首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 952 毫秒
1.
Triterpenoids from Viburnum suspensum   总被引:3,自引:0,他引:3  
Three triterpenoids, 3-oxo-11,13(18)-oleanadien-28-oic acid, 24-hydroxy-3-oxo-11,13(18)-oleanadien-28-oic acid, 6β-hydroxy-3-oxo-11,13(18)-oleanadien-28-oic acid have been isolated together with the previously known virgatic acid, vibsanin B and 3-hydroxyvibsanin E from the leaves of Viburnum suspensum. Their structures were determined by spectroscopic methods and by comparison of their NMR spectral data with those of the previously known 11,13(18)-oleanadien-3β-ol.  相似文献   

2.
Ho JC  Chen CM  Row LC 《Phytochemistry》2007,68(5):631-635
Four oleanane-type triterpenes, 3alpha,21beta,22alpha-trihydroxy-11,13(18)-oleanadien-28-oic acid (1), 3-epi-papyriogenin C (2), 21-O-acetyl-21-hydroxy-3-oxo-11,13(18)-oleanadien-28-oic acid (3) and 3beta-hydroxy-21-oxo-11,13(18)-oleanadien-28-oic acid methyl ester (4), together with four known triterpenes, were isolated from Tetrapanax papyriferus (Hook) K. Koch. Papyriogenin A (8) exhibited anti-HIV activity and low cytotoxicity in acutely infected H9 lymphocytes. Their structures were determined by analysis of spectroscopic data, including by 1D and 2D NMR.  相似文献   

3.
Microbial transformation of the antimelanoma agent betulinic acid was studied. The main objective of this study was to utilize microorganisms as in vitro models to predict and prepare potential mammalian metabolites of this compound. Preparative-scale biotransformation with resting-cell suspensions of Bacillus megaterium ATCC 13368 resulted in the production of four metabolites, which were identified as 3-oxo-lup-20(29)-en-28-oic acid, 3-oxo-11α-hydroxy-lup-20(29)-en-28-oic acid, 1β-hydroxy-3-oxo-lup-20(29)-en-28-oic acid, and 3β,7β,15α-trihydroxy-lup-20(29)-en-28-oic acid based on nuclear magnetic resonance and high-resolution mass spectral analyses. In addition, the antimelanoma activities of these metabolites were evaluated with two human melanoma cell lines, Mel-1 (lymph node) and Mel-2 (pleural fluid).  相似文献   

4.
Comamonas testosteroni TA441 degrades steroids via aromatization and meta-cleavage of the A ring, followed by hydrolysis, and produces 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid as an intermediate compound. Herein, we identify a new intermediate compound, 9α-hydroxy-17-oxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid. Open reading frame 28 (ORF28)- and ORF30-encoded acyl coenzyme A (acyl-CoA) dehydrogenase was shown to convert the CoA ester of 9α-hydroxy-17-oxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid to the CoA ester of 9α-hydroxy-17-oxo-1,2,3,4,10,19-hexanorandrost-6-en-5-oic acid. A homology search of the deduced amino acid sequences suggested that the ORF30-encoded protein is a member of the acyl-CoA dehydrogenase_fadE6_17_26 family, whereas the deduced amino acid sequence of ORF28 showed no significant similarity to specific acyl-CoA dehydrogenase family proteins. Possible steroid degradation gene clusters similar to the cluster of TA441 appear in bacterial genome analysis data. In these clusters, ORFs similar to ORFs 28 and 30 are often found side by side and ordered in the same manner as ORFs 28 and 30.  相似文献   

5.
From the whole plant of Salvia aegyptiaca, 6-methylcryptoacetalide, 6-methyl-epicryptoacetalide and 6-methylcryptotanshinone have been isolated and characterized, mainly by spectroscopic means. In addition to these novel diterpenoids, the known compounds 3beta-hydroxy-olean-12-en-28-oic acid, 3beta-hydroxy-oleana-11,13(18)-dien-28-oic acid, sitosterol-3beta-glucoside, sitosterol, stigmasterol, 5-hydroxy-7,3',4'-trimethoxyflavone and 5, 6-dihydroxy-7,3',4'-trimethoxyflavone were isolated.  相似文献   

