首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 443 毫秒
1.
We have assessed the role of cellular transformation in ultraviolet (uv)-induced mutagenic events in human cells. To maintain uniformity of genetic background and to eliminate the effect of DNA repair, primary nontransformed lymphocytes (T-cells) and Epstein-Barr virus-transformed lymphocytes (B-cells) from one patient (XP12Be) with the DNA repair-deficient disorder xeroderma pigmentosum (group A) were transfected with the mutagenesis shuttle vector pZ189. Parallel control experiments were performed with primary, nontransformed lymphocytes from a normal individual and with a repair-proficient Epstein-Barr virus-transformed lymphocyte line (KR6058). pZ189 was treated with uv and introduced into the four cell lines by electroporation. Plasmid survival and mutations inactivating the marker supF suppressor tRNA gene in the recovered pZ189 were scored by transforming an indicator strain of Escherichia coli. Plasmid survival was reduced and mutation frequency elevated equally with both XP-A cell lines compared to both normal cell lines. Base sequence analysis of more than 250 independent plasmids showed that while the G:C----A:T base substitution mutation was found in at least 60% of plasmids with single or tandem mutations with all four cell lines, the frequency with the transformed XP-A (93%) cells was significantly higher (P less than 0.01) than that with the nontransformed XP-A cells (77%). In addition, with the transformed XP-A cells, there were significantly fewer plasmids with transversions and with mutations at a transversion hotspot (base pair 134) than with plasmids recovered from nontransformed XP-A cells. Interleukin-2 and phytohemagglutinin (used to maintain growth of the nontransformed lymphocytes) treatment of transformed XP12Be cells did not change overall plasmid survival or mutation frequency, but increased the transversion frequency and induced a mutational hotspot (at base pair 159), while another mutational hotspot (at base pair 123) disappeared. Thus we have demonstrated that in repair-deficient human cells, cellular transformation, while not affecting overall postuv plasmid survival and mutation frequency, does increase the susceptibility to G:C----A:T transition mutations, a type of mutation associated with uv-induced neoplasia.  相似文献   

2.
3.
A multiply damaged site (MDS) is defined as > or =2 lesions within a distance of 10-15 base pairs (bp). MDS generated by ionizing radiation contain oxidative base damage, and in vitro studies have indicated that if the base damage is <3bp apart, repair of one lesion is inhibited until repair of the lesion in the opposite strand is completed. Inhibition of repair could result in an increase in the mutation frequency of the base damage. We have designed an assay to determine whether a closely opposed lesion causes an increase in adenine insertion opposite an 8-oxodG in bacteria. We have positioned the MDS (an 8-oxodG in the transcribed strand and a second 8-oxodG immediately 5' to this lesion in the non-transcribed strand) within the firefly luciferase coding region. During two rounds of replication, insertion of adenine opposite the 8-oxodG in the transcribed (T) or non-transcribed (NT) strand results in a translation termination codon at position 444 or 445, respectively. The truncated luciferase protein is inactive. We have generated double-stranded oligonucleotides that contain no damage, each single 8-oxodG or the MDS. Each double-stranded molecule was ligated into the reporter vector and the ligation products transformed into wild-type or Mut Y-deficient bacteria. The plasmid DNA was isolated and sequenced from colonies that did not express luciferase activity. In wild-type bacteria, we detected a translation stop at a frequency of 0.15% (codon 444) and 0.09% (codon 445) with a single 8-oxodG in the T or NT strand, respectively. This was enhanced approximately 3-fold when single lesions were replicated in Mut Y-deficient bacteria. Positioning an 8-oxodG in the T strand within the MDS enhanced the mutation frequency by approximately 2-fold in wild-type bacteria and 8-fold in Mut Y-deficient bacteria, while the mutation frequency of the 8-oxodG in the NT strand increased by 6-fold in Mut Y-deficient bacteria. This enhancement of mutation frequency supports the in vitro MDS studies, which demonstrated the inability of base excision repair to completely repair closely opposed lesions.  相似文献   

