首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
It is well established that normal patterns of epithelial cell proliferation and metabolism, and of fiber cell differentiation and maturation are essential for the maintenance of transparency in the ocular lens. Several factors, including exposure to high levels of sugars, have been known to result in the compromise of lens transparency. For example, initiation of lens cell damage by galactose induces lens epithelial cells to proliferate. Elevated levels of c-myc mRNA have usually been correlated with rapid cell growth and increased entry of cells into the S phase. Therefore, changes in c-myc mRNA levels may provide an early indication of the stimulation of lens epithelial cells to proliferate and differentiate, which has been postulated to be an early and important event in response to lens cell injury by galactose. By Northern blot hybridization analysis we quantitated c-myc mRNA levels in the lens capsule epithelia of rats (1) exposed to galactose, and (2) undergoing a partial recovery from the galactose-induced cell damage. At the onset of lens cell damage, we find c-myc mRNA to elevate to 6-fold by 24 hr, and by 48 hr decreases to about 3-fold the normal levels. During recovery, c-myc mRNA continues to be expressed at high levels approaching a 10-fold increase by day 12, then decreasing to levels of about 8-fold the control by day 30. The 24 h transitory elevation in c-myc mRNA in lens epithelial cells is in accord with our previous observations on the 24 h increase in MP26, crystallin and aldose reductase mRNAs following a high influx of galactose. Therefore, the elevation in c-myc mRNA as well suggest that galactose appears to cause lens cells to undergo an early transitory period of gene induction following the exposure of lens cells to galactose.  相似文献   

4.
Aldose reductase (AR), an enzyme which converts glucose to sorbitol, has been implicated in the pathogenesis of diabetic cataracts and retinopathy. The normal physiological role of this enzyme in ocular tissue, however, remains unclear. In a developmental study in the rat using in situ and Northern hybridization analyses, we have found that there is a high level of AR mRNA expression in optic cup and lens as early as embryonic day 13. Serial sections through whole embryos at this stage showed that the eye was the only site of AR mRNA hybridization. Levels of AR mRNA declined in the retina as differentiation proceeded and were very sparse there postnatally. As lens development progressed, epithelial AR mRNA levels remained high, especially in the germinative zone, which is the source of the cells that will become lens fibers, and in the bow region, where these cells undergo a dramatic morphogenetic differentiation into lens fibers. AR mRNA was undetectable in terminally differentiated lens fibers. Since it has been suggested that AR-catalyzed sorbitol production could be an osmoprotective device of lens epithelium during systemic hyperosmolar stress, AR mRNA levels from dehydrated hyperosmolar rats were compared with euvolemic control values, and no difference was found. In summary, AR appears to be of particular importance in the development of the eye, with its retinal role receding relative to lens as differentiation is completed. A continued high level of expression in lens epithelium in adulthood may be explained by the fact that lens tissue, unlike retina, normally continues to proliferate and differentiate after birth. The temporal and spatial pattern of distribution of AR mRNA is strongly suggestive of a role for this enzyme in lens fiber morphogenesis.  相似文献   

5.
With a fixed time period of galactose feeding, the rate of appearance of lenticular opacities depended on the severity of galactosemia, while with a fixed amount of galactose fed, the rate was time dependent. The capacity of tolrestat, a structurally novel inhibitor of aldose reductase (AR), to control cataract development was assessed in rats fed 30-50% galactose with the diet for 7 to 277 days. In rats fed 30% galactose for 31 days, the controlling effect of tolrestat was dose dependent, and no cataracts were detected at a dose of 35 mg/kg/day. In rats given tolrestat with the diet for 14 days, then rendered severely galactosemic with a diet containing 50% galactose, and subjected to continued treatment with tolrestat at a dose of 43 mg/kg/day, no changes were detected by slit-lamp microscopy after 207 days. The preventive effect was also dose dependent. In view of the established similarity in the pathogenesis of galactosemic and diabetic cataracts, the results obtained with tolrestat support its potential for controlling cataract development in diabetics.  相似文献   

