首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
K. S. Reddy 《Human genetics》1997,101(3):339-345
Cytogenetic data on products of conception from spontaneous abortions studied over a 10-year period have been reviewed for double trisomies. A total of 3034 spontaneous abortions were karyotyped between 1986 and 1997. Twenty-two cases with double trisomy, one case with triple trisomy, and a case with a trisomy and monosomy were found. The tissues studied were mostly sac, villi, or placenta. The gestational age ranged from 6 to 11 weeks and the mean age was 8.2 ± 1.7 (SD) weeks. The mean maternal age in years was 35.9 ± 5.3. Of the twenty-two cases, four were mosaics. All but two of the cases involved autosomal aneuploidies. The double trisomies included chromosomes 2, 4, 5, 7, 8, 12, 13, 14, 15, 16, 17, 18, 20, 21, and 22. The chromosomes that were trisomic in more than one double trisomy case were numbers 16 (8 cases), 8 (5 cases), 15 (4 cases), 2, 13, and 21 (3 cases each), and 5, 7, 14, 18, 20, 22, and X (2 cases). The triple trisomy involved chromosomes 18, 21, and X. The monosomy and trisomy case was a mosaic, with a monosomy 21 in all cells and some cells also with a trisomy 5. The double trisomies cited for the first time in this study were 4/13, 5/16, 8/14, 8/15, 14/21, 15/20, and 7/12. The pooled mean maternal age for double trisomy cases (34.1 ± 5.7 years) was higher than that for single trisomy cases (31 ± 6.1 years). The difference was statistically significant at P = < 0.001. The pooled mean gestational age of spontaneous abortions was lower for double trisomy (8.7 ± 2.2 weeks) than for reported single trisomy cases (10.1 ± 2.9 weeks). This difference is also statistically significant at P = < 0.001. The sex ratio among double trisomies was 15 females to 13 males. This difference was not statistically significant from the expected 1 : 1. Received: 27 June 1997 / Accepted: 4 September 1997  相似文献   

2.
Axelrod and Hamilton (Science 211:1390, 1981) suggested that trisomies may result from an end-game strategy between chromosomes competing to get on the gamete as the mother approaches menopause. We tested this hypothesis by reviewing studies of the parental origin of the extra chromosome in trisomy 21 births. These data show that there is no significant rise in trisomy 21 conceptions as the mother ages. The increase in trisomies with maternal age results not from an increase in nondisjunctions, but from a decrease in rejection of trisomy zygotes, which may be adaptive for the mother towards the end of her reproductive life. This decreasing rate of rejection may result from the changing inclusive benefits of two maternal strategies as menopause approaches.  相似文献   

3.
The pattern of maternal age-specific incidence of autosomal trisomy in spontaneous abortions was examined for each chromosome for which a sufficient number of trisomies was observed. This included chromosomes 2, 4, 7-10, 13-16, 18, and 20-22. The rate of increase after age 30 for each of the small chromosomes (groups D-G) was similar, with the exception of chromosome 16, which showed a significantly shallower rate. The C group chromosomes tended to have an intermediate rate of increase after age 30, with the exception of chromosome 7, which had a pattern similar to the smaller chromosomes. The larger chromosomes (2 and 4) had the smallest rate of increase. There was a significant relationship between chromosome size and rate of increase after age 30 (after excluding chromosome 16), but not with rate of increase before age 30. The results suggest that autosomal trisomies may be of heterogeneous origin, with a maternal age-related factor associated with chromosome size and other sources unrelated to chromosome size. Additional evidence for and against this hypothesis is discussed.  相似文献   