4.
Cappelli E  Degan P  Thompson LH  Frosina G 《Biochemistry》2000,39(34):10408-10412
The repair of the endogenous lesion 8-oxo-7,8-dihydrodeoxyguanosine (8-oxodG) was investigated in the nucleotide excision repair mutant xeroderma pigmentosum D (XPD), using human normal or transformed XPD fibroblasts and the Chinese hamster XPD cell line UV5. In vivo repair of 8-oxodG induced by hydrogen peroxide treatment and analyzed by high-performance liquid chromatography/electrochemical detection was normal in the XPD mutant fibroblasts XP15PV and GM434, as compared to normal human fibroblasts GM970, GM5757, and GM6114. Similar results were obtained with the human SV40-transformed XPD mutant cell line GM8207 in comparison to the control cell line GM637. Repair of 8-oxodG was even slightly (2-3-fold) but reproducibly increased in Chinese hamster XPD mutant UV5 cells, as compared to parental AA8 cells. This unexpected effect was reversed by transfection in UV5 cells of a wild-type XPD cDNA and confirmed in in vitro experiments in which a plasmid substrate containing a single 8-oxoG was repaired by UV5 cell extracts. The data show that repair of 8-oxodG is normal in XPD cells, thus indicating that the neurological complications of XPD patients may not be linked to in vivo accumulation of this lesion.  相似文献   

5.
Proliferating cell nuclear antigen (PCNA), a processivity factor for DNA polymerases delta and epsilon, is essential for both DNA replication and repair. PCNA is required in the resynthesis step of nucleotide excision repair (NER). After UV irradiation, PCNA translocates into an insoluble protein complex, most likely associated with the nuclear matrix. It has not previously been investigated in vivo whether PCNA complex formation also takes place after oxidative stress. In this study, we have examined the involvement of PCNA in the repair of oxidative DNA damage. PCNA complex formation was studied in normal human cells after treatment with hydrogen peroxide, which generates a variety of oxidative DNA lesions. PCNA was detected by two assays, immunofluorescence and western blot analyses. We observed that PCNA redistributes from a soluble to a DNA-bound form during the repair of oxidative DNA damage. PCNA complex formation was analyzed in two human natural mutant cell lines defective in DNA repair: xeroderma pigmentosum group A (XP-A) and Cockayne syndrome group B (CS-B). XP-A cells are defective in overall genome NER while CS-B cells are defective only in the preferential repair of active genes. Immunofluorescent detection of PCNA complex formation was similar in normal and XP-A cells, but was reduced in CS-B cells. Consistent with this observation, western blot analysis in CS-B cells showed a reduction in the ratio of PCNA relocated as compared to normal and XP-A cells. The efficient PCNA complex formation observed in XP-A cells following oxidative damage suggests that formation of PCNA-dependent repair foci may not require the XPA gene product. The reduced PCNA complex formation observed in CS-B cells suggests that these cells are defective in the processing of oxidative DNA damage.  相似文献   

6.
The human protein OGG1 (hOGG1) targets the highly mutagenic base 7,8-dihydro-8-oxo-2′-deoxyguanosine (8-oxodG) and shows a high specificity for the opposite DNA base. Abasic sites can arise in DNA in close opposition to 8-oxodG either during repair of mismatched bases (i.e. 8-oxodG/A mismatches) or, more frequently, as a consequence of ionizing radiation exposure. Bistranded DNA lesions may remain unrepaired and lead to cell death via double-strand break formation. In order to explore the role of damaged-DNA dynamics in recognition/excision by the hOGG1 repair protein, specific oligonucleotides containing an 8-oxodG opposite an abasic site, at different relative distances on the complementary strand, were synthesized. Rotational dynamics were studied by means of fluorescence polarization anisotropy decay experiments and the torsional elastic constant as well as the hydrodynamic radius of the DNA fragments were evaluated. Efficiency of excision of 8-oxodG was tested using purified human glycosylase. A close relation between the twisting flexibility of the DNA fragment and the excision efficiency of the oxidative damage by hOGG1 protein within a cluster was found.  相似文献   