6.
Microbial transformation of isosteviol oxime (ent-16-E-hydroxyiminobeyeran-19-oic acid) (2) with Aspergillus niger BCRC 32720 and Absidia pseudocylindrospora ATCC 24169 yielded several compounds. In addition to bioconverting the d-ring to lactone and lactam moieties, 4α-carboxy-13α-hydroxy-13,16-seco-ent-19-norbeyeran-16-oic acid 13,16-lactone (7) and 4α-carboxy-13α-amino-13,16-seco-ent-19-norbeyeran-16-oic acid 13,16-lactam (10), one known compound, ent-1β,7α-dihydroxy-16-oxo-beyeran-19-oic acid (6), and five new compounds, ent-7α-hydroxy-16-E-hydroxyiminobeyeran-19-oic acid (3), ent-1β,7α-dihydroxy-16-E-hydroxyiminobeyeran-19-oic acid (4), ent-1β-hydroxy-16-E-hydroxyiminobeyeran-19-oic acid (5), ent-8β-cyanomethyl-13-methyl-12-podocarpen-19-oic acid (8), and ent-8β-cyanomethyl-13-methyl-13-podocarpen-19-oic acid (9), were isolated from the microbial transformation of 2. Elucidation of the structures of these isolated compounds was primarily based on 1D and 2D NMR, and HRESIMS data, and 35 were further confirmed by X-ray crystallographic analyses. Additionally, the inhibitory effects of all of these compounds were evaluated on NF-κB and AP-1 activation in LPS-stimulated RAW 264.7 macrophages. Among the compounds tested, 5 and 10 significantly inhibited NF-κB activation, with 5 showing equal potency to dexamethasone; 3 and 69 significantly inhibited AP-1 activation, particularly 8, which showed more inhibitory activity than dexamethasone.  相似文献   

7.
Terpenes with antimicrobial activity from Cretan propolis   总被引:1,自引:0,他引:1  
Five terpenes, the diterpenes: 14,15-dinor-13-oxo-8(17)-labden-19-oic acid and a mixture of labda-8(17),13E-dien-19-carboxy-15-yl oleate and palmitate as well as the triterpenes, 3,4-seco-cycloart-12-hydroxy-4(28),24-dien-3-oic acid and cycloart-3,7-dihydroxy-24-en-28-oic acid were isolated from Cretan propolis. Moreover, 18 known compounds were also isolated, seven of them for the first time as propolis components. All structures were established on the basis of spectroscopic analysis and chemical evidence. All isolated compounds were tested for antimicrobial activity against some Gram-positive and Gram-negative bacteria as well as against some human pathogenic fungi showing a broad spectrum of antimicrobial activity.  相似文献   

8.
Duan H  Takaishi Y  Momota H  Ohmoto Y  Taki T  Jia Y  Li D 《Phytochemistry》2000,53(7):805-810
The extract (T(II)) of Tripterygium wilfordii Hook f. afforded four triterpenoids: wilforic acid D (3beta,24-epoxy-2alpha-hydroxy-24R*-ethoxy-29-friedelanoic acid); (E) 3beta,24-epoxy-2-oxo-3alpha-hydroxy-29-friedelanoic acid; (F) 2beta-hydroxy-3-oxo-friedelan-29-oic acid; 29-hydroxy-3-oxo-olean-12-en-28-oic acid and 17 known triterpenoids. Their structures were established on the basis of spectroscopic studies. In a bioactivity analysis, only the known dulcioic acid compound showed a significant inhibitory effect on cytokine production.  相似文献   