4.
Trisomy 16 is the most common human trisomy, occurring in > or = 1% of all clinically recognized pregnancies. It is thought to be completely dependent on maternal age and thus provides a useful model for studying the association of increasing maternal age and nondisjunction. We have been conducting a study to determine the parent and meiotic stage of origin of trisomy 16 and the possible association of nondisjunction and aberrant recombination. In the present report, we summarize our observations on 62 spontaneous abortions with trisomy 16. All trisomies were maternally derived, and in virtually all the error occurred at meiosis I. In studies of genetic recombination, we observed a highly significant reduction in recombination in the trisomy-generating meioses by comparison with normal female meioses. However, most cases of trisomy 16 had at least one detectable crossover between the nondisjoined chromosomes, indicating that it is reduced--and not absent--recombination that is the important predisposing factor. Additionally, our data indicate an altered distribution of crossing-over in trisomy 16, as we rarely observed crossovers in the proximal long and short arms. Thus, it may be that, at least for trisomy 16, the association between maternal age and trisomy is due to diminished recombination, particularly in the proximal regions of the chromosome.  相似文献   

5.
Within the last decade, aberrant meiotic recombination has been confirmed as a molecular risk factor for chromosome nondisjunction in humans. Recombination tethers homologous chromosomes, linking and guiding them through proper segregation at meiosis I. In model organisms, mutations that disturb the recombination pathway increase the frequency of chromosome malsegregation and alterations in both the amount and placement of meiotic recombination are associated with nondisjunction. This association has been established for humans as well. Significant alterations in recombination have been found for all meiosis I-derived trisomies studied to date and a subset of so called "meiosis II" trisomy. Often exchange levels are reduced in a subset of cases where the nondisjoining chromosome fails to undergo recombination. For other trisomies, the placement of meiotic recombination has been altered. It appears that recombination too near the centromere or too far from the centromere imparts an increased risk for nondisjunction. Recent evidence from trisomy 21 also suggests an association may exist between recombination and maternal age, the most widely identified risk factor for aneuploidy. Among cases of maternal meiosis I-derived trisomy 21, increasing maternal age is associated with a decreasing frequency of recombination in the susceptible pericentromeric and telomeric regions. It is likely that multiple risk factors lead to nondisjunction, some age dependent and others age independent, some that act globally and others that are chromosome specific. Future studies are expected to shed new light on the timing and placement of recombination, providing additional clues to the link between altered recombination and chromosome nondisjunction.  相似文献   

6.
A model is developed to explain the well-documented increase in the incidence of meiotic trisomies with increasing maternal age. This theoretical framework applies to all chromosomes, of which trisomy 21 (responsible for Down's syndrome in humans) is considered as a special case; the model can also be readily extended to trisomies of other mammals. The basic mechanism proposed links the hormonal environment of the oocyte to the durations of certain stages of meiosis. Changes in the hormonal environment, especially through aging, can slow the overall rate of meiosis, lengthening the interval from the resumption of meiosis in dictyotene until anaphase I. This extends the period in which homologous chromosomes are vulnerable to premature separation, increasing the probability of an unequal distribution of chromosomes in the first meiotic division. Testable predictions of the model are presented and discussed.  相似文献   

7.
Altogether, 750 cases of spontaneous abortion between the fifth and 25th week of gestation were analyzed cytogenetically by the direct-preparation method using chorionic villi. The majority of cases (68%) were derived from early abortions before the 12th week of gestation. The frequency of abnormal karyotypes was 50.1%; trisomy was predominant (62.1%), followed by triploidy (12.4%), monosomy X (10.5%), tetraploidy (9.2%), and structural chromosome anomalies (4.7%). Among trisomies, chromosomes 16 (21.8%), 22 (17.9%), and 21 (10.0%) were prevalent. The frequency of chromosomally abnormal abortions increased with maternal age but only because of an increase of trisomy. Polyploidy and monosomy X, however, decreased. Mean maternal age was significantly increased for trisomies 16, 21, and 22 and was highest for trisomies 18 and 20. The results obtained are within the range of variability reported earlier from tissue culture-type studies. A consistent feature during our study is the excess of females in chromosomally normal abortions (male:female sex ratio 0.71). According to the methodology applied, maternal cell contamination and undetected 46,XX molar samples cannot have influenced the sex ratio. However, a bias introduced by social status or maternal age cannot be excluded. With the more rapid and convenient direct preparation of chorionic villi, reliable cytogenetic data on causes of spontaneous abortions can be obtained.  相似文献   

