首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cytoskeleton, composed of actin filaments, intermediate filaments, and microtubules, is a highly dynamic supramolecular network actively involved in many essential biological mechanisms such as cellular structure, transport, movements, differentiation, and signaling. As a first step to characterize the biophysical changes associated with cytoskeleton functions, we have developed finite elements models of the organization of the cell that has allowed us to interpret atomic force microscopy (AFM) data at a higher resolution than that in previous work. Thus, by assuming that living cells behave mechanically as multilayered structures, we have been able to identify superficial and deep effects that could be related to actin and microtubule disassembly, respectively. In Cos-7 cells, actin destabilization with Cytochalasin D induced a decrease of the visco-elasticity close to the membrane surface, while destabilizing microtubules with Nocodazole produced a stiffness decrease only in deeper parts of the cell. In both cases, these effects were reversible. Cell softening was measurable with AFM at concentrations of the destabilizing agents that did not induce detectable effects on the cytoskeleton network when viewing the cells with fluorescent confocal microscopy. All experimental results could be simulated by our models. This technology opens the door to the study of the biophysical properties of signaling domains extending from the cell surface to deeper parts of the cell.  相似文献   

2.
Micromechanical architecture of the endothelial cell cortex   总被引:8,自引:0,他引:8       下载免费PDF全文
Mechanical properties of living cells are important for cell shape, motility, and cellular responses to biochemical and biophysical signals. Although these properties are predominantly determined by the cytoskeleton, relatively little is known about the mechanical organization of cells at a subcellular level. We have studied the cell cortex of bovine pulmonary artery endothelial cells (BPAECs) using atomic force microscopy (AFM) and confocal fluorescence microscopy (CFM). We show that the contrast in AFM imaging of these cells derives in large part from differences in local mechanical properties, and AFM images of BPAEC reveal the local micromechanical architecture of their apical cortex at approximately 125 nm resolution. Mechanically the cortex in these cells is organized as a polygonal mesh at two length scales: a coarse mesh with mesh element areas approximately 0.5-10 microm2, and a finer mesh with areas <0.5 microm2. These meshes appear to be intertwined, which may have interesting implications for the mechanical properties of the cell. Correlated AFM-CFM experiments and pharmacological treatments reveal that actin and vimentin are components of the coarse mesh, but microtubules are not mechanical components of the BPAEC apical cortex.  相似文献   

3.
Structural Biology (SB) techniques are particularly successful in solving virus structures. Taking advantage of the symmetries, a heavy averaging on the data of a large number of specimens, results in an accurate determination of the structure of the sample. However, these techniques do not provide true single molecule information of viruses in physiological conditions. To answer many fundamental questions about the quickly expanding physical virology it is important to develop techniques with the capability to reach nanometer scale resolution on both structure and physical properties of individual molecules in physiological conditions. Atomic force microscopy (AFM) fulfills these requirements providing images of individual virus particles under physiological conditions, along with the characterization of a variety of properties including local adhesion and elasticity. Using conventional AFM modes is easy to obtain molecular resolved images on flat samples, such as the purple membrane, or large viruses as the Giant Mimivirus. On the contrary, small virus particles (25-50 nm) cannot be easily imaged. In this work we present Frequency Modulation atomic force microscopy (FM-AFM) working in physiological conditions as an accurate and powerful technique to study virus particles. Our interpretation of the so called "dissipation channel" in terms of mechanical properties allows us to provide maps where the local stiffness of the virus particles are resolved with nanometer resolution. FM-AFM can be considered as a non invasive technique since, as we demonstrate in our experiments, we are able to sense forces down to 20 pN. The methodology reported here is of general interest since it can be applied to a large number of biological samples. In particular, the importance of mechanical interactions is a hot topic in different aspects of biotechnology ranging from protein folding to stem cells differentiation where conventional AFM modes are already being used.  相似文献   

