首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Foetal-rat hepatocytes were cultured in primary monolayer culture, and activity changes of argininosuccinate synthetase (ASS, EC 6.3.4.5) and argininosuccinase (ASL, EC 4.3.2.1) were followed under defined hormone conditions. In hormone-free medium, cultured cells maintained the enzyme activities at values equal to those of freshly isolated cells for at least 3 days. Continuous addition of dexamethasone produced the development of the two enzyme activities, but only after the first 20h of culture. Under these conditions, urea production by the foetal hepatocytes was concomitantly increased in the culture medium. Pretreatment with dexamethasone for 20h was sufficient to produce the development of ASL activity within the 2 following days. Introduced alone, glucagon induced an increase of ASL activity, but did not affect the ASS activity. The most powerful stimulation of ASS and ASL could be observed in cultured hepatocytes if glucagon and dexamethasone were added simultaneously or sequentially. These results indicated that the development of the receptor complex for the induction of urea-cycle enzymes appears early before birth and established that glucocorticoids amplify the glucagon stimulation of these enzyme activities during foetal life.  相似文献   

2.
3.
P J Snodgrass 《Enzyme》1991,45(1-2):30-38
Adrenalectomized and intact rats were given constant high-dose infusions of glucagon, 0.3 mg/kg per day for 7 days, with or without low-dose dexamethasone, 0.01 mg/kg daily, to test whether glucocorticoids potentiate glucagon induction of the 5 urea cycle enzymes as they do in cultured rat hepatocytes. Glucagon did not induce any of the urea cycle enzymes in adrenalectomized Sprague-Dawley rats and only induced argininosuccinate lyase (EC 4.3.2.1) in adrenalectomized inbred Wistar-Furth rats. Dexamethasone alone induced arginase in adrenalectomized and in intact Wistar-Furth rats and restored the other enzymes to normal levels in adrenalectomized rats. In intact Wistar-Furth rats, the combination of hormones gave synergistic increases of all 5 enzymes over the responses to each hormone alone, but in adrenalectomized rats the combination was only additive or less than additive compared with the sum of single hormone responses. The lack of synergism between the two hormones in adrenalectomized rats suggest that other factors play a role in glucagon induction of this cycle.  相似文献   

4.
Hormonal regulation of L-serine dehydratase [L-serine hydro-lyase (deaminating), EC 4.2.1.13] was studied in primary cultures of adult-rat hepatocytes. The hepatocytes were isolated by collagenase perfusion and maintained in culture on collagen-gel/nylon-mesh substrata. L-Serine dehydratase activity was measured with [14C]threonine as substrate. The enzyme activity in hepatocytes of normal adult rats was low and declined rapidly in culture in L-15 medium containing 0.1 micro M-insulin and even more in the presence of glucose. L-Serine dehydratase activity in hepatocytes of rats with streptozotocin-induced diabetes was initially 20-fold higher than that of normal rats, but fell rapidly to a low value by 4 days in culture. Hormonal regulation of the enzyme activity was manifested by treatment of the cultured hepatocytes with insulin (0.1 micro M), glucagon (0.3 micro M), dexamethasone (10 micro M) and combinations of these hormones. Either glucagon or dexamethasone in the absence of insulin enhanced the activity of L-serine dehydratase, but failed to do so in the presence of insulin. Treatment with both hormones resulted in a 2-3-fold increase in enzyme activity in culture on days 3 and 4. Under conditions in which the enzyme activity was enhanced, glucose production by the cultured hepatocytes was concomitantly increased. Glucose production resulted in part from gluconeogenesis from pyruvate and not entirely from glycogenolysis. The gluconeogenic conditions of culture resulted in a decrease in cellular lipids in the cultured hepatocytes, as evidenced by ultrastructural studies.  相似文献   

