首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The visco-elastic behavior of connective tissue is generally attributed to the material properties of the extracellular matrix rather than cellular activity. We have previously shown that fibroblasts within areolar connective tissue exhibit dynamic cytoskeletal remodeling within minutes in response to tissue stretch ex vivo and in vivo. Here, we tested the hypothesis that fibroblasts, through this cytoskeletal remodeling, actively contribute to the visco-elastic behavior of the whole tissue. We measured significantly increased tissue tension when cellular function was broadly inhibited by sodium azide and when cytoskeletal dynamics were compromised by disrupting microtubules (with colchicine) or actomyosin contractility (via Rho kinase inhibition). These treatments led to a decrease in cell body cross-sectional area and cell field perimeter (obtained by joining the end of all of a fibroblast's processes). Suppressing lamellipodia formation by inhibiting Rac-1 decreased cell body cross-sectional area but did not affect cell field perimeter or tissue tension. Thus, by changing shape, fibroblasts can dynamically modulate the visco-elastic behavior of areolar connective tissue through Rho-dependent cytoskeletal mechanisms. These results have broad implications for our understanding of the dynamic interplay of forces between fibroblasts and their surrounding matrix, as well as for the neural, vascular, and immune cell populations residing within connective tissue.  相似文献   

2.
Mechanical stretching of connective tissue occurs with normal movement and postural changes, as well as treatments including physical therapy, massage and acupuncture. Connective tissue fibroblasts were recently shown to respond actively to short-term mechanical stretch (minutes to hours) with reversible cytoskeletal remodeling, characterized by extensive cell spreading and lamellipodia formation. In this study, we have examined the effect of tissue stretch on the distribution of α- and β-actin in subcutaneous tissue fibroblasts ex vivo. Normal fibroblasts uniformly exhibited α-smooth muscle actin (α-SMA) immunoreactivity. Unlike cultured fibroblasts and smooth muscle cells, α-SMA in these fibroblasts was not in F-actin form (indicated by lack of phalloidin co-localization) nor was it organized into distinct stress fibers. The lack of stress fibers and fibronexus was confirmed by electron microscopy, indicating that these cells were not myofibroblasts. In unstretched tissue, the pattern of α-actin was diffuse and granular. With tissue stretch (30 min), α-actin formed a star-shaped pattern centered on the nucleus, while β-actin extended throughout the cytoplasm including lamellipodia and cell cortex. This dual response pattern of α- and β-actin may be an important component of cellular mechanotransduction mechanisms relevant to physiologic and therapeutic mechanical forces applied to connective tissue.  相似文献   

3.
Fibroblasts in whole areolar connective tissue respond to static stretching of the tissue by expanding and remodeling their cytoskeleton within minutes both ex vivo and in vivo. This study tested the hypothesis that the mechanism of fibroblast expansion in response to tissue stretch involves extracellular ATP signaling. In response to tissue stretch ex vivo, ATP levels in the bath solution increased significantly, and this increase was sustained for 20 min, returning to baseline at 60 min. No increase in ATP was observed in tissue incubated without stretch or tissue stretched in the presence of the Rho kinase inhibitor Y27632. The increase in fibroblast cross sectional area in response to tissue stretch was blocked by both suramin (a purinergic receptor blocker) and apyrase (an enzyme that selectively degrades extracellular ATP). Furthermore, connexin channel blockers (octanol and carbenoxolone), but not VRAC (fluoxetine) or pannexin (probenecid) channel blockers, inhibited fibroblast expansion. Together, these results support a mechanism in which extracellular ATP signaling via connexin hemichannels mediate the active change in fibroblast shape that occurs in response to a static increase in tissue length. J. Cell. Physiol. 228: 1922–1926, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
Studies in cultured cells have shown that nuclear shape is an important factor influencing nuclear function, and that mechanical forces applied to the cell can directly affect nuclear shape. In a previous study, we demonstrated that stretching of whole mouse subcutaneous tissue causes dynamic cytoskeletal remodeling with perinuclear redistribution of α-actin in fibroblasts within the tissue. We have further shown that the nuclei of these fibroblasts have deep invaginations containing α-actin. In the current study, we hypothesized that tissue stretch would cause nuclear remodeling with a reduced amount of nuclear invagination, measurable as a change in nuclear concavity. Subcutaneous areolar connective tissue samples were excised from 28 mice and randomized to either tissue stretch or no stretch for 30 min, then examined with histochemistry and confocal microscopy. In stretched tissue (vs. non-stretched), fibroblast nuclei had a larger cross-sectional area (P < 0.001), smaller thickness (P < 0.03) in the plane of the tissue, and smaller relative concavity (P < 0.005) indicating an increase in nuclear convexity. The stretch-induced loss of invaginations may have important influences on gene expression, RNA trafficking and/or cell differentiation.  相似文献   

