pyrroline-5-carboxylate (PC) synthase in the mitochondrial membrane of rat small intestine mucosa possesses marked thermal instability at temperatures of 30 to 37 degrees C [Y. Wakabayashi, J. G. Henslee, and M. E. Jones (1983) J. Biol. Chem. 258, 3873-3882]. Factors stabilizing the enzyme activity at 37 degrees C were extensively examined by incubating the enzyme with various compounds before assay. In the presence of 60% sorbitol, the enzyme retained full activity for 30 min. Xylitol, glycerol, and fructose were also effective, although sucrose, ethylene glycol, polyethylene glycol and dimethyl sulfoxide were ineffective. AMP, GMP, IMP, and UMP (15 mM) were completely protective while ATP and adenosine were not. Phosphate and arsenate at 10 mM maintained 90 and 82%, respectively, of the original activity after 10 min. NADPH and NADP (3 mM) were protective whereas 3 mM NADH was not. The possibility that phosphate and NADPH are stabilizing PC synthase in vivo was discussed. Addition of 0.13 mM p-chloromercuriphenylsulfonic acid or 0.55 mM 5,5'-dithiobis-(2-nitrobenzoic acid) to the enzyme resulted in complete loss of activity, but prior addition of excess dithiothreitol to the enzyme prevented the inactivation, suggesting that a sulfhydryl group is involved in the activity.  相似文献   

11.
Angiotensin-I-converting enzyme (ACE, EC 3.4.15.1) plays a central role in the regulation of blood pressure in man. The objective of this study was to evaluate and modify the furanacryloyl-L-phenylalanylglycylglycine (FAPGG) assay method for quantification of ACE activity. The fixed time conditions developed for assay of ACE activity were as follows: 0.8 mM FAPGG, 175 + or - 10 units l(-1) ACE, incubation at 37 degrees C for 30 min and enzyme inactivation with 100 mM ethylenediaminetetra-acetic acid (EDTA). Hydrolysis of FAPGG to FAP and GG was quantified by measuring the decrease in absorbance at 340 nm. It was shown that increasing the level ACE activity in the assay from 155 to 221 + or - 15 units l(-1) resulted in a corresponding increase in the apparent IC(50) value for Captopril from 9.10 to 39.40 nM. Similar trends in the apparent IC50 values for a whey protein hydrolysate were obtained. The results demonstrate the requirement for carefully controlling ACE activity levels in the assay in order to obtained comparable and reproducible values for the inhibitory potency of ACE inhibitors.  相似文献   

12.
The sensitivity of soluble, 17 beta-hydroxysteroid dehydrogenase (17 beta-HSD) of human placenta to inactivation by fatty acids was examined. Exposure to the unsaturated fatty acids oleic, arachidonic, linoleic and linolenic acid resulted in the loss of activity. Methyl and ethyl esters of oleic acid, the saturated fatty acid, stearic acid and prostaglandins E2 and F2 alpha were without effect. Inactivation by oleic acid required the fatty acid at levels above its critical micelle concentration, 50 microM, as estimated by light-scattering. Steroid substrates and inhibitors did not protect against inactivation. NAD+, NADH, NADP+ and NADPH did protect. The concentrations of NADP+, 50 microM, and NAD, 1.5 mM, necessary for complete protection were significantly greater than their respective Michaelis constants, 0.16 microM and 15.2 microM. The data suggest that soluble 17 beta-HSD can bind to fatty acid micelles and that the binding site(s) on the enzyme are at or near pyridine nucleotide binding sites.  相似文献   

13.
Peptostreptococcus productus strain b-52 (a human fecal isolate) and Eubacterium aerofaciens ATCC 25986 were found to contain NADP-dependent 7 beta-hydroxysteriod dehydrogenase activity. The enzyme was synthesized constitutively by both organisms, and the enzyme yields were suppressed by the addition of 0.5 mM 7 beta-hydroxy bile acid to the growth medium. Purification of the enzyme by chromatography resulted in preparations with 3.5 (P. productus b-52, on Sephadex G-200) and 1.8 (E. aerofaciens, on Bio-Gel A-1.5 M) times the activity of the crude cell extracts. A pH optimum of 9.8 and a molecular weight of approximately 53,000 were shown for the enzyme of strain b-52, and an optimum pH at 10.5 and a molecular weight of 45,000 was shown for that from strain ATCC 25986. Kinetic studies revealed that both enzyme preparations oxidized the 7 beta-hydroxy group in unconjugated and conjugated bile acids, a lower Km value being demonstrated with free bile acid than with glycine and taurine conjugates. No measureable activity against 3 alpha-, 7 alpha-, or 12 alpha-hydroxy groups was detected in either enzyme preparation. When tested with strain ATCC 25986, little 7 beta-hydroxy-steroid dehydrogenase activity was detected in cells grown in the presence of glucose in excess. The enzyme from strain b-52 was found to be heat labile (90% inactivation at 50 degrees C for 3 min) and highly sensitive to sulfhydryl inhibitors.  相似文献   