5.
Developmental increase of tryptophan oxygenase (L--tryptophan: oxygen 2,3-oxidoreductase (decyclizing), EC 1.13.11.11) was studied using hepatocytes of neonatal rats in primary culture. Hepatocytes from rats of 2–30-days-old were isolated and cultured for 2 days. In cultured hepatocytes of 2-day-old rats, tryptophan (2.5 mM), dexamethasone (1.10?5 M) and glucagon (1.10?7 M) did not cause the appearance of tryptophan oxygenase. But the enzyme activity became detectable, when heptocytes from 5-day-old rats were incubated wiht tryptophan, the oxygenase could be induced precociously by dexamethasone, but not by glucagon. The effect of glucagon was first seen 2 weeks after birth. However, in hepatocytes of 9-day-old rats glucagon stimulated formation of cyclic AMP and protein kinase activity (EC 2.7.1.37) and also induced tyrosine aminotransferase (EC 2.6.1.5). When heptocytes of 9-day-old rats were cultured for 4 days, their tryptophan oxygenase became inducible by glucagon. Insulin almost completely inhibited precocious appearance of the enzyme activity evoked by tryptophan plus dexamethasone in hepatocytes of 9-day-old rats. These results suggest that the appearance of tryptophan oxygenase in rat liver during development is due to first the onset of gene coding for tryptophan oxygenase and then stimulation by the sequential of glucocorticoid and glucagon.  相似文献   

6.
Long-term (24–48 h) and short-term (10–30 min) regulation by hormones of hepatic pyruvate kinase activity was investigated in adult rat hepatocytes cultured under serum-free conditions. In the absence of hormones, pyruvate kinase total activity decreased to 83%, 67% and 39% of the initial level at 24, 48 and 72 h of culture. Insulin (100 nM) maintained total activity significantly above control levels throughout this period. In contrast, glucagon (100 nM) and dexamethasone (100 nM) accelerated the gradual decrease within 24 h (glucagon) or 48 h (dexamethasone) of culture. In these long-term experiments, activity at non-saturating concentrations of phosphoenolpyruvate was decreased by glucagon and dexamethasone but not directly modulated by insulin. However, insulin increased the cellular content of the pyruvate kinase activator fructose-1,6-diphosphate. In short-term experiments on cells cultured under serum- and hormone-free conditions for 48 h, both glucagon and dexamethasone independently caused a rapid, dose-dependent increase of the K0.5 for phosphoenolpyruvate within 10 min, while Vmax was not affected. Insulin inhibited this action of glucagon and dexamethasone and, in their absence, significantly increased substrate affinity for phosphoenolpyruvate within 30 min. Cellular fructose-1,6-diphosphate contents remained unchanged under these conditions. The data identify glucocorticoids and insulin - in addition to glucagon - as short-term regulators of the catalytic properties of pyruvate kinase. All three hormones are effective in the long-term control of total enzyme activity.  相似文献   

7.
Although the activity of glucose-6-phosphatase in rat liver is altered markedly following the administration of a variety of hormones in vivo, it is not certain whether the hormones act directly on the hepatocyte. To study this problem hepatocytes were isolated by a collagenase-perfusion technique and cultured on collagen gel/nylon mesh membranes. The activity of glucose 6-phosphatase in cells cultured with fetal calf serum and with Dulbecco's modified Eagle's medium or Leibovitz L-15 medium decreased to less than 10-30% of the activity in freshly isolated cells by 96 h. However, when L-15 plus newborn or fetal calf serum was supplemented with glucagon (10(-6)M), epinephrine (10(-6)M), triiodothyronine (10(-6)M), and dexamethasone (10(-5)M) (L-15-GETD), the activity of glucose-6-phosphatase was maintained so that, after 144 h, the activity was at least 80% of that detected in freshly isolated cells. In cells cultured in L-15 plus serum for 72 or 96 h and then in L-15-GETD, glucose-6-phosphatase increased 30-50% over that in control cultures after 24 h. Insulin, which decreases glucose-6-phosphatase activity when administered to intact animals, also decreased the glucose-6-phosphatase activity in cultured hepatocytes to 20-50% of that in controls.  相似文献   