4.
An overview of the biophysical applications of atomic force microscopy   总被引:10,自引:0,他引:10  
The potentialities of the atomic force microscopy (AFM) make it a tool of undeniable value for the study of biologically relevant samples. AFM is progressively becoming a usual benchtop technique. In average, more than one paper is published every day on AFM biological applications. This figure overcomes materials science applications, showing that 17 years after its invention, AFM has completely crossed the limits of its traditional areas of application. Its potential to image the structure of biomolecules or bio-surfaces with molecular or even sub-molecular resolution, study samples under physiological conditions (which allows to follow in situ the real time dynamics of some biological events), measure local chemical, physical and mechanical properties of a sample and manipulate single molecules should be emphasized.  相似文献   

5.
Since its invention in the mid 1980s atomic force microscopy has revolutionised the way in which surfaces can be imaged. Close to atomic resolution has been achieved for some materials and numerous images of molecules on surfaces have been recorded. Atomic force microscopy has also been of benefit to biology where protein molecules on surfaces have been studied and even whole cells have been investigated. Here we report a study of red blood cells which have been imaged in a physiological medium. At high resolution, the underlying cytoskeleton of the blood cell has been resolved and flaws in the cytoskeleton structure may be observed. Comparison of the normal 'doughnut' shaped cells with swollen cells has been undertaken. Differences in both the global properties of the cells and in the local features in cytoskeleton structure have been observed.  相似文献   

6.
Atomic force microscopy (AFM) has emerged as a powerful technique for mapping the surface morphology of biological specimens, including bacterial cells. Besides creating topographic images, AFM enables us to probe both physicochemical and mechanical properties of bacterial cell surfaces on a nanometer scale. For AFM, bacterial cells need to be firmly anchored to a substratum surface in order to withstand the friction forces from the silicon nitride tip. Different strategies for the immobilization of bacteria have been described in the literature. This paper compares AFM interaction forces obtained between Klebsiella terrigena and silicon nitride for three commonly used immobilization methods, i.e., mechanical trapping of bacteria in membrane filters, physical adsorption of negatively charged bacteria to a positively charged surface, and glutaraldehyde fixation of bacteria to the tip of the microscope. We have shown that different sample preparation techniques give rise to dissimilar interaction forces. Indeed, the physical adsorption of bacterial cells on modified substrata may promote structural rearrangements in bacterial cell surface structures, while glutaraldehyde treatment was shown to induce physicochemical and mechanical changes on bacterial cell surface properties. In general, mechanical trapping of single bacterial cells in filters appears to be the most reliable method for immobilization.  相似文献   

7.
Atomic force microscopy (AFM) has emerged as a powerful technique for mapping the surface morphology of biological specimens, including bacterial cells. Besides creating topographic images, AFM enables us to probe both physicochemical and mechanical properties of bacterial cell surfaces on a nanometer scale. For AFM, bacterial cells need to be firmly anchored to a substratum surface in order to withstand the friction forces from the silicon nitride tip. Different strategies for the immobilization of bacteria have been described in the literature. This paper compares AFM interaction forces obtained between Klebsiella terrigena and silicon nitride for three commonly used immobilization methods, i.e., mechanical trapping of bacteria in membrane filters, physical adsorption of negatively charged bacteria to a positively charged surface, and glutaraldehyde fixation of bacteria to the tip of the microscope. We have shown that different sample preparation techniques give rise to dissimilar interaction forces. Indeed, the physical adsorption of bacterial cells on modified substrata may promote structural rearrangements in bacterial cell surface structures, while glutaraldehyde treatment was shown to induce physicochemical and mechanical changes on bacterial cell surface properties. In general, mechanical trapping of single bacterial cells in filters appears to be the most reliable method for immobilization.  相似文献   

8.
Atomic force microscopy (AFM) has been used to study the micromechanical properties of biological systems. Its unique ability to function both as an imaging device and force sensor with nanometer resolution in both gaseous and liquid environments has meant that AFM has provided unique insights into the mechanical behaviour of tissues, cells and single molecules. As a surface scanning device, AFM can map properties such as adhesion and the Young's modulus of surfaces. As a force sensor and nanoindentor AFM can directly measure properties such as the Young's modulus of surfaces or the binding forces of cells. As a stress-strain gauge AFM can study the stretching of single molecules or fibres and as a nanomanipulator it can dissect biological particles such as viruses or DNA strands. The present paper reviews key research that has demonstrated the versatility of AFM and how it can be exploited to study the micromechanical behaviour of biological materials.  相似文献   