5.
The length-tension relationship was determined for strips of guinea pig taenia coli and correlated with the length and ultrastructural organization of the component fibers. The mean fiber length in "stretched" strips (passive ≥ active tension) was 30% greater than that for fibers in "unstretched" strips (active >> passive tension). In stretched fibers the dense bodies and 100 A diameter myofilaments were consolidated into a mass near the center of fibers in cross-sectional profile. The thick myofilaments were segregated into the periphery of the fiber profiles. In unstretched fibers the dense bodies-100 A diameter filaments and the thick myofilaments were uniformly distributed throughout cross-sectional profiles. A tentative model is proposed to account for the change in fiber length and ultrastructural organization that accompanies stretch. The basic features of the model require the dense bodies to be linked together into a network by the 100 A diameter filaments. The functional consequences of stretching the fibers are discussed in relation to the model proposed for this network.  相似文献   

6.
In areolar “loose” connective tissue, fibroblasts remodel their cytoskeleton within minutes in response to static stretch resulting in increased cell body cross‐sectional area that relaxes the tissue to a lower state of resting tension. It remains unknown whether the loosely arranged collagen matrix, characteristic of areolar connective tissue, is required for this cytoskeletal response to occur. The purpose of this study was to evaluate cytoskeletal remodeling of fibroblasts in, and dissociated from, areolar and dense connective tissue in response to 2 h of static stretch in both native tissue and collagen gels of varying crosslinking. Rheometric testing indicated that the areolar connective tissue had a lower dynamic modulus and was more viscous than the dense connective tissue. In response to stretch, cells within the more compliant areolar connective tissue adopted a large “sheet‐like” morphology that was in contrast to the smaller dendritic morphology in the dense connective tissue. By adjusting the in vitro collagen crosslinking, and the resulting dynamic modulus, it was demonstrated that cells dissociated from dense connective tissue are capable of responding when seeded into a compliant matrix, while cells dissociated from areolar connective tissue can lose their ability to respond when their matrix becomes stiffer. This set of experiments indicated stretch‐induced fibroblast expansion was dependent on the distinct matrix material properties of areolar connective tissues as opposed to the cells' tissue of origin. These results also suggest that disease and pathological processes with increased crosslinks, such as diabetes and fibrosis, could impair fibroblast responsiveness in connective tissues. J. Cell. Physiol. 228: 50–57, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
The biomechanical behavior of connective tissue in response to stretching is generally attributed to the molecular composition and organization of its extracellular matrix. It also is becoming apparent that fibroblasts play an active role in regulating connective tissue tension. In response to static stretching of the tissue, fibroblasts expand within minutes by actively remodeling their cytoskeleton. This dynamic change in fibroblast shape contributes to the drop in tissue tension that occurs during viscoelastic relaxation. We propose that this response of fibroblasts plays a role in regulating extracellular fluid flow into the tissue, and protects against swelling when the matrix is stretched. This article reviews the evidence supporting possible mechanisms underlying this response including autocrine purinergic signaling. We also discuss fibroblast regulation of connective tissue tension with respect to lymphatic flow, immune function, and cancer. J. Cell. Biochem. 114: 1714–1719, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
In the present study, we examined the roles of hepatocyte growth factor (HGF) and nitric oxide (NO) in the activation of satellite cells in passively stretched rat skeletal muscle. A hindlimb suspension model was developed in which the vastus, adductor, and gracilis muscles were subjected to stretch for 1 h. Satellite cells were activated by stretch determined on the basis of 5-bromo-2'-deoxyuridine (BrdU) incorporation in vivo. Extracts from stretched muscles stimulated BrdU incorporation in freshly isolated control rat satellite cells in a concentration-dependent manner. Extracts from stretched muscles contained the active form of HGF, and the satellite cell-activating activity could be neutralized by incubation with anti-HGF antibody. The involvement of NO was investigated by administering nitro-L-arginine methyl ester (L-NAME) or the inactive enantiomer NG-nitro-D-arginine methyl ester HCl (D-NAME) before stretch treatment. In vivo activation of satellite cells in stretched muscle was not inhibited by D-NAME but was inhibited by L-NAME. The activity of stretched muscle extract was abolished by L-NAME treatment but could be restored by the addition of HGF, indicating that the extract was not inhibitory. Finally, NO synthase activity in stretched and unstretched muscles was assayed in muscle extracts immediately after 2-h stretch treatment and was found to be elevated in stretched muscle but not in stretched muscle from L-NAME-treated rats. The results of these experiments demonstrate that stretching muscle liberates HGF in a NO-dependent manner, which can activate satellite cells. muscle regeneration  相似文献   