8.
In freshly isolated parenchymal hepatocytes of adult rats, the beta-adrenergic agonist isoproterenol (Ip) did not stimulate cAMP formation, protein kinase activity, or glycogenolysis, although glucagon markedly stimulated all these activities. However, the beta-adrenergic response appeared when rat hepatocytes were cultured as monolayers. This response had already appeared after 2-h culture and increased during further culture. The appearance of the beta-adrenergic response during culture was blocked by cycloheximide, actinomycin D, or alpha-amanitin. Thus adult rat hepatocytes acquired marked ability to respond to Ip during culture through the syntheses of mRNA and protein. Freshly isolated hepatocytes from postnatal rats showed a high beta-adrenergic response that did not increase further during culture. This response gradually decreased during development and had almost disappeared about 60 days after birth. In plasma membranes prepared from freshly isolated cells of adult rats the basal and NaF-stimulated activities of adenylate cyclase (EC 4.6.1.1) were similar to those of cultured cells and the enzyme activity was also stimulated by guanyl-5'-yl imidodiphosphate. However, in plasma membranes of freshly isolated cells Ip scarcely stimulated adenylate cyclase, but glucagon did. The intact cells, whether they were freshly isolated or cultured, accumulated cAMP when exposed to cholera toxin. Moreover, the two subunits of GTP-binding regulatory protein (also named G/F or Ns site) were detected by [32P]ADP ribosylation with cholera toxin and [32P]NAD+ in freshly isolated cells as well as in cultured cells. These results indicate that freshly isolated and cultured hepatocytes of adult rats contain sufficient levels of all the components of the postreceptor-adenylate cyclase system for activity. However, the number of beta-adrenergic receptors measured by binding of [125I]iodocyanopindolol, a potent beta-adrenergic antagonist, was very low in purified plasma membranes of freshly isolated cells (20 fmol/mg of protein), and the number increased about 6-fold without change in the dissociation constant (Kd = 132 pM) when the cells were cultured for 7 h. This increase in beta-adrenergic receptor sites was completely abolished by cycloheximide and alpha-amanitin. Thus it is concluded that the unresponsiveness of adult rat hepatocytes to Ip was due to a very low amount of beta-adrenergic receptor and that the appearance of a beta-adrenergic response during primary culture was due to new synthesis of beta-adrenergic receptor through synthesis of mRNA.  相似文献   

9.
The specific [125I]insulin binding to primary cultured hepatocytes was significantly greater than that to freshly isolated hepatocytes. Low affinity insulin binding sites in cultured cells were 6-fold greater in number than those of freshly isolated cells without a significant change in high affinity sites. However, both sensitivity (insulin concentration for half maximum stimulation) and responsiveness (% of increase above the basal level) to insulin for the stimulation of ODC activity were similar for isolated and cultured cells indicating an important role of high affinity sites in the insulin action. On the other hand, the specific [125I]glucagon binding to cultured cells was significantly decreased. Low affinity glucagon binding sites in cultured cells decreased by about 50% in cultured cells without a significant change in high affinity sites. Both sensitivity and responsiveness to glucagon for the stimulation of ketogenesis from palmitate also decreased as compared with those of isolated cells, indicating an important role of low affinity sites in the glucagon action. These results indicate that insulin and glucagon receptors were reciprocally changed in cultured cells, as compared with isolated cells.  相似文献   

10.
Hormonal regulation of key gluconeogenic enzymes and glucose release by glucagon, dexamethasone, secretin and somatostatin was evaluated in maintenance cultured rat hepatocytes. (i) Phosphoenolpyruvate (PEP)-carboxykinase activity declined rapidly during the first 24 h in serum- and hormone-free culture with a further slight decay during the following 2 days. Dexamethasone and glucagon independently increased PEP-carboxykinase and acted synergistically when added in combination. Glucose-6-phosphatase activity declining linearly during hormone-free culture was stimulated by glucagon. Dexamethasone itself was without significant effects but completely abolished glucagon action. Fructose-1,6-diphosphatase was maintained at its initial level during the first day under control conditions and declined thereafter. Neither glucagon nor dexamethasone affected total activity or substrate (fructose-1,6-diphosphate) affinity of this enzyme. In short-term experiments on cells cultured under control conditions, protein synthesis-dependent stimulation of PEP-carboxykinase by glucagon and the permissive action of dexamethasone was demonstrated. Glucose-6-phosphatase and fructose-1,6-diphosphatase were not altered by hormones within this period. (ii) Stimulation by glucagon of gluconeogenesis was independent of its action on PEP-carboxykinase. Dexamethasone inhibited glycogenolysis but maintained glucose release at control levels probably by stimulation of gluconeogenesis. When added in combination, the glycogen-preserving action of dexamethasone acutely reduced the glucose release in response to glucagon. Glucagon sensitivity remained unchanged. (iii) The gastrointestinal hormones secretin and somatostatin were ineffective in modulating basal or glucagon-stimulated glucose release and gluconeogenic key enzymes. They are therefore unlikely to play a physiological role in hepatic glucose metabolism.  相似文献   