9.
Atomic force microscopy (AFM) allows for high-resolution topography studies of biological cells and measurement of their mechanical properties in physiological conditions. In this work, AFM was employed to measure the stiffness of abnormal human red blood cells from human subjects with the genotype for sickle cell trait. The determined Young's modulus was compared with that obtained from measurements of erythrocytes from healthy subjects. The results showed that Young's modulus of pathological erythrocytes was approximately three times higher than in normal cells. Observed differences indicate the effect of the polymerization of sickle hemoglobin as well as possible changes in the organization of the cell cytoskeleton associated with the sickle cell trait.  相似文献   

10.
Contact and tapping mode atomic force microscopy have been used to visualize the surface of cultured CV-1 kidney cells in aqueous medium. The height images obtained from living cells were comparable when using contact and tapping modes. In contrast, the corresponding, and simultaneously acquired, deflection images differed markedly. Whereas, as expected, deflection images enhanced the surface features in the contact mode, they revealed the presence of a filamentous network when using the tapping mode. This network became disorganized upon addition of cytochalasin, which strongly suggests that it corresponded to the submembraneous cytoskeleton. Examination of fixed cells further supported this assumption. These data show that, in addition to the structural information on the cell surface, the use of the tapping mode in liquid can also provide a good visualization of the membrane cytoskeleton. Tapping mode atomic force microscopy appears to he a promising technique for studying interactions between cell surface and subsurface structures, a critical step in many biological processes.  相似文献   

11.
AFM (atomic force microscopy) analysis, both of fixed cells, and live cells in physiological environments, is set to offer a step change in the research of cellular function. With the ability to map cell topography and morphology, provide structural details of surface proteins and their expression patterns and to detect pico‐Newton force interactions, AFM represents an exciting addition to the arsenal of the cell biologist. With the explosion of new applications, and the advent of combined instrumentation such as AFM—confocal systems, the biological application of AFM has come of age. The use of AFM in the area of biomedical research has been proposed for some time, and is one where a significant impact could be made. Fixed cell analysis provides qualitative and quantitative subcellular and surface data capable of revealing new biomarkers in medical pathologies. Image height and contrast, surface roughness, fractal, volume and force analysis provide a platform for the multiparameter analysis of cell and protein functions. Here, we review the current status of AFM in the field and discuss the important contribution AFM is poised to make in the understanding of biological systems.  相似文献   

12.
Correct patterning of the inner ear sensory epithelium is essential for the conversion of sound waves into auditory stimuli. Although much is known about the impact of the developing cytoskeleton on cellular growth and cell shape, considerably less is known about the role of cytoskeletal structures on cell surface mechanical properties. In this study, atomic force microscopy (AFM) was combined with fluorescence imaging to show that developing inner ear hair cells and supporting cells have different cell surface mechanical properties with different developmental time courses. We also explored the cytoskeletal organization of developing sensory and non-sensory cells, and used pharmacological modulation of cytoskeletal elements to show that the developmental increase of hair cell stiffness is a direct result of actin filaments, whereas the development of supporting cell surface mechanical properties depends on the extent of microtubule acetylation. Finally, this study found that the fibroblast growth factor signaling pathway is necessary for the developmental time course of cell surface mechanical properties, in part owing to the effects on microtubule structure.  相似文献   

