首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The treatment of helical objects as a string of single particles has become an established technique to resolve their three-dimensional (3D) structure using electron cryo-microscopy. It can be applied to a wide range of helical particles such as viruses, microtubules and helical filaments. We have made improvements to this approach using Tobacco Mosaic Virus (TMV) as a test specimen and obtained a map from 210,000 asymmetric units at a resolution better than 5 A. This was made possible by performing a full correction of the contrast transfer function of the microscope. Alignment of helical segments was helped by constraints derived from the helical symmetry of the virus. Furthermore, symmetrization was implemented by multiple inclusions of symmetry-related views in the 3D reconstruction. We used the density map to build an atomic model of TMV. The model was refined using a real-space refinement strategy that accommodates multiple conformers. The atomic model shows significant deviations from the deposited model for the helical form of TMV at the lower-radius region (residues 88 to 109). This region appears more ordered with well-defined secondary structure, compared with the earlier helical structure. The RNA phosphate backbone is sandwiched between two arginine side-chains, stabilizing the interaction between RNA and coat protein. A cluster of two or three carboxylates is buried in a hydrophobic environment isolating it from neighboring subunits. These carboxylates may represent the so-called Caspar carboxylates that form a metastable switch for viral disassembly. Overall, the observed differences suggest that the new model represents a different, more stable state of the virus, compared with the earlier published model.  相似文献   

2.
Microtubules are polar filaments built from αβ-tubulin heterodimers that exhibit a range of architectures in vitro and in vivo. Tubulin heterodimers are arranged helically in the microtubule wall but many physiologically relevant architectures exhibit a break in helical symmetry known as the seam. Noisy 2D cryo-electron microscopy projection images of pseudo-helical microtubules therefore depict distinct but highly similar views owing to the high structural similarity of α- and β-tubulin. The determination of the αβ-tubulin register and seam location during image processing is essential for alignment accuracy that enables determination of biologically relevant structures. Here we present a pipeline designed for image processing and high-resolution reconstruction of cryo-electron microscopy microtubule datasets, based in the popular and user-friendly RELION image-processing package, Microtubule RELION-based Pipeline (MiRP). The pipeline uses a combination of supervised classification and prior knowledge about geometric lattice constraints in microtubules to accurately determine microtubule architecture and seam location. The presented method is fast and semi-automated, producing near-atomic resolution reconstructions with test datasets that contain a range of microtubule architectures and binding proteins.  相似文献   

3.
Of the two known "complex" flagellar filaments, those of Pseudomonas are far more flexible than those of Rhizobium. Their diameter is larger and their outer three-start ridges and grooves are more prominent. Although the symmetry of both complex filaments is similar, the polymer's linear mass density and the flagellin molecular mass of the latter are lower. A recent comparison of a three-dimensional reconstruction of the filament of Pseudomonas rhodos to that of Rhizobium lupini indicates that the outer flagellin domain (D3) is missing in R.lupini. Here, we concentrate on the structure of the inner core of the filament of P.rhodos using field emission cryo-negative staining electron microscopy and a hybrid helical/single particle reconstruction technique. Averaging 158 filaments caused the density band corresponding to the radial spokes to nearly average out due to their variability and inferred flexibility. Treating the Z=0 cross-sections through the aligned individual three-dimensional density maps as images, classifying them by correspondence analysis (using a mask containing the radial spokes domain) and re-averaging the subclasses (using helical reconstruction techniques) allowed a recovery of the radial spokes and resolved the alpha-helices in domain D0 and the triple alpha-helical bundles in domain D1 at a resolution of 1/7A(-1). Although the perturbed components of the helical lattice are present along the entire filament's radius, the interior of the complex filament is similar to that of the plain one, whereas it's exterior is altered. Reconstructions of vitrified and cryo-negatively stained plain, right-handed filaments of Salmonella typhimurium SJW1655 prepared and imaged under conditions identical with those used for P.rhodos confirm the similarity of their inner cores and that the secondary structures in the interior of the flagellar filament can, under critical conditions of image recording and correction, be resolved in negative stain.  相似文献   