6.
It was established earlier that the maintenance of rats on a galactose-rich diet induced in rat liver a sequental induction of enzymes, converting galactose to glucose (galactokinase, galactoso-1-phosphaturidytransferase and uridyndiphosphogalactose-4-epimerase); this was followed by the repression of these enzymes. Against the background of the enzyme repression, the continuation of galactose treatment leads to the development of galactosemia symptoms; cataracts, liver lesions growth retardation. Animals with the increased susceptibility to galactose were found in population of Wistar rats; in these animals rapidly developing enzyme induction is followed by sharp repression of enzymes of the galactose metabolism and in them cataracts appear 17-19 days after the start of feeding a galactose-rich diet. A part of the population is resistant to the galactosemic effect of galactose and in these animals cataracts develope only 40-44 days after the beginning of the galactose feeding. By inbreeding of individuals extremely susceptible to galactose and those resistant to it, new substrains of rats were obtained. It is found that in the rats of the galactose-susceptible substrain a number of galactosemic features develope spontaneously and that these features are inheritable. Thus, 85% of the animals of the age of 2.5-6 months have cataract, lens opacities and other lens impairments. In the galactose-resistant substrain no cataracts or lens opacities develope and only slight changes of the lens are observed in 15% of the animals. In the susceptible substrain other features characteristic of galactosemia occur: an increase in the size of thymus, spleen and liver. It is established that in 3.5-5 month old rats of the galactose-susceptible substrain the galactoso-1 phosphaturidyltransferase activity in blood hemolysates is 15 times lower than in rats of galactose-resistant substrain, and in liver the activity of this enzyme is 1.4 times lower. The activity of liver galactokinase and uridyldiphosphogalactose-4-epimerase is slightly higher in rats of galactose-susceptible substrain than in galactose-resistant 1.  相似文献   

7.
Simvastatin rapidly induced cataracts in young Chbb:Thom (CT) but not Sprague Dawley (SD) or Hilltop Wistar (HW) rats. Oral treatment for 14 but not 7 days committed CT rat lenses to cataract formation. The cholesterol to phospholipid molar ratio in lenses of treated CT rats was unchanged. Differences between strains in serum and ocular humor levels of simvastatin acid poorly correlated with susceptibility to cataracts. No significant differences were found between rat strains in the capacity of simvastatin acid to inhibit lens-basal sterol synthesis. Prolonged treatment with simvastatin comparably elevated HMG-CoA reductase protein and enzyme activity in lenses of both cataract resistant and sensitive strains. However, in contrast to SD and HW rats, where sterol synthesis was markedly increased, sterol synthesis in CT rat lenses remained at baseline. Discordant expression of sterol synthesis in CT rats may be due to inadequate upregulation of lens HMG-CoA synthase. HMG-CoA synthase protein levels, and to a much lesser extent mRNA levels, increased in lens cortex of SD but not CT rats. Because upregulation of the sterol pathway may result in increased formation of isoprene-derived anti-inflammatory substances, failure to upregulate the pathway in CT rat lenses may reflect an attenuated compensatory response to injury that resulted in cataracts.  相似文献   

8.
9.
An overdose of sodium selenite induces cataracts in young rats. The mid-stage events producing the cataract include calpain-induced hydrolysis and precipitation of lens proteins. Apoptosis in lens epithelial cells has been suggested as an initial event in selenite cataracts. Expression levels of two genes associated with apoptosis were altered in lens epithelial cells from selenite-injected rats. The purpose of the present experiment was to perform a more comprehensive search for changes in expression of mRNAs in lens epithelial cells in order to more fully delineate the early events in selenite-induced cataracts. Lens epithelial cells were harvested at 1 and 2 days after a single subcutaneous injection of sodium selenite (30 mumol/kg body weight) into 12-day-old rats. Gene expression was analyzed using a commercial DNA array (Rat Genome U34A GeneChip array, Affymetrix). Of approximately 8000 genes assayed by hybridization, 13 genes were decreased and 27 genes were increased in the rat lens epithelial cells after injection of selenite. Some of the up-regulated genes included apoptosis-related genes, and a majority of the down-regulated genes were mitochondrial genes. Previously observed changes in expression of EGR-1 mRNA were also confirmed. Changes in the expression patterns of mRNAs were also confirmed by RT-PCR. To determine the mechanism for damage of lens epithelial cells (alpha TN4 cell) by culture in selenite, leakage of cytochrome c from mitochondria was measured. Selenite caused significant leakage of cytochrome c into the cytosol of alpha TN4 cells. Our data suggested that the loss of integrity of lens epithelial cells by selenite might be caused by preferential down-regulation of mitochondrial RNAs, release of cytochrome c, and impaired mitochondrial function. Up-regulation of mRNAs involved in maintenance of DNA, regulation of metabolism, and induction of apoptosis may also play roles.  相似文献   

10.
Osmotic cataracts were diagnosed in all of 191 Atlantic salmon Salmo salar L. postsmolts caught during 8 trawl hauls on the western side of the V?ringsplateau, Norwegian Sea, in June 2001. The changes varied from a hazy opacity in the anterior part of the lens to cataracts affecting the whole lens. Severely affected lenses appeared swollen and large vacuoles were visible in the opaque areas. Large vacuoles in otherwise clear lenses were diagnosed in 1 of 4 adult salmon examined. Histologically, widened sutures, vacuolation of lens epithelium and cortex, and proteinaceous lakes subjacent to the epithelium were the most frequent changes, while extensive cortical necroses and epithelial proliferation were seen in a few cases. UV-absorbance of the aqueous humor was determined and levels compared to plasma levels and also to levels in farmed Atlantic salmon of the same developmental stage. Wild salmon generally showed higher levels of protective factors than farmed fish. The osmotic type of cataract diagnosed leads to poor vision and is a potential cause of reduced survival in postsmolts. The cause of the cataracts could not be determined, but defective osmoregulation is suspected.  相似文献   