13.
Atomic Force Microscopy in Imaging of Viruses and Virus-Infected Cells   总被引:1,自引:0,他引:1  
Summary: Atomic force microscopy (AFM) can visualize almost everything pertinent to structural virology and at resolutions that approach those for electron microscopy (EM). Membranes have been identified, RNA and DNA have been visualized, and large protein assemblies have been resolved into component substructures. Capsids of icosahedral viruses and the icosahedral capsids of enveloped viruses have been seen at high resolution, in some cases sufficiently high to deduce the arrangement of proteins in the capsomeres as well as the triangulation number (T). Viruses have been recorded budding from infected cells and suffering the consequences of a variety of stresses. Mutant viruses have been examined and phenotypes described. Unusual structural features have appeared, and the unexpectedly great amount of structural nonconformity within populations of particles has been documented. Samples may be imaged in air or in fluids (including culture medium or buffer), in situ on cell surfaces, or after histological procedures. AFM is nonintrusive and nondestructive, and it can be applied to soft biological samples, particularly when the tapping mode is employed. In principle, only a single cell or virion need be imaged to learn of its structure, though normally images of as many as is practical are collected. While lateral resolution, limited by the width of the cantilever tip, is a few nanometers, height resolution is exceptional, at approximately 0.5 nm. AFM produces three-dimensional, topological images that accurately depict the surface features of the virus or cell under study. The images resemble common light photographic images and require little interpretation. The structures of viruses observed by AFM are consistent with models derived by X-ray crystallography and cryo-EM.  相似文献   

14.
15.
Summary Atomic force microscopy (AFM) holds unique prospects for biological microscopy, such as nanometer resolution and the possibility of measuring samples in (physiological) solutions. This article reports the results of an examination of various types of plant material with the AFM. AFM images of the surface of pollen grains ofKalanchoe blossfeldiana andZea mays were compared with field emission scanning electron microscope (FESEM) images. AFM reached the same resolutions as FESEM but did not provide an overall view of the pollen grains. Using AFM in torsion mode, however, it was possible to reveal differences in friction forces of the surface of the pollen grains. Cellulose microfibrils in the cell wall of root hairs ofRaphanus sativus andZ. mays were imaged using AFM and transmission electron microscopy (TEM). Imaging was performed on specimens from which the wall matrix had been extracted. The cell wall texture of the root hairs was depicted clearly with AFM and was similar to the texture known from TEM. It was not possible to resolve substructures in a single microfibril. Because the scanning tip damaged the fragile cells, it was not possible to obtain images of living protoplasts ofZ. mays, but images of fixed and dried protoplasts are shown. We demonstrate that AFM of plant cells reaches resolutions as obtained with FESEM and TEM, but obstacles still have to be overcome before imaging of living protoplasts in physiological conditions can be realized.Abbreviations AFM atomic force microscope - FESEM field emission scanning electron microscope - PyMS pyrolysis mass spectrometry - TEM transmission electron microscope  相似文献   

16.
轻链钙调蛋白结合蛋白(light-chain Caldesmon,l-CaD)是一种重要的肌动蛋白结合蛋白,普遍存在于众多非肌肉细胞中。体外研究证明,l-CaD能通过与肌动蛋白的结合起到促进原肌动蛋白(G-actin)聚合、稳定肌动蛋白纤维(F-actin)结构的作用。在磷酸化作用下,l-CaD能从肌动蛋白纤维上脱离并促进肌动蛋白纤维的解聚。该研究拟考察l-CaD在细胞内对细胞肌动蛋白骨架的调节作用,阐明l-CaD对细胞运动能力的影响,作者将天然低表达l-CaD的人源性乳腺癌细胞MCF-7作为细胞模型,在MCF-7胞内以基因转染的方式高表达外源野生型l-CaD及其磷酸化突变株A1234-CaD(不可磷酸化CaD)、D1234-CaD(完全磷酸化CaD)。首先,通过激光共聚焦扫描,探讨了l-CaD对细胞骨架重排的调节;其次,通过细胞迁移transwell阵列,检测了l-CaD对细胞迁移能力的影响;最后,在单细胞层次上测定了细胞基底牵张力、胰酶刺激下的细胞基底脱附能力,并进一步检测了l-CaD对细胞迁移子过程中细胞伸张、收缩的影响。研究结果显示,l-CaD在胞内对细胞骨架的形成有显著的调控作用。非磷酸化l-CaD主要富集在细胞骨架上,增强了细胞骨架的强度,导致细胞基底牵张力以及对胰酶的耐受性增强,但对细胞的迁移能力有显著的抑制作用;磷酸化l-CaD跟细胞骨架结合能力很弱,对细胞的运动能力没有显著影响。通过磷酸化,l-CaD起到了一个“蛋白开关”的作用,通过控制细胞骨架的解聚、重排来调节细胞的运动能力。  相似文献   