11.
12.
Parenchymal cells from normal adult rat liver, prepared with high yield (30 × 106 cells/g liver) and viability index (>96%) by a non-perfusion method, were maintained in non-proliferating monolayer culture. Several metabolic functions were investigated for 7 days to evaluate functional integrity of the cultured hepatocytes. Leucine was linearly incorporated into protein for 4.5 h at each day of cultivation and the incorporation rate increased up to 2-fold after 3 days. Urea production was maintained at a rate of 0.5 μmoles/mg protein × h for at least 7 days, and its amount was enhanced 2-fold within 24 h by the addition of 3 mM NH4Cl. Glucose was formed during the first days by the hepatocytes and was then taken up with increasing amount from the surrounding medium. Lactate consumption, on the other hand, was replaced by lactate production after one day of cultivation.Variations in enzyme levels of lactate dehydrogenase, arginase, glutamine synthetase and glucose-6-phosphatase were also studied during the whole culture period. Cell leakage, which was detected only in the case of lactate dehydrogenase (LDH), occurred through the 4th day along with a concomitant loss of intracellular LDH activity. After 4 days, however, the enzyme activity returned to the initial level. Arginase was maintained throughout the cultivation period and was stimulated 2- to 3-fold within 24 h by NH4Cl. Glutamine synthetase declined within the first 4 h of cultivation and then remained in the hepatocytes with a transitory rise after 2 days. Its activity was also found to be inversely related to the concentration of glutamine in the culture medium up to 4 mM. Glucose-6-phosphatase gradually decreased during the cultivation period, the enzyme activity, however, was stimulated by glucagon within 24 h.  相似文献   

13.
Incubation of solubilized hormone-activated phosphodiesterase from isolated hepatocytes, under conditions likely to favour a dephosphorylation reaction, did not cause a loss of the hormone activation. If, however, the enzyme was incubated with Mg2+ (10 mM) while still associated with its membrane, and subsequently solubilized, the activity of the hormone-stimulated enzyme declined to the level seen in control cells.Diminution of hepatocyte ATP levels to about 20% of contol values, by incubation with fructose, blunted the effect of glucagon and abolished the effect of insulin on phosphodiesterase. More severe ATP depletion caused by dinitrophenol abolished the stimulation of the enzyme by both hormones. These effects were not considered likely to be due to altered hormone-binding and are consistent with the involvement of an energy-dependent step in the hormonal activation of phosphodiesterase.  相似文献   

14.
Rat liver regeneration is regulated by a humoral signal that includes insulin and a sustained elevation in glucagon. The intracellular response is characterized by a rise in cAMP as well as altered cGMP metabolism, i.e. increased particulate guanylate cyclase activity. To evaluate the role of hormones in the regulation of guanylate cyclase during liver regeneration, the enzyme activity of primary cultures of rat hepatocytes was examined. Hepatocytes were maintained for 22 h in medium containing various combinations of insulin, glucagon, and cAMP. The cells were then harvested and homogenized and the guanylate cyclase activity was assessed in vitro. Hepatocytes maintained in 100 nM insulin exhibited a 42% (p < 0.001) increase in guanylate cyclase activity when compared to cells cultured in medium alone. Incubation with glucagon (100 nM) produced a 52% (p < 0.01) rise. In the presence of insulin (100 nM), culturing with as little as 5 nM glucagon resulted in increased activity, and 100 nM glucagon produced a 161% (p < 0.001) rise above cultures maintained in insulin alone. Thus, the combination of the two hormones produced an effect that was significantly (p < 0.01) greater than additive. Dibutyryl cAMP and 8-bromoadenosine 3':5'-monophosphoric acid were at least as effective as glucagon; the enzyme activity of cells maintained in 5 microM N6,02'-dibutyryl adenosine 3':5'-monophosphoric acid and 100 nM insulin was 243% (p < 0.001) above those in insulin alone. The findings suggest that the activity of hepatocyte guanylate cyclase is regulated by a synergistic action of insulin and glucagon and that positive interactions between the two cyclic nucleotide second messenger systems exist.  相似文献   