9.
Acupuncture needle rotation has been previously shown to cause specific mechanical stimulation of subcutaneous connective tissue. This study uses acupuncture to investigate the role of mechanotransduction-based mechanisms in mechanically-induced cytoskeletal remodeling. The effect of acupuncture needle rotation was quantified by morphometric analysis of mouse tissue explants imaged with confocal microscopy. Needle rotation induced extensive fibroblast spreading and lamellipodia formation within 30 min, measurable as an increased in cell body cross sectional area. The effect of rotation peaked with two needle revolutions and decreased with further increases in rotation. Significant effects of rotation were present throughout the tissue, indicating the presence of a response extending laterally over several centimeters. The effect of rotation with two needle revolutions was prevented by pharmacological inhibitors of actomyosin contractility (blebbistatin), Rho kinase (Y-27632 and H-1152), and Rac signaling. The active cytoskeletal response of fibroblasts demonstrated in this study constitutes an important step in understanding cellular mechanotransduction responses to externally applied mechanical stimuli in whole tissue, and supports a previously proposed model for the mechanism of acupuncture involving connective tissue mechanotransduction.  相似文献   

10.
Cardiac myocyte cultures usually require pharmacological intervention to prevent overproliferation of contaminating nonmyocytes. Our aim is to prevent excessive fibroblast cell proliferation without the use of cytostatins. We have produced a silicone surface with 10-µm vertical projections that we term "pegs," to which over 80% of rat neonatal cardiac fibroblasts attach within 48 h after plating. There was a 50% decrease in cell proliferation by 5 days of culture compared with flat membranes (P < 0.001) and a concomitant 60% decrease (P < 0.01) in cyclin D1 protein levels, suggesting a G1/S1 cell cycle arrest due to microtopography. Inhibition of Rho kinase with 5 or 20 µM Y-27632 reduced attachment of fibroblasts to the pegs by over 50% (P < 0.001), suggesting that this signaling pathway plays an important role in the process. Using mobile and immobile 10-µm polystyrene spheres, we show that reactive forces are important for inhibiting fibroblast cell proliferation, because mobile spheres failed to reduce cell proliferation. In primary myocyte cultures, pegs also inhibit fibroblast proliferation in the absence of cytostatins. The ratio of aminopropeptide of collagen protein from fibroblasts to myosin from myocytes was significantly reduced in cultures from pegged surfaces (P < 0.01), suggesting an increase in the proportion of myocytes on the pegged surfaces. Connexin43 protein expression was also increased, suggesting improved myocyte-myocyte interaction in the presence of pegs. We conclude that this microtextured culture system is useful for preventing proliferation of fibroblasts in myocyte cultures and may ultimately be useful for tissue engineering applications in vivo. tissue engineering; cell culture; cell cycle  相似文献   

11.
Application of mechanical stretch to cultured adult rat muscle satellite cells results in release of hepatocyte growth factor (HGF) and accelerated entry into the cell cycle. Stretch activation of cultured rat muscle satellite cells was observed only when medium pH was between 7.1 and 7.5, even though activation of satellite cells was accelerated by exogenous HGF over a pH range from 6.9 to 7.8. Furthermore, HGF was only released in stretched cultures when the pH of the medium was between 7.1 and 7.4. Conditioned medium from stretched satellite cell cultures stimulated activation of unstretched satellite cells, and the addition of anti-HGF neutralizing antibodies to stretch-conditioned medium inhibited the stretch activation response. Conditioned medium from satellite cells that were stretched in the presence of nitric-oxide synthase (NOS) inhibitor N(omega)-nitro-L-arginine methyl ester hydrochloride did not accelerate activation of unstretched control satellite cells, and HGF was not released into the medium. Conditioned medium from unstretched cells that were treated with a nitric oxide donor, sodium nitroprusside dihydrate, was able to accelerate the activation of satellite cells in vitro, and HGF was found in the conditioned medium. Immunoblot analysis indicated that both neuronal and endothelial NOS isoforms were present in satellite cell cultures. Furthermore, assays of NOS activity in stretched satellite cell cultures demonstrated that NOS is stimulated when satellite cells are stretched in vitro. These experiments indicate that stretch triggers an intracellular cascade of events, including nitric oxide synthesis, which results in HGF release and satellite cell activation.  相似文献   