8.
Following the observation detected in a previous study that X chromosome monosomy in Turner's syndrome genotypes was associated with a sporadic loss and/or gain of other chromosomes, we studied here whether this instability is a consistent finding in constitutional autosomal trisomies. We used PHA-stimulated lymphocytes derived from 14 patients (10 patients with trisomy 21, 2 with trisomy 18, and 2 with trisomy 13). Fourteen healthy controls were compared. Fluorescence in situ hybridization, applied at interphase cells, was used to evaluate the level of aneuploidy for 3 randomly selected chromosomes (autosomes 8, 15, and 16) in each sample. For each tested chromosome, our results showed a significantly higher level of aneuploid cells in the samples from the patients than in those from controls, with no difference between the patient groups. The mean level of aneuploid cells (percentage) for all 3 tested autosomes was almost twice as high in the patient samples as in the control samples. The aneuploidy level was mainly due to monosomy, which was significantly higher in the samples from the patients than in those from controls for each one of the tested chromosomes, with no difference between the patient groups. The mean level of monosomic cells (percentage) for all 3 tested chromosomes was almost twice as high in the patient samples as in the control samples. Our study shows that various constitutional autosomal trisomies are associated with an increased frequency of non-chromosome specific aneuploidy and is a continuation of the previous study documenting sporadic aneuploidy in Turner's sample cells. It is possible that primary aneuploid cells destabilize their own genome resulting in variable aneuploidy of other chromosomes. It is also possible that one or several common factor(s) is/are involved in both constitutional and sporadic aneuploidy.  相似文献   

9.
Trisomy recurrence: a reconsideration based on North American data   总被引:3,自引:0,他引:3       下载免费PDF全文
Few reliable data exist concerning the recurrence risk for individual trisomies or the risk for recurrence of trisomy for a different chromosome. We collected records from two sources: (1) prenatal diagnoses performed at the Hopital Sainte-Justine in Montreal and (2) karyotype analyses performed at Genzyme. Using the standardized morbidity ratio (SMR), we compared the observed number of trisomies at prenatal diagnosis with the expected numbers, given maternal age-specific rates (by single year). SMRs were calculated both for recurrence of the same trisomy (homotrisomy) and of a different trisomy (heterotrisomy). After all cases with an index trisomy 21 were combined, the SMR for homotrisomy was 2.4 (90% CI 1.6-3.4; P=.0005). For women with both the index trisomy and subsequent prenatal diagnosis at age <30 years, the SMR was 8.0; it was 2.1 for women with both pregnancies at age >/=30 years. For the other index viable trisomies (13, 18, XXX, and XXY) combined, the SMR for homotrisomy was 2.5 (90% CI 0.7-8.0). For heterotrisomy, the SMR after an index trisomy 21 was 2.3 (90% CI 1.5-3.8, P=.0007); the SMR did not vary with maternal age at the first trisomy. When all cases with index viable trisomies were combined, the SMR for heterotrisomy was 1.6 (90% CI 1.1-2.4; P=.04). For prenatal diagnoses following a nonviable trisomy diagnosed in a spontaneous abortion (from Genzyme data only), the SMR for a viable trisomy was 1.8 (90% CI 1.1-3.0; P=.04). The significantly increased risk for heterotrisomy supports the hypothesis that some women have a risk for nondisjunction higher than do others of the same age.  相似文献   