15.
16.
Hormonal regulation of glutathione efflux   总被引:3,自引:0,他引:3  
The efflux of GSH has been shown previously to be a saturable process in both isolated rat hepatocytes and perfused liver, suggesting a carrier-mediated transport mechanism. The possibility in hormonal regulation of this process has been raised by recent reports. Our present work examined the role of hormones known to affect intracellular signal transduction mechanisms on GSH efflux in cultured rat hepatocytes and perfused rat livers. We found that cAMP-dependent factors, such as cholera toxin (CT), dibutyryl cAMP, forskolin, and glucagon all stimulated GSH efflux in cultured rat hepatocytes. The efflux kinetics were compared in cultured cells incubated with or without CT; the stimulation of GSH efflux was related to a near doubling of the Vmax while exhibiting no significant alteration of the Km. The increase in intracellular cAMP level associated with the threshold for this stimulatory effect was 25% above control. The stimulatory effect of CT could not be blocked by cyclohexamide pretreatment or reversed by colchicine treatment. The stimulatory effect of glucagon was abolished in the presence of ouabain but not in the presence of barium. On the other hand, hormones which act through Ca2+ and protein kinase C, such as phenylephrine and vasopressin, had no effect on GSH efflux in the cultured cells. In the perfused liver model, glucagon (10 nM) and dibutyryl cAMP (8 microM) stimulated sinusoidal GSH efflux to 130 and 144% of control values, respectively, and increased bile flow while not affecting biliary GSH efflux. Finally, the physiological significance of glucagon-mediated stimulation of sinusoidal GSH efflux was assessed by both plasma GSH and glucose levels in response to in vivo glucagon infusion. The threshold dose of glucagon for significant increase in plasma GSH (5.21 pmol/min) was lower than for glucose (15.61 pmol/min). At the highest glucagon infusion rate (261 pmol/min), plasma GSH level doubled while glucose level increased 80%. In conclusion, increased cAMP stimulates GSH efflux in cultured rat hepatocytes and perfused livers. The stimulatory effect of cAMP is exerted at the sinusoidal pole and appears to be mediated by hyperpolarization of hepatocytes by stimulation of Na(+)-K(+)-ATPase. In vivo studies confirmed the importance of cAMP-mediated stimulation of sinusoidal GSH efflux as it resulted in significant elevation of the plasma GSH level.  相似文献   

17.
J C Redshaw 《In vitro》1980,16(5):377-383
The effects of glucagon and dexamethasone on the activities of the enzymes involved in cyclic adenosine 3':5'-monophosphate (cyclic AMP) metabolism in primary monolayer cell cultures of adult rat hepatocytes were examined. Short-term experiments indicated that the magnitude of the cultured cells' response to glucagon, as measured by production of cyclic AMP, was essentially the same as that for freshly isolated hepatocytes. However, the time course of this response was markedly different. Although the activity of adenylate cyclase is maintained throughout the culture period at a level similar to that of the freshly isolated hepatocytes, the activity of both low and high Km forms of phosphodiesterase decreases rapidly with length of time in vitro. This is reflected by an increase in cyclic AMP produced in response to glucagon and theophylline by cells of different ages. Dexamethasone caused an increased loss of phosphodiesterase activity, as well as increased cyclic AMP accumulation in the presence or absence of theophylline. Various agents failed to restore the lost phosphodiesterase activity. These results may indicate that phosphodiesterase activity is more sensitive to the inevitable inadequacies of the in vitro environment of cultured hepatocytes than adenylate cyclase. It was also found that a modification of the method of Seglen (1) for the preparation of isolated hepatocytes yielded cells that had less phosphodiesterase activity than those prepared by the method of Berry and Friend (2).  相似文献   