12.
As a function of the advancing development of Valo chicken, C3H mice, BN rats, and man in the embryonic, juvenile, adolescent, and senescent phases, stem cells and fibroblasts in the connective tissues of skin and lung differentiate along an 11-stage differentiation sequence in five compartments of the fibroblast stem cell system, when studied in primary ex vivo-in vitro systems. In the fibroblast stem cell system, three stem cells develop in the stem cell compartment along the cell lineage S1-S2-S3, three mitotic fibroblasts (MF) differentiate along the sequence MF I-MF II-MF III in the fibroblast progenitor compartment, three postmitotic fibroblasts (PMF) proceed in the fibroblast maturing compartment along the row PMF IV-PMF V-PMF VI. PMF VI is the terminally differentiated end cell of the fibroblast stem cell system. After a species- and tissue-specific period of high metabolic activity, PMF VI either dies as PMF VIIa in the fibroblast apoptosis compartment or transforms as PMF VIIb in the fibroblast transforming compartment. The reiterated appearance of the 11 cell types in primary stem cell and fibroblast populations and the reiterated age-related changes in the cell type composition of the primary stem cell and fibroblast populations make it very likely that stem cell, mitotic and postmitotic fibroblast equivalents exist in vivo and that age-related changes of the frequencies of the stem cell and fibroblast equivalents result from the progressing differentiation of stem cell, mitotic, and postmitotic fibroblast equivalents along the 11 stage differentiation sequence in the fibroblast equivalent stem cell system in vivo. Secondary fibroblast populations derived from connective tissue of prenatal and postnatal skin of Valo chicken, C3H mice, BN rats, and man, including the normal embryonic human lung fibroblast cell line WI38, were also found to develop along a terminal stem cell sequence. Thus, secondary fibroblast populations in vitro constitute a representative material for studies of general and special issues of cell biology, such as terminal differentiation, aging, apoptosis, and transformation, as long as stem cell system-specific concepts and methods are employed in such investigations.  相似文献   

13.
Secretion of pulmonary surfactant by alveolar epithelial type II cells is vital for the reduction of interfacial surface tension, thus preventing lung collapse. To study secretion dynamics, rat alveolar epithelial type II cells were cultured on elastic membranes and cyclically stretched. The amounts of phosphatidylcholine, the primary lipid component of surfactant, inside and outside the cells, were measured using radiolabeled choline. During and immediately after stretch, cells secreted less surfactant than unstretched cells; however, stretched cells secreted significantly more surfactant than unstretched cells after an extended lag period. We developed a model based on the hypothesis that stretching leads to jamming of surfactant traffic escaping the cell, similar to vehicular traffic jams. In the model, stretch increases surfactant transport from the interior to the exterior of the cell. This transport is mediated by a surface layer with a finite capacity due to the limited number of fusion pores through which secretion occurs. When the amount of surfactant in the surface layer approaches this capacity, interference among lamellar bodies carrying surfactant reduces the rate of secretion, effectively creating a jam. When the stretch stops, the jam takes an extended time to clear, and subsequently the amount of secreted surfactant increases. We solved the model analytically and show that its dynamics are consistent with experimental observations, implying that surfactant secretion is a fundamentally nonlinear process with memory representing collective behavior at the level of single cells. Our results thus highlight the importance of a jamming dynamics in stretch-induced cellular secretory processes.  相似文献   