7.
Photoreactivation is one of the DNA repair mechanisms to remove UV lesions from cellular DNA with a function of the DNA photolyase and visible light. Two types of photolyase specific for cyclobutane pyrimidine dimers (CPD) and for pyrimidine (6-4) pyrimidones (6-4PD) are found in nature, but neither is present in cells from placental mammals. To investigate the effect of the CPD-specific photolyase on killing and mutations induced by UV, we expressed a marsupial DNA photolyase in DNA repair-deficient group A xeroderma pigmentosum (XP-A) cells. Expression of the photolyase and visible light irradiation removed CPD from cellular DNA and elevated survival of the UV-irradiated XP-A cells, and also reduced mutation frequencies of UV-irradiated shuttle vector plasmids replicating in XP-A cells. The survival of UV-irradiated cells and mutation frequencies of UV-irradiated plasmids were not completely restored to the unirradiated levels by the removal of CPD. These results suggest that both CPD and other UV damage, probably 6-4PD, can lead to cell killing and mutations.  相似文献   

8.
To assess the role of oxidative stress on the replication of mitochondrial DNA, we examined the kinetics of incorporation of 8-oxo-7,8-dihydroguanosine (8-oxodG) triphosphate catalyzed by the human mitochondrial DNA polymerase. Using transient state kinetic methods, we quantified the kinetics of incorporation, excision, and extension beyond a base pair containing 8-oxodG. The 8-oxodGTP was incorporated opposite dC in the template with a specificity constant of 0.005 microM(-1) s(-1), a value approximately 10,000-fold lower than that for dGTP. Once incorporated, 96% of the time 8-oxodGMP was extended by continued polymerization rather than being excised by the proofreading exonuclease. The specificity constant for incorporation of 8-oxodGTP opposite a template dA was 0.2 microM(-1) s(-1), a value 13-fold higher than incorporation opposite a template dC. The 8-oxodG:dA mispair was extended rather than excised at least 70% of the time. Examination of the kinetics of polymerization with 8-oxodG in the template strand also revealed relatively low fidelity in that dCTP would be incorporated only 90% of the time. In nearly 10% of events, dATP would be incorporated, and once incorporated dA (opposite 8-oxodG) was extended rather than excised. The greatest fidelity was against a dTTP:8-oxodG mismatch affording a discrimination value of only 1800. These data reveal that 8-oxodGTP is a potent mutagen. Once it is incorporated into DNA, 8-oxodGMP codes for error prone DNA synthesis. These reactions are likely to play important roles in oxidative stress in mitochondria related to aging and as compounded by nucleoside analogs used to treat human immunodeficiency virus infections.  相似文献   

9.
Cells derived from individuals with mutations in the xeroderma pigmentosum complementation group A gene (XP-A gene) are hypersensitive to UV light and have a severe defect in nucleotide excision repair of damaged DNA. UV-resistant revertant cell lines can arise from XP-A cells in culture. Cells of one such revertant, XP129, were previously shown to remove (6-4) photoproducts from irradiated DNA, but to have poor repair of cyclobutane pyrimidine dimers. To analyze the biochemical nature of the reversion, whole cell extracts were prepared from the SV40-immortalized fibroblast cell lines XP12RO (an XP-A cell line), the revertant XP129 (derived from XP12RO), and 1BR.3N (from a normal individual). The ability of extracts to carry out repair synthesis in UV-irradiated DNA was examined, and immunoblots were performed using antiserum that recognizes XP-A protein. XP12RO extracts exhibited a very low level of repair and no detectable XP-A protein, but repair activity could be conferred by adding purified XP-A protein to the reaction mixture. XP129 extracts have essentially normal repair synthesis consistent with the observation that most repair of UV-irradiated DNA by extracts appears to occur at (6-4) photoproducts. An XP-A polypeptide of normal size was present in XP129, but in reduced amounts. The results indicate that in XP129 a mutational event has converted the inactive XP12RO XP-A gene into a form which expresses an active XP-A protein.  相似文献   

10.
Oxidative damage to cellular biomolecules, in particular DNA, has been proposed to play an important role in a number of patholgical conditions, including carcinogenesis. A much studied consequence of oxygen-centred radical damage to DNA is 8-oxo-2'-deoxyguanosine (8-oxodG). Using numerous techniques, this lesion has been quantified in various biological matrices, most notably DNA and urine. Until recently, it was understood that urinary 8-oxodG derives solely from DNA repair, although the processes which may yield the modified deoxynucleoside have never been thoroughly discussed. This review suggests that nucleotide excision repair and the action of a specific endonuclease may, in addition to the nucleotide pool, contribute significantly to levels of 8-oxodG in the urine. On this basis, urinary 8-oxodG represents an important biomarker of generalised, cellular oxidative stress. Current data from antioxidant supplementation trials are examined and the potential for such compounds to modulate DNA repair is considered. It is stressed that further work is required to link DNA, serum and urinary levels of 8-oxodG such that the kinetics of formation and clearance may be elucidated, facilitating greater understanding of the role played by oxidative stress in disease.  相似文献   