10.
Finding a positive association between paternal age and the incidence of aneuploidy is not difficult. A cursory analysis however reveals that any association is indirect, brought about by a close correlation between paternal age and maternal age. Approaches for dissecting out the confounding age effects of the mother has led to a lively exchange among epidemiologists, with perhaps a consensus for the absence of a paternal age effect, at least for trisomy 21. Molecular studies revealed the relatively minor contribution of paternal errors to trisomy, but even research on the paternally derived trisomies alone has been inconclusive; thus studies focussed directly on the sperm heads. Human-hamster fusion assays were superseded by FISH for establishing any possible link between age and the proportion of disomic sperm in an ejaculate. Despite innumerable microscope hours however, although convincing studies suggesting an age effect for disomies 1, 9, 18 and 21 and the sex chromosomes are in the literature, others failed to notice any association for these or other chromosomes. It is biologically plausible that chromosomal non-disjunction errors should increase with age. Male reproductive hormone production, testicular morphology and semen parameters all decline slowly with age and paternal age is implicated in congenital birth defects, such as achondroplasia and Apert syndromes and also linked to compromised DNA repair mechanisms. Despite several decades of epidemiological and molecular cytogenetic studies, however, we are still not close to a definitive answer of whether or not there is a paternal age effect for aneuploidy. In this review we conclude by questioning the efficacy of FISH because of difficulties in detecting nullisomy and because of evidence that the centromeres (from which most sperm-FISH probes are derived) cluster at the nuclear centre. Array-based approaches may well supersede FISH in addressing the question of a paternal age effect; for now, however, the jury is still out.  相似文献   

11.
Summary Spontaneous abortions were studied by analyzing chromosomes directly from chorionic villi. The frequency and the type of anomalies detected among 140 abortuses are in good agreement with those observed by others using conventional tissue cultures. Abnormal karyotypes were found in 48.6% of the cases. Trisomy predominated (66.2%), followed by polyploidy (22.1%), monosomy X (7.4%), and structural anomalies (4.4%). Among the trisomies, the most prevalent were of chromosome 22 (22.2%), 16(22.2%), and 13 (9.5%). The relative frequencies of trisomies, monosomy X, and the different chromosomes involved in trisomies seem to differ between our study and those in which tissue cultures were analyzed. Our low frequency of 45,XO karyotypes and the shift to trisomies of chromosomes whose involvement increases steeply with maternal age are considered due to the approximately 3 year higher mean maternal age in our sample. The sex ratio (male to female) in chromosomally abnormal abortuses was 1.28, which is nearly identical to the 1.2 found in earlier studies. Surprisingly, in chromosomally normal abortions males were significantly outnumbered by females (sex ratio 0.76). Since maternal cell contamination cannot have influenced the sex ratio in our study, we consider it worthwhile to investigate whether failures associated with X inactivation are responsible for pregnancy wastage of some euploid female conceptuses. Knowledge of the karyotypes may serve as a prerequisite for the investigation of non-chromosomal genetic causes of pregnancy wastage.  相似文献   

12.
Altered genetic recombination has been identified as the first molecular correlate of chromosome nondisjunction in both humans and model organisms. Little evidence has emerged to link maternal age--long recognized as the primary risk factor for nondisjunction--with altered recombination, although some studies have provided hints of such a relationship. To determine whether an association does exist, chromosome 21 recombination patterns were examined in 400 trisomy 21 cases of maternal meiosis I origin, grouped by maternal age. These recombination patterns were used to predict the chromosome 21 exchange patterns established during meiosis I. There was no statistically significant association between age and overall rate of exchange. The placement of meiotic exchange, however, differed significantly among the age groups. Susceptible patterns (pericentromeric and telomeric exchanges) accounted for 34% of all exchanges among the youngest class of women but only 10% of those among the oldest class. The pattern of exchanges among the oldest age group mimicked the pattern observed among normally disjoining chromosomes 21. These results suggest that the greatest risk factor for nondisjunction among younger women is the presence of a susceptible exchange pattern. We hypothesize that environmental and age-related insults accumulate in the ovary as a woman ages, leading to malsegregation of oocytes with stable exchange patterns. It is this risk, due to recombination-independent factors, that would be most influenced by increasing age, leading to the observed maternal age effect.  相似文献   