4.
《The Journal of cell biology》1994,127(6):1965-1971
Microtubules are constructed from alpha- and beta-tubulin heterodimers that are arranged into protofilaments. Most commonly there are 13 or 14 protofilaments. A series of structural investigations using both electron microscopy and x-ray diffraction have indicated that there are two potential lattices (A and B) in which the tubulin subunits can be arranged. Electron microscopy has shown that kinesin heads, which bind only to beta-tubulin, follow a helical path with a 12-nm pitch in which subunits repeat every 8-nm axially, implying a primarily B-type lattice. However, these helical symmetry parameters are not consistent with a closed lattice and imply that there must be a discontinuity or "seam" along the microtubule. We have used quick-freeze deep-etch electron microscopy to obtain the first direct evidence for the presence of this seam in microtubules formed either in vivo or in vitro. In addition to a conventional single seam, we have also rarely found microtubules in which there is more than one seam. Overall our data indicates that microtubules have a predominantly B lattice, but that A lattice bonds between tubulin subunits are found at the seam. The cytoplasmic microtubules in mouse nerve cells also have predominantly B lattice structure and A lattice bonds at the seam. These observations have important implications for the interaction of microtubules with MAPs and with motor proteins, and for example, suggest that kinesin motors may follow a single protofilament track.  相似文献   

5.
We have developed thick filament isolation methods that preserve the relaxed cross-bridge order of frog thick filaments such that the filaments can be analyzed by the convergent techniques of electron microscopy, optical diffraction, and computer image analysis. Images of the filaments shadowed by using either unidirectional shadowing or rotary shadowing show a series of subunits arranged along a series of right-handed near-helical strands that occur every 43 nm axially along the filament arms. Optical filtrations of images of these shadowed filaments show 4-5 subunits per half-turn of the strands, consistent with a three-stranded arrangement of the cross-bridges, thus supporting our earlier results from negative staining and computer-image analysis. The optical diffraction patterns of the shadowed filaments show a departure from the pattern expected for helical symmetry consistent with the presence of cylindrical symmetry and a departure of the cross-bridges from helical symmetry. We also describe a modified negative staining procedure that gives improved delineation of the cross-bridge arrangement. From analysis of micrographs of these negatively stained filament tilted about their long axes, we have computed a preliminary three-dimensional reconstruction of the filament that clearly confirms the three-stranded arrangement of the myosin heads.  相似文献   

6.
The helical filaments of the bacterial flagella so far studied seem to be universal in the bacterial kingdom. Despite the variation in flagellin molecular masses, which range from 24 kDa to 62 kDa in different species, there are only two forms: either the so-called Normal (left-handed) or the Curly (right-handed). The Normal and Curly helical forms are asymmetric; the two characteristic helical parameters, which are the pitch and diameter, of Normal filaments are twice those of Curly filaments. Both the universality of these two helical forms and their asymmetry are biological puzzles. We found that the marine bacteria Idiomarina loihiensis have flagella with left-handed Curly-like filaments. Analysis of the polymorphic forms under different pH conditions showed that the Curly-like filaments are actually Normal filaments having a smaller pitch and diameter than those of Salmonella typhimurium. A minor modification of Calladine's model for a filament lattice can explain the variant helical forms. Pseudomonas aeruginosa filaments also belong to the family of I.loihiensis filaments. Thus, there are at least two families of flagella filaments.  相似文献   

7.
Evidence continues to accrue in support of the notion that normal adult human tau is converted into the protein subunits of Alzheimer's disease paired helical filaments as a result of the abnormal phosphorylation of tau at aberrant sites. Although the biological consequences of the generation of these abnormal tau derivatives in neurons remain uncertain, it is plausible that this process could destabilize microtubules and have a deleterious effect on the function and survival of neurons. Recent studies that probe the mechanisms whereby normal tau, a component of the neuronal cytoskeleton, undergoes profound alterations to become paired helical filaments in the Alzheimer's diseased brain are discussed.  相似文献   

8.
We have used back-projection methods to obtain three-dimensional maps of motor-protein decorated nine and ten protofilament microtubules polymerized in the presence of high salt and preserved in vitreous ice. The resulting three-dimensional maps show that the vast majority of these microtubules have multiple seams, rather than being helical as would be expected according to the lattice accommodation model. These results indicate that microtubules should be analyzed by back-projection before using helical reconstruction approaches, and that nine and ten protofilament microtubules polymerized in high salt conditions are not suitable for helical analysis.  相似文献   