11.
Mismatch repair (MMR) corrects replication errors. It requires the MSH2, MSH6, MLH1, and PMS2 proteins which comprise the MutSalpha and MutLalpha heterodimers. Inactivation of MSH2 or MLH1 in human tumors greatly increases spontaneous mutation rates. Oxidation produces many detrimental DNA alterations against which cells deploy multiple protective strategies. The Ogg-1 DNA glycosylase initiates base excision repair (BER) of 8-oxoguanine (8-oxoG) from 8-oxoG:C pairs. The Myh DNA glycosylase removes mismatched adenines incorporated opposite 8-oxoG during replication. Subsequent BER generates 8-oxoG:C pairs, a substrate for excision by Ogg-1. MTH1-an 8-oxodGTPase which eliminates 8-oxodGTP from the dNTP pool-affords additional protection by minimizing 8-oxodGMP incorporation during replication. Here we show that the dNTP pool is, nevertheless, an important source of DNA 8-oxoG and that MMR provides supplementary protection by excising incorporated 8-oxodGMP. Incorporated 8-oxodGMP contributes significantly to the mutator phenotype of MMR-deficient cells. Thus, although BER of 8-oxoG is independent of Msh2, both steady-state and H(2)O(2)-induced DNA 8-oxoG levels are higher in Msh2-defective cells than in their repair-proficient counterparts. Increased expression of MTH1 in MMR-defective cells significantly reduces steady-state and H(2)O(2)-induced DNA 8-oxoG levels. This reduction dramatically diminishes the spontaneous mutation rate of Msh2(-/-) MEFs.  相似文献   

12.
Cellular DNA is constantly exposed to the risk of oxidation. 8-oxoguanine (8-oxoG) is one of the major DNA lesions generated by oxidation, which is primarily corrected by base excision repair. When it is not repaired prior to replication, replicative DNA polymerases yield misinsertion of an adenine (A) opposite the 8-oxoG on the template strand, generating an A:8-oxoG mispair. MYH, a mammalian homolog of Escherichia coli MutY, is a DNA glycosylase responsible for initiating base excision repair of such a mispair by excising the adenine opposite 8-oxoG. Here, using an in vivo repair system, we show that DNA replication enhances the repair of the A:8-oxoG mispair. Repair efficiency was lower in MYH-deficient murine cells than in MYH-proficient cells. Transfection of the MYH-deficient cells with a wild-type MYH expression vector increased the efficiency of A:8-oxoG repair, indicating that a significant part of this replication-associated repair depends on MYH. Expression of a mutant MYH in which the PCNA binding motif was disrupted did not increase the repair efficiency, thus suggesting that the interaction between PCNA and MYH is critical for MYH-initiated repair of A:8-oxoG.  相似文献   

13.
Complementation group A of xeroderma pigmentosum (XP) represents one of the most prevalent and serious forms of this cancer-prone disorder. Because of a marked defect in DNA excision repair, cells from individuals with XP-A are hypersensitive to the toxic and mutagenic effects of ultraviolet light and many chemical agents. We report here the isolation of the XP-A DNA repair protein by complementation of cell extracts from a repair-defective human XP-A cell line. XP-A protein purified from calf thymus migrates on denaturing gel electrophoresis as a doublet of 40 and 42 kilodaltons. The XP-A protein binds preferentially to ultraviolet light-irradiated DNA, with a preference for damaged over nondamaged nucleotides of approximately 10(3). This strongly suggests that the XP-A protein plays a direct role in the recognition of and incision at lesions in DNA. We further show that this protein corresponds to the product encoded by a recently isolated gene that can restore excision repair to XP-A cells. Thus, excision repair of plasmid DNA by cell extracts sufficiently resembles genomic repair in cells to reveal accurately the repair defect in an inherited disease. The general approach described here can be extended to the identification and isolation of other human DNA repair proteins.  相似文献   