18.
When freshly-dispersed rat hepatocytes are maintained in primary monolayer cultures, they quickly lose their capacity to synthesize the urea cycle enzyme, carbamoyl-phosphate synthase. The ability to synthesize many other proteins, e.g., serum proteins including albumin, is retained. After an initial recovery period following cell isolation (24-48 h), glucagon is able to restore the ability of cultured hepatocytes to make carbamoyl-phosphate synthase. mRNA encoding the enzyme is about 4-times higher in hepatocytes maintained for 48 h in the presence of glucagon compared to hepatocytes without the hormone, as judged by in vitro translational assays. The level of carbamoyl-phosphate synthase activity expressed in transformed hepatocytes is unique to each hepatoma. Here we show that Morris hepatoma 5123D has retained such expression, and actively synthesizes the enzyme when 5123D cells are placed in monolayer cultures. Unlike normal hepatocytes, however, synthesis continues uninterrupted at a high level whether or not glucagon is present. 5123D has higher levels of translatable carbamoyl-phosphate synthase mRNA than normal liver.  相似文献   

19.
Acute hormonal effects on the synthesis rate of the cytosolic form of the gluconeogenic enzyme, phosphoenolpyruvate carboxykinase (GTP), were investigated using rat hepatocytes maintained in short-term suspension culture. Cells were pulse-labeled with [3H]leucine or [35S]methionine and the rate of synthesis of phosphoenolpyruvate carboxykinase was estimated after immunoprecipitation of cell extracts with specific antibodies or following high-resolution two-dimensional gel electrophoresis of cell proteins. Total RNA was also extracted from cultured cells and subsequently translated in a wheat germ cell-free protein-synthesis system, in order to quantify the level of functional mRNA coding for phosphoenolpyruvate carboxykinase. Glucagon, the single most effective inducer, causes a 15--20-fold increase in the level of specific mRNA in 2 h, accompanied by a similar increase in enzyme synthesis rate. The extent of induction is further amplified about threefold when dexamethasone is added to the culture medium. The synergistic action of dexamethasone does not require pre-exposure of the cells to the glucocorticoid, but on the contrary occurs without lag upon simultaneous addition of glucagon and dexamethasone. The induction of phosphoenolpyruvate carboxykinase mRNA by glucagon is markedly depressed in hepatocytes inhibited for protein synthesis by cycloheximide. Cycloheximide-inhibited cells, however, display a considerable induction of the message after joint stimulation with dexamethasone and glucagon. Thus, the synergistic action of dexamethasone does not require concomitant protein synthesis. These data provide indirect evidence for a primary effect of the glucocorticoids on the expression of the phosphoenolpyruvate carboxykinase gene. Besides glucagon and dexamethasone, the thyroid hormones are shown to influence the rate of phosphoenolpyruvate carboxykinase synthesis in isolated liver cells. The stimulatory effect of 3,5,3'-triiodothyronine (T3) is best demonstrated as a twofold increase in relative rate of enzyme synthesis in cells supplied with T3 plus glucagon, as compared to cells challenged with glucagon alone. The effect of T3 relies on a pretranslational mechanism, as shown by a commensurate increase in functional mRNA coding for phosphoenolpyruvate carboxykinase. Dose-response experiments with T3 as well as dexamethasone demonstrate effects at very low hormone levels, consistent with a role for these hormones as physiological modulators of phosphoenolpyruvate carboxykinase expression.  相似文献   

20.
Glucagon caused a marked decrease in the total L-pyruvate kinase activity of control hepatocytes maintained in monolayer culture (t1/2 = 54 h), while the addition of insulin to hepatocytes isolated from a fasted rat caused a four- to fivefold increase in the total enzyme activity. Maintenance of L-pyruvate kinase in control cultures of hepatocytes was shown to require insulin. However, when 1 microM glucagon was present in the medium, the total L-pyruvate kinase activity was not maintained even in the presence of 1 microM insulin, but rather the total L-pyruvate kinase activity of the cells steadily declined from 12.1 to 5.7 units/mg DNA by the 6th day in culture. The increase in the total L-pyruvate kinase activity of fasted hepatocytes cultured in the presence of insulin was shown to result from an increase in protein synthesis, since actinomycin D and cycloheximide blocked the insulin-induced increase in the enzyme activity. The addition of 1 microM glucagon to cultures of fasted hepatocytes also blocked the insulin-induced increase in total L-pyruvate kinase activity. Since glucagon decreased the total L-pyruvate kinase activity in control hepatocytes and blocked the increase in L-pyruvate kinase activity in fasted hepatocytes, it is suggested that, in addition to the phosphorylation of L-pyruvate kinase by a cAMP-dependent protein kinase, glucagon also acts to decrease the synthesis of L-pyruvate kinase in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号