14.
70% of the microsome-bound cholesterol is directly accessible to cholesterol 7alpha-hydroxylase in an assay in vitro. After 5 min of incubation this endogenous cholesterol makes a single pool with the exogenously added substrate and modifies its specific radioactivity. Thus, an accurate estimation of the enzymic activity should take the participation of endogenous cholesterol into account. Cholesterol 7alpha-hydroxylase activity is enhanced in vitro by thiol-containing substances like mercaptoethanol, dithiothreitol, or cysteamine. On the contrary, the enzymic activity is inhibited by heavy cations (Hg2+, Pb2+, Cu2+, Zn2+), or --SH-blocking agents (mersalic acid p-chloro-mercuribenzoic acid). Several steroids are potent inhibitors (Ki less than Km) of the enzyme, among them pregnenolone and its acetate derivative and the cholesterol closely related 7-oxocholesterol and 7-dehydrocholesterol. The cholesterol esters are neither substrates nor inhibitors of cholesterol 7alpha-hydroxylase. Only a high concentration (1 mM) of biliary acids or of their glyco or tauro derivatives inhibits cholesterol 7alpha-hydroxylase. The quantitatively less important lithocholic acid and deoxycholic acid are the strongest inhibitors; the most common cholic acid does not affect the enzymic activity even at 1 mM.  相似文献   

15.
Changes in the chemical reactivity of the sulfhydryl groups of (Na+ + K+)-dependent ATPase can be indicative of conformational changes induced by activating ions. Cyanylation of these groups by 5 mM 2-nitro-5-thiobenzoic acid caused a partial inhibition of enzymatic activity. Both this loss and the incorporation of radioactive cyanide from the 14C-labeled reagent were reduced by inclusion of 50 mM ATP and 150 mM Na+ in the incubation. When 10 mM Mg++ was added in addition, the inactivation was not different from that produced by cyanylation reagent alone, but the radioactive labeling of protein increased significantly. The data indicate that the sulfhydryl groups of this enzyme exist in two populations, one of which must be free if the enzyme is to function. The other, not essential for enzymatic activity, becomes accessible only when the Na+ and Mg++-dependent phosphorylation of the enzyme alters its conformation. Inactivation of the enzyme by freezing and thawing increases the incorporation of radioactivity but destroys the responsiveness of labeling to cations and ATP.  相似文献   

16.
The homogeneous 3 alpha-hydroxysteroid dehydrogenase of rat liver cytosol binds prostaglandins with low micromolar affinity at its active site and is competitively inhibited by the non-steroidal and steroidal anti-inflammatory drugs [Penning, Mukharji, Barrows & Talalay (1984) Biochem. J. 222, 601-611]. To examine the portion of this binding site that accommodates the glucocorticoid side chain, we have synthesized 17 beta-bromoacetoxy-5 alpha-dihydrotestosterone (BrDHT) and 21-bromoacetoxydesoxycorticosterone (BrDOC) as affinity-labelling agents. Both these agents promote rapid inactivation of the purified enzyme in a time- and concentration-dependent manner. Analyses of the inactivation progress curves gave estimates of Ki for the inactivators and half-life (t1/2) for the enzyme at saturation (tau) as follows: Ki = 33 microM and tau = 18 s for BrDHT, and Ki = 10 microM and tau = 203 s for BrDOC. Under initial-velocity conditions BrDHT and BrDOC act as competitive inhibitors, yielding Ki values identical with those measured in the inactivation experiments. Both indomethacin and prostaglandin E2 can protect the enzyme from inactivation, yielding Ki values for these ligands consistent with those measured independently by competitive-inhibition studies. These data confirm that the bromoacetoxysteroids label the active site, which is coincident with the prostaglandin- and anti-inflammatory-drug-binding site. Neither gel filtration nor extensive dialysis restores activity to the enzyme inactivated with either affinity-labelling agent. Use of radioactive BrDHT or BrDOC, in which either the steroid portion is labelled with 3H or the bromoacetate portion is labelled with 14C, indicates that inactivation is accompanied by a stoichiometric incorporation of 0.7-1.0 molecules of inhibitor per enzyme monomer. The linkage that forms between the dehydrogenase with either [14C]BrDHT or [14C]BrDOC is stable to acid and base treatment. Complete acid hydrolysis of the enzyme inactivated with [14C]BrDHT, followed by amino acid analyses, indicates that 87% of the radioactivity is eluted with carboxymethylcysteine. An almost identical result is obtained with [14C]BrDOC, where at least 75% of the radioactivity is eluted with this amino acid. Thus BrDHT and BrDOC alkylate at least one reactive cysteine residue at the active site that may be of functional importance in binding the glucocorticoid side chain.  相似文献   