14.
Cultured quiescent satellite cells were subjected to mechanical stretch in a FlexerCell System. In response to stretch, satellite cells entered the cell cycle earlier than if they were under control conditions. Only a brief period of stretch, as short as 2 h, was necessary to stimulate activation. Additionally, conditioned medium from stretched cells could activate unstretched satellite cells. The presence of HGF on c-met-positive myogenic cells was detected by immunofluorescence at 12 h in culture, and immunoblots demonstrated that HGF was released by stretched satellite cells into medium. Also, stretch activation could be abolished by the addition of anti-HGF antibodies to stretched cultures, and activity in conditioned medium from stretched cells could be neutralized by anti-HGF antibodies. In addition, stretch appeared to cause release of preexisting HGF from the extracellular matrix. These experiments suggest that HGF may be involved in linking mechanical perturbation of muscle to satellite cell activation.  相似文献   

15.
Accelerated fibroblast accumulation, mitosis, and depositionof collagen during fibrotic processes are frequently precededby intense inflammatory exudates of mononuclear cells whichare derived from the peripheral blood. In vitro, we examinedthe role of human peripheral blood mononuclear cells in activationof human fibroblasts. The adherent mononuclear phagocyte, ormonocyte, was found to release mediators which stimulate fibroblastproliferation and enhance collagen production. Adherence totissue culture dishes in vitro was found to activate the releaseof these monocyte products, and represents a process which mimicsin vivo extravasation of monocytes from the blood vessel intothe connective tissue. The release of these mediators is dependenton monocyte protein synthesis, metabolism, and protease activity.Little is known of the role that immunologic sensitization toautologous connective tissue components might play in inducing such inflammatory responses which can result in pathologicfibrotic sequelae. In beginning to explore these possibilities,we have found that levels of antibodies to types I (interstitial)and IV (basement membrane) collagen correlate directly withthe extent of pulmonary fibrosis in patients with scleroderma.Furthermore, we can sensitize mice to homologous types I orIV collagen, or laminin (a basement membrane attachment protein),and elicit a delayed type hypersensitivity response which ismarked by mononuclear cell infiltration. Cell-mediated immunityto these antigens can be transferred to normal recipients withsensitized T-lymphocytes. We discuss these data and proposea hypothesis for mechanisms of monocyte extravasation fibroblastactivation fibrosis.  相似文献   

16.
Cover: Fibroblasts within whole mouse connective tissue actively respond to static stretching of the tissue by expanding and remodeling their cytoskeleton. The tissue was stretched for two hours ex vivo, then fixed and immunohistochemically stained for β‐tubulin (green) and countersigned with DAPI (blue). Cover designed by Priscilla Vazquez.  相似文献   

17.
The relative contribution of increases in fiber area to stretch-induced muscle enlargement was evaluated in the slow tonic fibers of the anterior latissimus dorsi of adult Japanese quails. A weight corresponding to 10% of the bird's body mass was attached to one wing. Thirty days of stretch in 34 birds averaged 171.8 +/- 13.5% increase in muscle mass and 23.5 +/- 0.8% increase in muscle fiber length. The volume density of noncontractile tissue increased in middle and distal regions of stretch-enlarged muscles. Mean fiber cross-sectional area increased 56.7 +/- 12.3% in the midregion of stretched muscles. Further analysis indicated slow beta-fiber hypertrophy occurred in proximal, middle, and distal regions; however, fast alpha-type fiber hypertrophy was limited to middle regions of stretched muscles. Stretched muscles had a significant increase in the frequency of slow beta-fibers that were less than 500 microns 2 in all regions and fast alpha-type fibers in middle and distal regions. Total fiber number was determined after nitric acid digestion of connective tissue in 10 birds. Fiber number increased 51.8 +/- 19.4% in stretched muscle. These results are the first to clearly show that muscle fiber proliferation contributes substantially to adult skeletal muscle stretch-induced enlargement, although we do not know whether the responses of the slow tonic anterior latissimus dorsi might be similar or different from mammalian twitch muscle.  相似文献   