14.
Intracellular reduction of carcinogenic Cr(VI) leads to the extensive formation of Cr(III)-DNA phosphate adducts. Repair mechanisms for chromium and other DNA phosphate-based adducts are currently unknown in human cells. We found that nucleotide excision repair (NER)-proficient human cells rapidly removed chromium-DNA adducts, with an average t((1/2)) of 7.1 h, whereas NER-deficient XP-A, XP-C, and XP-F cells were severely compromised in their ability to repair chromium-DNA lesions. Activation of NER in Cr(VI)-treated human fibroblasts or lung epithelial H460 cells was manifested by XPC-dependent binding of the XPA protein to the nuclear matrix, which was also observed in UV light-treated (but not oxidant-stressed) cells. Intracellular replication of chromium-modified plasmids demonstrated increased mutagenicity of binary Cr(III)-DNA and ternary cysteine-Cr(III)-DNA adducts in cells with inactive NER. NER deficiency created by the loss of XPA in fibroblasts or by knockdown of this protein by stable expression of small interfering RNA in H460 cells increased apoptosis and clonogenic death by Cr(VI), providing genetic evidence for the role of monofunctional chromium-DNA adducts in the toxic effects of this metal. The rate of NER of chromium-DNA adducts under saturating conditions was calculated to be approximately 50,000 lesions/min/cell. Because chromium-DNA adducts cause only small changes in the DNA helix, rapid repair of these modifications in human cells indicates that the presence of major structural distortions in DNA is not required for the efficient detection of the damaged sites by NER proteins in vivo.  相似文献   

15.
A linearized, replicating, shuttle vector plasmid, pZ189, was used to measure in vivo DNA joining ability of cells from patients with the cancer-prone, immunodeficient, chromosome breakage disorder, Bloom's syndrome (BS). The BS cell lines we studied were reported to contain reduced in vitro activity of DNA ligase I. We assessed in vivo joining ability by transfecting linear plasmids with overlapping or blunt ends (produced by EcoRI or StuI) into BS and normal fibroblast or lymphoblast host cells and measuring the amount of re-joined, replicated plasmids by their ability to transform bacteria. With plasmids having either overlapping or blunt ends we found a 1.3- to 3-fold lower (P less than 0.05) joining efficiency in BS cells than in the normal cells. The mutation frequency of the recovered plasmids was measured by screening for function of the suppressor tRNA contained in pZ189, for plasmid size, for presence of restriction sites, or by DNA sequencing. The spontaneous mutation frequency with the circular plasmid was 0.05-0.08% with both BS cell lines, values 2- to 21-fold higher (P less than 0.03) than with the normal cell lines. The mutation frequency with the linear plasmid passaged through both BS cell lines was 21-52%, values 1.4- to 5.4-fold higher (P less than 0.001) than with the normal lines. Detailed analysis of 210 recovered plasmids revealed an increase (P less than or equal to 0.001) in deletions, insertions or complex mutations at the joining sites, and in point mutations with the EcoRI cut plasmid with the BS cells in comparison to the normal cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
H Sies  C F Menck 《Mutation research》1992,275(3-6):367-375
Singlet oxygen generated by photoexcitation and by chemiexcitation selectively reacts with the guanine moiety in nucleosides (kq + kr about 5 x 10(6) M-1s-1) and in DNA. The oxidation products include 8-oxo-7-hydro-deoxyguanosine (8-oxodG; also called 8-hydroxydeoxyguanosine) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyGua). Singlet oxygen also causes alkali-labile sites and single-strand breaks in DNA. The biological consequences include a loss of transforming activity as studied with plasmids and bacteriophage DNA, and mutagenicity and genotoxicity. Employing shuttle vectors, it was shown that double-stranded vectors carrying singlet oxygen induced lesions seem to be processed in mammalian cells by DNA repair mechanisms efficient in preserving the biological activity of the plasmid but highly mutagenic in mammalian cells. Biological protection against singlet oxygen is afforded by quenchers, notably carotenoids and tocopherols. Major repair occurs by excision of the oxidized deoxyguanosine moieties by the Fpg protein, preventing mismatch of 8-oxodG with dA, which would generate G:C to T:A transversions.  相似文献   