17.
The effect of some xenobiotics on microsomal mixed function oxidase and lipid peroxidation, in mice, in incubation mixtures for the in vitro mutagenesis test with metabolic activation was studied. Aniline 1 or 2 mM and aminopyrine 0.38 or 8.33 mM completely inhibited the lipid peroxidation with small protection of the monooxygenase. Styrene 50 or 100 mM inhibited to a lesser extent the lipid peroxidation with marked increase in the inactivation of the monooxygenase. By a technique based on successive additions of fresh microsomes it was possible to evaluate the part of the inactivation due to enzyme denaturation and that due to inhibition. EDTA 40 mM was not able to protect from inactivation in the presence of aniline 1mM. Data of this type could be utilized to obtain more reliable results of in vitro mutagenesis tests with metabolic activation by suitably managing the enzyme activity in the incubation mixtures in order to keep it as constant as possible.  相似文献   

18.
The apoprotein of hog kidney D-amino acid oxidase was reconstituted with 5-deazaflavin adenine dinucleotide (5-deazaFAD) to yield a protein which contains 1.5 mol of 5-deazaFAD/mol of enzyme. The deazaFAD-containing enzyme forms complexes with benzoate, 2-amino benzoate, and 4-aminobenzoate which are both qualitatively and quantitatively similar to those observed with native enzyme. The complex with 2-aminobenzoate exhibits a new long wavelength absorption band characteristic of a flavin charge-transfer complex. The reconstituted enzyme exhibits no activity when assayed by D-alanine oxidation. However, the bound chromophore can be reduced by alanine, phenylalanine, proline, methionine, and valine, but not by glutamate or aspartate, indicating the deazaFAD enzyme retains the substrate specificity of the native enzyme. Reduction of the enzyme by D-alanine exhibits a 1.6-fold deuterium isotope effect. Reoxidation of the reduced enzyme occurred in the presence of pyruvate plus ammonia, but not with pyruvate alone or ammonia alone. beta-Phenylpyruvate and alpha-ketobutyrate, but not alpha-ketoglutarate could replace pyruvate. Reduced enzyme isolated following reaction with [alpha-3H]alanine was found to contain 0.5 mol of tritium/mol of deazaFADH2. After denaturation of the tritium-labeled enzyme, the radioactivity was identified as deazaFADH2. Reaction of the reduced tritium-labeled enzyme with pyruvate plus ammonia prior to denaturation yields [alpha-3H]alanine and unlabeled deazaFAD. These results suggest that reduction and reoxidation of enzyme-bound deazaFAD involves the stereo-specific transfer of alpha-hydrogen from substrate to deazaFAD.  相似文献   

19.
The reaction of gamma-glutamyl transpeptidase from rat kidney with a glutamine analog, 6-diazo-5-oxo-L-norleucine, resulted in irreversible inactivation of the enzyme. The concentration of this reagent giving a half-maximum rate of inactivation was 6 mMat pH 7.5. The inactivation was prevented by the presence of reduced glutathione in a competitive fashion, which indicates the active-site-directed nature of this reagent. The rate of inactivation was greatly accelerated in the presence of maleate, which is known to enhance the glutaminase activity of this enzyme. The presence of maleate increased the maximum velocity of the inactivation, but did not affect the affinity of the enzyme for 6-diazo-5-oxo-L-norleucine. Inactivation of the enzyme with 6-diazo-5-oxo-L-[6=14C]norleucine as well as with 6-diazo-5-oxo-L[1,2,3,4,5-14C]norleucine resulted in a stoichiometric incorporation of radioactivity into the enzyme protein via covalent linkage. The amount of radioactivity incorporated was 1 mol 14C label/248000 g enzyme protein. A native enzyme preparation showing a single protein band on polyacrylamide gel electrophoresis gave four distinct bands upon sodium dodecylsulfate/polyacrylamide gel electrophoresis. Upon sodium dodecylsulfate/polyacrylamide gel electrophoresis of the 14C-labeled enzyme, only the band moving the fastest towards the anode was found to contain radioactivity. This finding indicates that this protein band represents the catalytic component of the enzyme.  相似文献   

20.
The evoked effects of the negatively charged drugs phenobarbital and barbituric acid, the positively charged imipramine, perphenazine and trifluoperazine, and the neutral primidone, on the synaptosome-associated acetylcholinesterase activity were studied. A marked increase in the enzyme activity was exhibited in the presence of low concentrations (up to 3 mM) of phenobarbital, barbituric acid and primidone. Higher concentrations (up to 10 mM), however, led to a progressive inhibition of the enzyme activity. However, the activity of the enzyme was not affected by imipramine, but it was decreased by perphenazine and trifluoperazine. Arrhenius plots of acetylcholinesterase activity exhibited a break point at 23.4 degrees C for the untreated (control) synaptosomes, which was shifted to around 16 degrees C in the synaptosomes treated with the charged drugs. The allosteric inhibition by F- of acetylcholinesterase was studied in control synaptosomes and in those treated with the charged drugs. Changes in the Hill coefficients in combination with changes in Arrhenius activation energy produced by the charged drugs would be expected if it is assumed that charged drugs 'fluidize' the synaptosomal plasma membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号