9.
Triterpenoids from Sanguisorba officinalis   总被引:1,自引:0,他引:1  
Liu X  Cui Y  Yu Q  Yu B 《Phytochemistry》2005,66(14):1671-1679
Seven triterpenoids, i.e., 3beta-[(alpha-L-arabinopyranosyl)oxy]-19beta-hydroxyurs-12,20(30)-dien-28-oic acid (1), 3beta-[(alpha-L-arabinopyranosyl)oxy]-urs-11,13(18)-dien-28-oic acid beta-D-glucopyranosyl ester (2), 2alpha,3alpha,23-trihydroxyurs-12-en-24,28-dioic acid 28-beta-D-glucopyranosyl ester (3), 3beta-[(alpha-L-arabinopyranosyl)oxy]-urs-12,19(20)-dien-28-oic acid (4), 3beta-[(alpha-L-arabinopyranosyl)oxy]-urs-12,19(29)-dien-28-oic acid (5), 3beta-[(alpha-L-arabinopyranosyl)oxy]-19alpha-hydroxyolean-12-en-28-oic acid (6), 2alpha,3beta-dihydroxy-28-norurs-12,17,19(20),21-tetraen-23-oic cid (7), together with three known ones (8-10), were isolated from the roots of Sanguisorba officinalis. Their structures were determined by spectroscopic and chemical methods. Compounds 7 and 10 showed marginal inhibition activity against the growth of tumor cell lines.  相似文献   

10.
飞龙掌血中三萜酸成分研究   总被引:5,自引:0,他引:5  
从芸香科植物飞龙掌血中提取分离出4个新三萜酸,经波谱数据分析,分别鉴定为2α,3α,19α-trihydroxy11-oxo-urs-12-en-28-oic acid(1),2α,3α,11α,19α-tetrahydroxy-urs-12-en-28-oic acid(2),2α,3α-dillydroxy-19-oxo-18,19-seco-urs-11,13(18)-diene-28-oic acid(3)和2α,3α,19α-trihydroxy-olean-11,13(18)-dien-28-oic acid(4)。还分离鉴定出已知成分野鸭春酸(5)、arjunic acid(6)、飞龙掌血素、勒钩内脂和β-谷甾醇。  相似文献   

11.
The insecticidal sesquiterpenes cadina-4,10(15)-dien-3-one and aromadendr-1(10)-en-9-one were administered to the fungus Cyathus africanus ATCC 35853. Biotransformation of the former produced (4R)-9α-hydroxycadin-10(15)-en-3-one, while the latter gave 2β-hydroxyaromadendr-1(10)-en-9-one, 2α-hydroxyaromadendr-1(10)-en-9-one and 10α-hydroxy-1β,2β-epoxyaromadendran-9-one. The bioconversion of santonin led to the production of two analogues, 11,13-dihydroxysantonin and the hitherto unreported 8α,13-dihydroxysantonin, while cedrol yielded 3β,8β-dihydroxycedrane and 3α,8β-dihydroxycedrane. Stemod-12-ene, a diterpene, was transformed to 2-oxostemar-13-ene, a hitherto unknown analogue with a rearranged carbon framework. When methyl betulonate, a triterpenoid belonging to the lupane family, was supplied to the fungus 18α-ursane and 18α-oleanane derivatives, namely 19β-hydroxy-3-oxo-18α-oleanan-28-oic acid and 19α-hydroxy-3-oxo-18α-ursan-28-oic acids, were generated. There are no previous reports of fungal transformation of a triterpene in which a skeletal rearrangement occurred. All substrate administration experiments were done in the presence of the terpene cyclase inhibitor chlorocholine chloride (CCC), using the single phase – pulse feed method.  相似文献   