18.
Previous studies indicated that connective tissue cells in dermis are involved in control of interstitial fluid pressure (Pif). We wanted to develop and characterize an in vitro model representative of loose connective tissue to study dynamic changes in fluid pressure (Pf) over a time course of a few minutes. Pf was measured with micropipettes in human dermal fibroblast cell aggregates of varying size (<100- and >100-µm diameter) and age (days 1-4) kept at different temperatures (15, 25, and 35°C). Pressures were measured at different depths of micropipette penetration and after treatment with prostaglandin E1 isopropyl ester (PGE1), latanoprost (PGF2), and ouabain. Pf was positive (more than +2 mmHg) during control conditions and increased with increasing aggregate size (day 2), age (day 4 vs. day 1), temperature, and depth of micropipette penetration. Pf decreased from 2.9 to 2.0 mmHg during the first 10 min after application of 10 µl of 1 mM PGE1 (P < 0.001). Pf increased from 3.0 to 4.8 mmHg (P < 0.01) after administration of 10 µl of 1.4 µM ouabain and from 3.1 to 4.4 mmHg after addition of 5 µl of 1.42 mM PGF2 (P > 0.05). In conclusion, we have developed and validated a new in vitro method for studying fluid pressure in loose connective tissue elements with the advantage of allowing reliable and rapid screening of substances that have a potential to modify Pf and studying in more detail specific cell types involved in control of Pf. This study also provides evidence that fibroblasts in the connective tissue can actively modulate Pf. micropuncture; prostaglandin E1; prostaglandin F2; ouabain; integrins  相似文献   

19.
Alveolar epithelial cells (AECs) maintain integrity of the blood-gas barrier with actin-anchored intercellular tight junctions. Stretched type I-like AECs undergo magnitude- and frequency-dependent actin cytoskeletal remodeling into perijunctional actin rings. On the basis of published studies in human pulmonary artery endothelial cells (HPAECs), we hypothesize that RhoA activity, Rho kinase (ROCK) activity, and phosphorylation of myosin light chain II (MLC2) increase in stretched type I-like AECs in a manner that is dependent on stretch magnitude, and that RhoA, ROCK, or MLC2 activity inhibition will attenuate stretch-induced actin remodeling and preserve barrier properties. Primary type I-like AEC monolayers were stretched biaxially to create a change in surface area (ΔSA) of 12%, 25%, or 37% in a cyclic manner at 0.25 Hz for up to 60 min or left unstretched. Type I-like AECs were also treated with Rho pathway inhibitors (ML-7, Y-27632, or blebbistatin) and stained for F-actin or treated with the myosin phosphatase inhibitor calyculin-A and quantified for monolayer permeability. Counter to our hypothesis, ROCK activity and MLC2 phosphorylation decreased in type I-like AECs stretched to 25% and 37% ΔSA and did not change in monolayers stretched to 12% ΔSA. Furthermore, RhoA activity decreased in type I-like AECs stretched to 37% ΔSA. In contrast, MLC2 phosphorylation in HPAECs increased when HPAECs were stretched to 12% ΔSA but then decreased when they were stretched to 37% ΔSA, similar to type I-like AECs. Perijunctional actin rings were observed in unstretched type I-like AECs treated with the Rho pathway inhibitor blebbistatin. Myosin phosphatase inhibition increased MLC2 phosphorylation in stretched type I-like AECs but had no effect on monolayer permeability. In summary, stretch alters RhoA activity, ROCK activity, and MLC2 phosphorylation in a manner dependent on stretch magnitude and cell type.  相似文献   

20.
We studied the effect of cyclic mechanical stretching on the proliferation and collagen mRNA expression and protein production of human patellar tendon fibroblasts under serum-free conditions. The role of transforming growth factor-beta1 (TGF-beta1) in collagen production by cyclically stretched tendon fibroblasts was also investigated. The tendon fibroblasts were grown in microgrooved silicone dishes, where the cells were highly elongated and aligned with the microgrooves. Cyclic uniaxial stretching with constant frequency and duration (0.5 Hz, 4 h) but varying magnitude of stretch (no stretch, 4%, and 8%) was applied to the silicone dishes. Following the period of stretching, the cells were rested for 20 h in stretching-conditioned medium to allow for cell proliferation. In separate experiments, the cells were stretched for 4h and then rested for another 4 h. Samples of the medium, total cellular RNA and protein were used for analysis of collagen and TGF-beta1 gene expression and production. It was found that there was a slight increase in fibroblast proliferation at 4% and 8% stretch, compared to that of non-stretched fibroblasts, where at 8% stretch the increase was significant. It was also found that the gene expression and protein production of collagen type I and TGF-beta1 increased in a stretching-magnitude-dependent manner. And, levels of collagen type III were not changed, despite gene expression levels of the protein being slightly increased. Furthermore, the exogenous addition of anti-TGF-beta1 antibody eliminated the increase in collagen type I production under cyclic uniaxial stretching conditions. The results suggest that mechanical stretching can modulate proliferation of human tendon fibroblasts in the absence of serum and increase the cellular production of collagen type I, which is at least in part mediated by TGF-beta1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号