9.
10.
The aggregation of the microtubule-associated tau protein and formation of "neurofibrillary tangles" is one of the hallmarks of Alzheimer disease. The mechanisms underlying the structural transition of innocuous, natively unfolded tau to neurotoxic forms and the detailed mechanisms of binding to microtubules are largely unknown. Here we report the high-resolution characterization of the repeat domain of soluble tau using multidimensional NMR spectroscopy. NMR secondary chemical shifts detect residual beta-structure for 8-10 residues at the beginning of repeats R2-R4. These regions correspond to sequence motifs known to form the core of the cross-beta-structure of tau-paired helical filaments. Chemical shift perturbation studies show that polyanions, which promote paired helical filament aggregation, as well as microtubules interact with tau through positive charges near the ends of the repeats and through the beta-forming motifs at the beginning of repeats 2 and 3. The high degree of similarity between the binding of polyanions and microtubules supports the hypothesis that stable microtubules prevent paired helical filament formation by blocking the tau-polyanion interaction sites, which are crucial for paired helical filament formation.  相似文献   

11.
Helical filaments were the first structures to be reconstructed in three dimensions from electron microscopic images, and continue to be extensively studied due to the large number of such helical polymers found in biology. In principle, a single image of a helical polymer provides all of the different projections needed to reconstruct the three-dimensional structure. Unfortunately, many helical filaments have been refractory to the application of traditional (Fourier-Bessel) methods due to variability, heterogeneity, and weak scattering. Over the past several years, many of these problems have been surmounted using single-particle type approaches that can do substantially better than Fourier-Bessel approaches. Applications of these new methods to viruses, actin filaments, pili and many other polymers show the great advantages of the new methods.  相似文献   

12.
Electron crystallography plays a key role in the structural biology of integral membrane proteins (IMPs) by offering one of the most direct means of providing insight into the functional state of these molecular machines in their lipid-associated forms, and also has the potential to facilitate examination of physiologically relevant transitional states and complexes. Helical or tubular crystals, which are the natural product of proteins crystallizing on the surface of a cylindrical vesicle, offer some unique advantages, such as three-dimensional (3D) information from a single view, compared to other crystalline forms. While a number of software packages are available for processing images of helical crystals to produce 3D electron density maps, widespread exploitation of helical image reconstruction is limited by a lack of standardized approaches and the initial effort and specialized expertise required. Our goal is to develop an integrated pipeline to enable structure determination by transmission electron microscopy (TEM) of IMPs in the form of tubular crystals. We describe here the integration of standard Fourier-Bessel helical analysis techniques into Appion, an integrated, database-driven pipeline.  相似文献   

13.
Since the foundation for the three-dimensional image reconstruction of helical objects from electron micrographs was laid more than 30 years ago, there have been sustained developments in specimen preparation, data acquisition, image analysis, and interpretation of results. However, the boxing of filaments in large numbers of images--one of the critical steps toward the reconstruction at high resolution--is still constrained by manual processing even though interactive interfaces have been built to aid the tedious and sometimes inaccurate boxing process. This article describes an accurate approach for automated detection of filamentous structures in low-contrast images acquired in defocus pairs using cryoelectron microscopy. The performance of the approach has been evaluated across various magnifications and at a series of defocus values using tobacco mosaic virus (TMV) preserved in vitreous ice as a test specimen. By integrating the proposed approach into our automated data acquisition and reconstruction system, we are now able to generate a three-dimensional map of TMV to approximately 10-A resolution within 24 h of inserting the specimen grid into the microscope.  相似文献   