12.
Two new lupane-triterpene glycosides named acankoreosides C and D, were isolated from the leaves of Acanthopanax koreanum. Based on spectroscopic data, the chemical structures were determined as 3-O-β- -glucopyranosyl 3α,11α-dihydroxylup-20(29)-en-28-oic acid 28-O-α- -rhamnopyranosyl-(1→4)-β- -glucopyranosyl-(1→6)-β- -glucopyranosyl ester and 3α,11α-dihydroxylup-23-al-20(29)-en-28-oic acid 28-O-α- -rhamnopyranosyl-(1→4)-β- -glucopyranosyl-(1→6)-β- -glucopyranosyl ester, respectively.  相似文献   

13.
Seven oleanane-type saponins were isolated from the leaves and stems of Oreopanax guatemalensis, together with ten known saponins of lupane and oleanane types. The new saponins were respectively characterized as 3-O-alpha-L-arabinopyranosyl echinocystic acid 28-O-[alpha- L-rhamnopyranosyl-(1-->4)-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl] ester, 3-O-beta-D-glucopyranosyl 3beta-hydroxy olean-11,13(18)-dien-28-oic acid 28-O-[alpha-L-rhamnopyranosyl-(1-->4)-beta-D-glucopyranosyl-(1-->6)-beta- D-glucopyranosyl]ester, 3-O-[alpha-L-rhamnopyranosyl-(1-->2)-beta-D-glucopyranosyl]3beta-hydroxy olean-11,13(18)-dien-28-oic acid 28-O-[alpha-L-rhamnopyranosyl-(1-->4)-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl] ester, 3-O-[alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranosyl]3beta, 23 dihydroxy olean-18-en-28-oic acid 28-O-[alpha-L-rhamnopyranosyl-(1-->4)-beta-D-6-O-acetyl glucopyranosyl-(1-->6)-beta-D-glucopyranosyl]ester, 3-O-[alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranosyl] hederagenin 28-O-[alpha-L-rhamnopyranosyl-(1-->4)-beta-D-glucopyranosyl-(1-->6)-[beta-D-xylopyranosyl-(1-->2 )-]beta-D-glucopyranosyl]ester, 3-O-[alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranosyl]hederagenin 28-O-[alpha-L-rhamnopyranosyl-(1-->4)-beta-D-glucopyranosyl-(1-->6)-[beta-D-glucopyranosyl-(1-->2)-]beta-D-glucopyranosyl] ester and 3-O-[alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranosyl] hederagenin 28-O-[alpha-L-rhamnopyranosyl-(1-->4)-beta-D-glucopyranosyl-(1-->6)-[alpha-L-arabinofuranosyl-(1-->2)]-beta-D-glucopyranosyl] ester. The structures were determined by spectral analyses. The NMR assignments were made by means of HOHAHA, 1H-1H COSY, HMQC, HMBC spectra and NOE difference studies.  相似文献   

14.
Yi Yang-Hua 《Phytochemistry》1991,30(12):4179-4181
A new triterpenoid, esculentagenin, and its glycoside, esculentoside M, were isolated from the roots of Phytolacca esculenta and characterized as 11-oxo-3-O-methyloleanata-12-en-2β,3β,23-trihydroxy-28-oic acid and 3-O-[β - -glucopyranosyl (1→4)-β- -Xylopyranosyl]-28-O-β- -glucopyranosyl-11-oxo-30-methyloleanate-12-en-2β,3β,23-trihydroxy-28-oic acid by spectral and chemical evidence.  相似文献   

15.
Three oleanane triterpenes were isolated from the roots of Periandra dulcis,and identified as 3β-hydroxy-25-al-olean-18-en-30-oic acid (periandric acid I), 3β-hydroxy-25-al-olean-12-en-30-oic acid (periandric acid II) and 3-oxo-25-hydroxy-olean-12-en-30-oic acid. The former two compounds (periandric acids I and II) were identical with the aglycones obtained by hydrolysis of periandrin I and II, respectively and the latter one was a new triterpene.  相似文献   