17.
Atomic force microscopy (AFM) is an ideal method to study the surface topography of biological membranes. It allows membranes that are adsorbed to flat solid supports to be raster-scanned in physiological solutions with an atomically sharp tip. Therefore, AFM is capable of observing biological molecular machines at work. In addition, the tip can be tethered to the end of a single membrane protein, and forces acting on the tip upon its retraction indicate barriers that occur during the process of protein unfolding. Here we discuss the fundamental limitations of AFM determined by the properties of cantilevers, present aspects of sample preparation, and review results achieved on reconstituted and native biological membranes.  相似文献   

18.
Atomic force microscopy (AFM), a relatively new variant of scanning probe microscopy developed for the material sciences, is becoming an increasingly important tool in other disciplines. In this review I describe in nontechnical terms some of the basic aspects of using AFM to study living vertebrate cells. Although AFM has some unusual attributes such as an ability to be used with living cells, AFM also has attributes that make its use in cell biology a real challenge. This review was written to encourage researchers in the biological and biomedical sciences to consider AFM as a potential (and potent) tool for their cell biological research.  相似文献   

19.
The recent data explosion in global gene expression profiling and proteomics has resulted in a need to determine the mechanistic role of biomarker signatures in pathogenicity. Consequently, elaborate technologies are required to assess increasingly smaller sub-cellular compartments and constituents. We describe the development, evaluation and application of an efficient sample preparation methodology to facilitate coupled atomic force microscopy and confocal laser scanning microscopy (AFM–CLSM), providing a novel means of concurrent high-resolution structural and fluorescence imaging. Due to their fragile nature and nanoscale dimensions, filopodia were selected as a model to develop the procedure that maximised fluorescence response, while maintaining epithelial cell ultra-structure. Fixation with ultra-pure methanol-free formaldehyde coupled to quantum dot nanocrystal labelling proved to be vital in achieving high quality AFM–CLSM images. We demonstrated for the first time that filopodia have a “quilted” surface structure. Additionally, high ultra-structural ridges on the apical cell surface resolved by AFM corresponded to punctate moesin clusters, representing direct visualisation of moesin linkages between transmembrane proteins and the cytoskeleton. The capacity of this novel multi-modal imaging technique to probe topography, molecular composition and biophysical properties of ultra-structural features therefore provides unique information that will significantly contribute to our understanding of cellular structure–function relationships.  相似文献   

20.
Medin, a recently discovered 5.5 kDa peptide, is associated with amyloid deposits in the medial layer of human arteries and the prevalence is nearly 100% within individuals above 50 years. Presently, not much is known about its biochemical and biophysical properties or its pathway from soluble peptide to insoluble amyloid. Here we have characterized the behavior of medin in the presence of lipid membranes, using circular dichroism, isothermal titration calorimetry, differential scanning calorimetry, size exclusion chromatography, and atomic force microscopy (AFM). Medin was shown to exist as a monomer in solution with a predominantly random-coil structure. It binds lipid vesicles that have either a neutral or a negative surface potential. Upon association to membranes containing acidic lipids, it undergoes an electrostatically driven conformational change towards a mainly α-helical state. Prolonged incubation converts medin from an α-helical structure into an amyloid β-sheet fibrillar state as confirmed by AFM. Based on these findings, we propose a mechanism of medin-amyloid formation where medin electrostatically associates in its monomeric form to biological interfaces displaying a negative potential. This process both increases the local peptide concentration and induces an aggregation-prone α-helical fold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号