14.
We have studied the role of microtubules and actin filaments in the biogenesis of epithelial cell surface polarity, using influenza hemagglutinin and vesicular stomatitis G protein as model apical and basolateral proteins in infected Madin-Darby canine kidney cells. Addition of colchicine or nocodazole to confluent monolayers at concentrations sufficient to completely disassemble microtubules did not affect the asymmetric budding of influenza or vesicular stomatitis virus and only slightly reduced the typical asymmetric surface distribution of their envelope proteins, despite extensive cytoplasmic redistribution of the Golgi apparatus. Alteration of microtubular function by taxol or dissociation of actin filaments by cytochalasin D also failed to have a significant effect. Furthermore, neither colchicine nor cytochalasin D pretreatment blocked the ability of subconfluent Madin-Darby canine kidney cells to sustain polarized budding of influenza virus a few hours after attachment to the substrate. Our results indicate that domain-specific microtubule or actin filament "tracks" are not responsible for the vectorial delivery of apically or basolaterally directed transport vesicles. In conjunction with currently available evidence, they are compatible with a model in which receptors in the cytoplasmic aspect of apical or basolateral regions provide vectoriality to the transport of vesicles carrying plasma membrane proteins to their final surface localization.  相似文献   

15.
We have used tobacco mosaic virus (TMV) as a test specimen, in order to develop techniques for the analysis of high-resolution structural detail in electron micrographs of biological assemblies with helical symmetry. It has previously been shown that internal details of protein structure can be visualized by processing electron micrographs of unstained specimens of extended two-dimensional crystalline arrays. However, the techniques should in principle be applicable to other periodic specimens, such as assemblies with helical symmetry. We show here that data to spacings better than 10 A can be retrieved from electron images of frozen hydrated TMV. The three-dimensional computed map agrees well with that derived from X-ray diffraction and shows the two pairs of alpha-helices forming the core of the coat subunit, the C alpha-helix and the viral RNA. The results demonstrate that it is possible to determine detailed internal structure in helical particles.  相似文献   

16.
To assess more systematically functional differences among non-muscle and muscle actins and the effect of specific mutations on their function, we compared actin from Dictyostelium discoideum (D-actin) with actin from rabbit skeletal muscle (R-actin) with respect to the formation of filaments, their three-dimensional structure and mechanical properties. With Mg(2+) occupying the single high-affinity divalent cation-binding site, the course of polymerization is very similar for the two types of actin. In contrast, when Ca(2+ )is bound, D-actin exhibits a significantly longer lag phase at the onset of polymerization than R-actin. Crossover spacing and helical screw angle of negatively stained filaments are similar for D and R-F-actin filaments, irrespective of the tightly bound divalent cation. However, three-dimensional helical reconstructions reveal that the intersubunit contacts along the two long-pitch helical strands of D-(Ca)F-actin filaments are more tenuous compared to those in R-(Ca)F-actin filaments. D-(Mg)F-actin filaments on the other hand exhibit more massive contacts between the two long-pitch helical strands than R-(Mg)F-actin filaments. Moreover, in contrast to the structure of R-F-actin filaments which is not significantly modulated by the divalent cation, the intersubunit contacts both along and between the two long-pitch helical strands are weaker in D-(Ca)F-actin compared to D-(Mg)F-actin filaments. Consistent with these structural differences, D-(Ca)F-actin filaments were significantly more flexible than D-(Mg)F-actin.Taken together, this work documents that despite being highly conserved, muscle and non-muscle actins exhibit subtle differences in terms of their polymerization behavior, and the three-dimensional structure and mechanical properties of their F-actin filaments which, in turn, may account for their functional diversity.  相似文献   

17.
Three-dimensional cytoskeletal organization of detergent-treated epithelial African green monkey kidney cells (BSC-1) and chick embryo fibroblasts was studied in whole-mount preparations visualized in a high voltage electron microscope. Stereo images are generated at both low and high magnification to reveal both overall cytoskeletal morphology and details of the structural continuity of different filament types. By the use of an improved extraction procedure in combination with heavy meromyosin subfragment 1 decoration of actin filaments, several new features of filament organization are revealed that suggest that the cytoskeleton is a highly interconnected structural unit. In addition to actin filaments, intermediate filaments, and microtubules, a new class of filaments of 2- to 3-nm diameter and 30- to 300-nm length that do not bind heavy merymyosin is demonstrated. They form end-to-side contacts with other cytoskeletal filaments, thereby acting as linkers between various fibers, both like (e.g., actin- actin) and unlike (e.g., actin-intermediate filament, intermediate filament-microtubule). Their nature is unknown. In addition to 2- to 3-nm filaments, actin filaments are demonstrated to form end-to-side contacts with other filaments. Y-shaped actin filament “branches” are observed both in the cell periphery close to ruffles and in more central cell areas also populated by abundant intermediate filaments and microtubules. Arrowhead complexes formed by subfragment 1 decoration of actin filaments point towards the contact site. Actin filaments also form end-to-side contacts with microtubules and intermediate filaments. Careful inspection of numerous actin-microtubule contacts shows that microtubules frequently change their course at sites of contact. A variety of experimentally induced modifications of the frequency of actin-microtubule contacts can be shown to influence the course of microtubules. We conclude that bends in microtubules are imposed by structural interactions with other cytoskeletal elements. A structural and biochemical comparison of whole cells and cytoskeletons demonstrates that the former show a more inticate three-dimensional network and a more complex biochemical composition than the latter. An analysis of the time course of detergent extraction strongly suggests that the cytoskeleton forms a structural backbone with which a large number of proteins of the cytoplasmic ground substance associate in an ordered fashion to form the characteristic image of the “microtrabecular network” (J.J. Wolosewick and K.R. Porter. 1979. J. Cell Biol. 82: 114-139).  相似文献   