13.
Trisomies 18 and 21 are genetic disorders in which cells possess an extra copy of each of the relevant chromosomes. Individuals with these disorders who survive birth generally have a shortened life expectancy. As telomeres are known to play an important role in the maintenance of genomic integrity by protecting the chromosomal ends, we conducted a study to determine whether there are differences in telomere length at birth between individuals with trisomy and diploidy, and between trisomic chromosomes and normal chromosomes. We examined samples of peripheral blood lymphocytes (PBLs) from 31 live neonates (diploidy: 10, trisomy 18: 10, trisomy 21: 11) and estimated the telomere length of each chromosome arm using Q-FISH. We observed that the telomeres of trisomic chromosomes were neither shorter nor longer than the mean telomere length of chromosomes as a whole among subjects with trisomies 18 and 21 (intra-cell comparison), and we were unable to conclude that there were differences in telomere length between 18 trisomy and diploid subjects, or between 21 trisomy and diploid subjects (inter-individual comparison). Although it has been reported that telomeres are shorter in older individuals with trisomy 21 and show accelerated telomere shortening with age, our data suggest that patients with trisomies 18 and 21 may have comparably sized telomeres. Therefore, it would be advisable for them to avoid lifestyle habits and characteristics such as obesity, cigarette smoking, chronic stress, and alcohol intake, which lead to marked telomere shortening.  相似文献   

14.
To provide maternal age-specific rates for trisomy 21 (T21) and common autosomal trisomies (including trisomies 21, 18 and 13) in fetuses. We retrospectively reviewed prenatal cytogenetic results obtained between 1990 and 2009 in Songklanagarind Hospital, a university teaching hospital, in southern Thailand. Maternal age-specific rates of T21 and common autosomal trisomies were established using different regression models, from which only the fittest models were used for the study. A total of 17,819 records were included in the statistical analysis. The fittest models for predicting rates of T21 and common autosomal trisomies were regression models with 2 parameters (Age and Age2). The rate of T21 ranged between 2.67 per 1,000 fetuses at the age of 34 and 71.06 per 1,000 at the age of 48. The rate of common autosomal trisomies ranged between 4.54 per 1,000 and 99.65 per 1,000 at the same ages. This report provides the first maternal age-specific rates for T21 and common autosomal trisomies fetuses in a Southeast Asian population and the largest case number of fetuses have ever been reported in Asians.  相似文献   

15.
Cell-free fetal DNA in the maternal circulation is a potential noninvasive marker for fetal aneuploidies. In previous studies with Y DNA as a fetal-specific marker, levels of circulating fetal DNA were shown to be elevated in women carrying trisomy 21 fetuses. The goal of this study was to determine whether cell-free fetal DNA levels in the serum of pregnant women carrying fetuses with trisomies 13 or 18 are also elevated. Archived maternal serum samples from five cases of male trisomy 13 and five cases of male trisomy 18 were studied. Each case was matched for fetal gender, gestational age, and duration of freezer storage to four or five control serum samples presumed to be euploid after newborn medical record review. Real-time quantitative polymerase chain reaction amplification of DYS1 was performed to measure the amount of male fetal DNA present. Unadjusted median serum fetal DNA concentrations were 97.5 GE/ml (genomic equivalents per milliliter; 29.2-187.0) for the trisomy 13 cases, 31.5 GE/ml (18.6-77.6) for the trisomy 18 cases, and 40.3 GE/ml (3.7-127.4) for the controls. Fetal DNA levels in trisomy 13 cases were significantly elevated ( P=0.016) by analysis of variance of the ranks of values within each matched set. In contrast, fetal DNA levels in trisomy 18 cases were no different from the controls ( P=0.244). Second trimester maternal serum analytes currently used in screening do not identify fetuses at high risk for trisomy 13. Fetal DNA may facilitate noninvasive screening for trisomy 13 provided that a gender-independent fetal DNA marker can be developed.  相似文献   