17.
18.
The present trend of increasing paternal age is accompanied by concerns for the development of complex multigene diseases (e.g., autism and schizophrenia) in progeny. Recent studies have established strong correlations between male age, increased oxidative stress, decreased sperm quality, and structural aberrations of chromatin and DNA in spermatozoa. We tested the hypothesis that increasing age would result in altered gene expression relating to oxidative stress and DNA damage/repair in germ cells. To test this hypothesis, pachytene spermatocytes and round spermatids were isolated from Brown Norway (BN) rats at 4 (young) and 18 (aged) mo of age. Microarray analysis was used to compare gene expression between the groups. The probe sets with significantly altered expression were linked to DNA damage/repair and oxidative stress in pachytene spermatocytes but not in round spermatids. Further analysis of pachytene spermatocytes demonstrated that genes involved in the base excision repair (BER) and nucleotide excision repair (NER) pathways were specifically altered. Quantitative RT-PCR confirmed that NER genes were upregulated (>1.5-fold), whereas BER genes were downregulated (>1.5-fold). At the protein level the members of the BER pathway were also altered by up to 2.3-fold; levels of NER proteins remained unchanged. Furthermore, there was an increase in 8-oxo-2'-deoxyguanosine (8-oxodG) immunoreactivity in testes from aged males and in the number of spermatozoa positive for 8-oxodG. In conclusion, aging is associated with differential regulation of DNA repair pathways with a decrease in the BER pathway leading to deficient repair of 8-oxo-dG lesions in germ cells and spermatozoa.  相似文献   

19.
To assess the contribution to mutagenesis of human DNA repair defects, the UV-irradiated shuttle vector plasmid pZ189 was propagated in fibroblasts derived from a xeroderma pigmentosum (XP) patient in DNA repair complementation group C. In comparison to results with DNA repair-proficient human cells (WI-38 VA13), UV-irradiated pZ189 propagated in the XP-C (XP4PA(SV)) cells showed fewer surviving plasmids and a higher frequency of mutated plasmids. Base sequence analysis of 67 mutated plasmids recovered from the XP-C cells revealed similar classes of point mutations and mutation spectrum, and a higher frequency of G:C to A:T transitions along with a lower frequency of transversions among plasmids with single or tandem mutations compared to plasmids recovered from the normal line. Most single-base substitution mutations (83%) occurred at G:C base pairs in which the 5'-adjacent base of the cytosine was thymine or cytosine. These results indicate that the DNA repair defects in XP-C, in comparison to data previously reported for XP-A, XP-D and XP-F, result in different UV survival and mutation frequency but in similar types of base substitution mutations.  相似文献   

20.
Riis B  Risom L  Loft S  Poulsen HE 《DNA Repair》2002,1(9):709-717
This study was set up to investigate the relationships between the formation and removal of DNA damage in form of 8-oxodeoxyguanosine (8-oxodG) in neonatal (day 16 of gestation) as compared to adult rats. The hypothesis addressed was whether the rapidly dividing foetal tissue has an enhanced requirement of DNA repair providing protection against potentially mutagenic DNA damages such as 8-oxodG. The activity of the primary 8-oxodG-repair protein OGG1 was measured by a DNA incision assay and the expression of OGG1 mRNA was measured by Real-Time PCR normalised to 18S rRNA. The tissue level of 8-oxodG was measured by HPLC-ECD. We found a 2-3-fold increased incision activity in the foetal control tissue, together with a 3-15-fold increase in mRNA of OGG1 as compared to liver tissue from adult rats. The levels of 8-oxodG in the foetal tissue were unaltered as compared to the adult groups. To increase the levels of 8-oxodG, the rats received an injection (i.p.) of the hepatotoxin 2-nitropropane. The compound induced significant levels of 8-oxodG in male rat livers 5h after the injection and in the foetuses 24h after the injection, while the female rats showed no increase in 8-oxodG. The incision activity was slightly depressed in both male and female liver tissue and in the foetal tissue 5h after the injection, but significantly increased from 5 to 24h after the injection. However, it did not reach levels significantly above the control levels.In conclusion, this study confirms that foetal tissue has increased levels of OGG1 mRNA and correspondingly an enhanced incision activity on an 8-oxodG substrate in a crude tissue extract.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号