18.
High voltage electron microscopy of intact cells prepared by the critical point drying (CPD) procedure has become an important tool in the study of three-dimensional relationships between cytoplasmic organelles. It has been claimed that critical point-dried specimens reveal a structure that is not visible in sections of plastic-embedded material; it has also been claimed that this structure, in association with known cytoplasmic filaments, forms a meshwork of tapering threads ("microtrabecular lattice"). Alternatively, this structure might be a surface tension artifact produced during CPD. To test possible sources of artifacts during CPD, model fiber systems of known structure were used. It was found that traces of water or ethanol in the CO2 caused distortions and fusion of fibers in pure muscle actin, fibrin, collagen, chromatin, and microtubules that produce a structure very similar to the proposed "microtrabecular lattice." These structures were, however, well preserved if water and ethanol were totally excluded from the CO2. The same results were obtained with whole mounts of cultured cells. A "microtrabecular lattice" was obtained if some water or ethanol was present in the pressure chamber. On the other hand, when water or ethanol were totally excluded from the CO2 during CPD, cytoplasmic filaments were uniform in thickness similar to their appearance in sections of plastic-embedded cells. It is concluded that the "microtrabecular lattice" is a distorted image of the cytoplasmic filament network produced during CPD by traces of water or ethanol in the CO2.  相似文献   

19.
Recent developments in image processing have greatly advanced our understanding of biomolecular processes in vitro and in vivo. In particular, using Gaussian models to fit the intensity profiles of nanometer-sized objects have enabled their two-dimensional localization with a precision in the one-nanometer range. Here, we present an algorithm to precisely localize curved filaments whose structures are characterized by subresolution diameters and micrometer lengths. Using surface-immobilized microtubules, fluorescently labeled with rhodamine, we demonstrate positional precisions of ∼2 nm when determining the filament centerline and ∼9 nm when localizing the filament tips. Combined with state-of-the-art single particle tracking we apply the algorithm 1), to motor-proteins stepping on immobilized microtubules, 2), to depolymerizing microtubules, and 3), to microtubules gliding over motor-coated surfaces.  相似文献   

20.
Tarantula leg muscles in the relaxed state were rapidly frozen against a copper block cooled with liquid helium. Thin longitudinal sections of freeze-substituted specimens, both live and skinned, clearly showed the helical tracks of crossbridges on the surface of the myosin filaments, which are not preserved by conventional fixation. Fourier transforms of selected filaments showed a myosin layer line pattern, similar to that observed in X-ray diffraction patterns of intact tarantula muscle, extending to the sixth order of the 43.5 nm X-ray repeat. The phases of corresponding reflections were similar on the two sides of the meridian on the first layer line, and the crossbridge arrangement showed a line of mirror symmetry running down the center of the filament. These observations show that the number of helices (N) is even, in agreement with N = 4 determined from image analysis of negatively stained, isolated tarantula filaments (Crowther et al., J. Mol. Biol. 184, 429-439, 1985). Filtered images showed clear detail of the crossbridge helices and were similar to filtered images of negatively stained, isolated thick filaments. Thus, rapid freezing combined with freeze-substitution preserves the crossbridges in a three-dimensional arrangement approximating that occurring in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号