16.
Biotransformation of 20(S)-protopanaxadiol (1) by the fungus Mucor spinosus AS 3.3450 yielded eight metabolites (29). On the basis of NMR and MS analyses, the metabolites were identified as 12-oxo-15α,27-dihydroxyl-20(S)-protopanaxadiol (2), 12-oxo-7β,11α,28-trihydroxyl-20(S)-protopanaxadiol (3), 12-oxo-7β,28-dihydroxyl-20(S)-protopanaxadiol (4), 12-oxo-15α,29-dihydroxyl-20(S)-protopanaxadiol (5), 12-oxo-7β,15α-dihydroxyl-20(S)-protopanaxadiol (6), 12-oxo-7β,11β-dihydroxyl-20(S)-protopanaxadiol (7), 12-oxo-15α-hydroxyl-20(S)-protopanaxadiol (8), and 12-oxo-7β-hydroxyl-20(S)-protopanaxadiol (9), respectively. Among them, 25, 7, and 8 are new compounds. These results indicated that M. spinosus could catalyze the specific C-12 dehydrogenation of 20(S)-protopanaxadiol, as well hydroxylation at different positions. These biocatalytic reactions may be difficult for chemical synthesis. The biotransformed products showed weak in vitro cytotoxic activities.  相似文献   

17.
The biotransformation of lithocholic acid by Pseudomonas sp. strain NCIB 10590 under anaerobic conditions was studied. The major products were identified as androsta-1,4-diene-3,17-dione and 3-oxochol-4-ene-24-oic acid. The minor products included 17β-hydroxyandrost-4-ene-3-one, 17β-hydroxyandrosta-1,4-diene-3-one, 3-oxo-5β-cholan-24-oic acid, 3-oxochola-1,4-diene-24-oic acid, 3-oxopregn-4-ene-20-carboxylic acid, and 3-oxopregna-1,4-diene-20-carboxylic acid. Anaerobiosis increases the number of metabolites produced by Pseudomonas sp. NCIB 10590 from lithocholic acid.  相似文献   

18.
《Phytochemistry》1986,25(7):1625-1628
From tissue culture of Akebia quinata, three new triterpenes were isolated together with two known triterpenes, oleanolic acid and mesembryanthemoidgenic acid. The new triterpenes were characterized by spectroscopic means as 3β-hydroxy-30-norolean-12,20(29)-dien-28-oic acid, 3-epi-30-norolean-12,20(29)-dien-28-oic acid and 3β-hydroxy-29(or 30)-al-olean-12-en-28-oic acid.  相似文献   

19.
Three new triterpenoids, 19-hydroxy-2,3-secours-12-ene-2,3,28-trioic acid 3- methyl ester (1), 19-hydroxy-1-oxo-2-nor-2,3-secours-12-ene-3,28-dioic acid (2), and (3beta,18alpha,19alpha)-3,28-dihydroxy-20,28-epoxyursan-24-oic acid (3), were isolated from the roots of Potentilla multicaulis. Their structures were elucidated on the basis of spectroscopic methods (IR, HR-ESI-MS, and 1D- and 2D-NMR). Compound 2b exhibited moderate cytotoxic activity against human promyelocytic leukemia (HL-60) cells.  相似文献   

20.
《Phytochemistry》1986,25(12):2833-2836
Six new labdane diterpenes, methyl 3-oxo-18-hydroxylabda-8(17),13E-dien-15-oate, methyl 2β,3β- dihydroxylabda-8(17),13E-dien-15-oate, 2-oxo-labda-8(17),13Z-dien-15-oic acid, 3-oxo-18-acetoxylabda-8(17),13Z- dien-15-oic acid, 3-oxo-18-hydroxylabda-8(17),13Z-dien-15-oic acid, 2β,3β-dihydroxylabda-8(17),13Z-dien-15-oic acid, and the known compound kaempferol-3,7,4′-trimethyl ether were isolated from the aerial parts of Nolana rostrata. The structures of the new compounds were elucidated by spectroscopic methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号