16.
Paternal age and trisomy among spontaneous abortions   总被引:4,自引:0,他引:4  
Summary The relationship of paternal age to specific types of trisomy and to chromosomally normal loss was investigated in data drawn from a case-control study of spontaneous abortions. Differences in paternal age between karyotype groups and controls delivering after 28 weeks gestation were tested using an urn model analysis which adjusted, by regression, for maternal age and, by stratification, for the effects of design variables (payment status, phase of study) and demographic factors (language, ethnicity). The magnitude of paternal age differences was estimated using least squares regression analysis. For chromosomally normal cases there was no association with paternal age. Among the fourteen trisomy categories examined, four (7, 9, 18, 21) showed increased paternal age ( 1 year above expectation), three (13, 20, 22) showed decreased paternal age and the rest, including the most common, trisomy 16, showed negligible differences. Only the association with trisomy 22 was statistically significant (P = 0.012), with a predicted reduction in paternal age of 2.1 years (95% CI -4.9, -0.5 years). This association did not vary with maternal age, payment status, phase of study, language or ethnicity. Because previous observations are extensive, the relation of paternal age to trisomy 21 was examined further. The overall association was not significant ( = 0.8 years; 95% CI -0.8, 2.4 years). Moreover, there was evidence that the magnitude and direction of paternal age associations vary significantly within the sample, although not between subgroups defined on the basis of payment, phase of study, language or ethnicity. With respect to maternal age, the trend is towards a greater paternal age difference for trisomy 21 losses in younger women (P = 0.058). Given the number of tests performed, the finding for trisomy 22 and reduced paternal age could be due to chance. Among trisomy types, the direction of paternal age associations was not consistent for chromosomes grouped according to characteristics that might relate to the probability of nondisjunction, such as size, arm ratio, or nucleolar organizer region content, or to the potential viability of the trisomy. Thus, neither on statistical nor biological grounds do the data provide compelling evidence of paternal age effects on the trisomies found among spontaneous abortions, or on chromosomally normal losses.  相似文献   

17.
18.
In humans, chromosome-number abnormalities have been associated with altered recombination and increased maternal age. Therefore, age-related effects on recombination are of major importance, especially in relation to the mechanisms involved in human trisomies. Here, we examine the relationship between maternal age and recombination rate in humans. We localized crossovers at high resolution by using over 600,000 markers genotyped in a panel of 69 French-Canadian pedigrees, revealing recombination events in 195 maternal meioses. Overall, we observed the general patterns of variation in fine-scale recombination rates previously reported in humans. However, we make the first observation of a significant decrease in recombination rates with advancing maternal age in humans, likely driven by chromosome-specific effects. The effect appears to be localized in the middle section of chromosomal arms and near subtelomeric regions. We postulate that, for some chromosomes, protection against non-disjunction provided by recombination becomes less efficient with advancing maternal age, which can be partly responsible for the higher rates of aneuploidy in older women. We propose a model that reconciles our findings with reported associations between maternal age and recombination in cases of trisomies.  相似文献   

19.
The present report summarizes molecular studies on the parent and meiotic stage of origin of the additional chromosome in 432 fetuses or liveborns with an additional chromosome 13, 14, 15, 21, or 22. Our studies suggest that there is little variation in the origin of nondisjunction among the five acrocentric trisomies and that there is no association between the origin of nondisjunction and the likelihood of survival to term of the trisomic conceptus. The proportion of cases of paternal origin was similar among the five trisomies: 12% for trisomy 13, 17% for trisomy 14, 12% for trisomy 15, 9% for trisomy 21, and 11% for trisomy 22. The stage of nondisjunction was also similar among the five trisomies, with the majority of cases of maternal origin being due to nondisjunction at meiosis I, whereas for paternally derived cases, nondisjuction occurred primarily at meiosis II.  相似文献   

20.
Summary A total of 33 spontaneous abortuses with various acrocentric trisomies were studied for the origin of the extra chromosomes using Q- and R-band polymorphisms as markers. Eleven trisomic abortuses were informative: nine trisomic abortuses (one with trisomy 13, three with trisomy 21, and five with trisomy 22 including one with a 46,XX/47,XX,+22 mosaicism) originated at maternal first meiosis; a 21-trisomic abortus resulted from an error at maternal second meiosis (or first mitosis); and a 13-trisomic abortus was of maternal first or second meiotic origin. The abortus with mosaic trisomy 22 started as a 22-trisomic zygote resulting from an error at maternal first meiosis, followed by a mitotic (in vivo or in vitro) loss of the paternally derived chromosome 22.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号