11.
The relevance of nonenzymatic glycosylation of lens proteins to cataract formation was studied in rats on a normal and high galactose diet, treated with and without sorbinil, an aldose reductase inhibitor. All galactosemic rats not receiving sorbinil had cataracts; none receiving sorbinil had cataracts. Lens homogenate was treated with a 200 fold molar excess of [3H]-borohydride and the extent of glycosylation was estimated from radioactivity incorporation and quantitation of hexitol-lysine adduct after extensive dialysis. We found no differences in the radioactivity uptake nor the amounts of hexitol-lysine in the lenses of galactosemic rats treated with and without sorbinil. Thus, nonenzymatic glycosylation was not responsible for the sugar-induced cataracts.  相似文献   

12.
Diminished proteolytic functionality in the lens may cause cataracts. We have reported that O-GlcNAc is an endogenous inhibitor of the proteasome. We hypothesize that in the lens there is a cause-and-effect relationship between proteasome inhibition by O-GlcNAc, and cataract formation. To demonstrate this, we established novel transgenic mouse models to over-express a dominant-negative form of O-GlcNAcase, GK-NCOAT, in the lens. Expression of GK-NCOAT suppresses removal of O-GlcNAc from proteins, resulting in increased levels of O-GlcNAc in the lenses of our transgenic mice, along with decreased proteasome function. We observed that transgenic mice developed markedly larger cataracts than controls and lens fiber cell denucleation was inhibited. Our study suggests that increased O-GlcNAc in the lens could lead to cataract formation and attenuation of lens fiber cell denucleation by inhibition of proteasome function. These findings may explain why cataract formation is a common complication of diabetes since O-GlcNAc is derived from glucose.  相似文献   

13.
14.
Cheng C  Gong X 《PloS one》2011,6(11):e28147
Recent genetic studies show that the Eph/ephrin bidirectional signaling pathway is associated with both congenital and age-related cataracts in mice and humans. We have investigated the molecular mechanisms of cataractogenesis and the roles of ephrin-A5 and EphA2 in the lens. Ephrin-A5 knockout (-/-) mice often display anterior polar cataracts while EphA2(-/-) lenses show very mild cortical or nuclear cataracts at weaning age. The anterior polar cataract of ephrin-A5(-/-) lenses is correlated with multilayers of aberrant cells that express alpha smooth muscle actin, a marker for mesenchymal cells. Only select fiber cells are altered in ephrin-A5(-/-) lenses. Moreover, the disruption of membrane-associated β-catenin and E-cadherin junctions is observed in ephrin-A5(-/-) lens central epithelial cells. In contrast, EphA2(-/-) lenses display normal monolayer epithelium while disorganization is apparent in all lens fiber cells. Immunostaining of ephrin-A5 proteins, highly expressed in lens epithelial cells, were not colocalized with EphA2 proteins, mainly expressed in lens fiber cells. Besides the previously reported function of ephrin-A5 in lens fiber cells, this work suggests that ephrin-A5 regulates β-catenin signaling and E-cadherin to prevent lens anterior epithelial cells from undergoing the epithelial-to-mesenchymal transition while EphA2 is essential for controlling the organization of lens fiber cells through an unknown mechanism. Ephrin-A5 and EphA2 likely interacting with other members of Eph/ephrin family to play diverse functions in lens epithelial cells and/or fiber cells.  相似文献   

15.
Data in the present paper demonstrate a significant inhibition in the progress of sugar cataract formation by systemic administration of pyruvate. The formation of the cataract was induced by feeding young rats a diet containing 30% galactose. All animals fed this diet developed nuclear lens opacity by the end of 30 days. This was delayed if the diet and water contained, in addition, 2% sodium pyruvate. The incidence of cataract in the latter group was 0% at day 30 and only 25% at day 55. Physiologically, the inhibition was associated with the prevention of lens membrane damage as reflected by its ability to maintain transport of rubidium ions against a concentration gradient; decreased tissue hydration as indexed by the lens wet weight; inhibition of protein glycation, and higher levels of ATP. Since pyruvate, being a normal tissue metabolite, is likely to be non-toxic, the findings are considered useful for further pharmacological studies with this and other similar metabolites, relevant to protection against various secondary complications of diabetes and galactosemia.  相似文献   

16.
Data in the present paper demonstrate a significant inhibition in the progress of sugar cataract formation by systemic administration of pyruvate. The formation of the cataract was induced by feeding young rats a diet containing 30% galactose. All animals fed this diet developed nuclear lens opacity by the end of 30 days. This was delayed if the diet and water contained, in addition, 2% sodium pyruvate. The incidence of cataract in the latter group was 0% at day 30 and only 25% at day 55. Physiologically, the inhibition was associated with the prevention of lens membrane damage as reflected by its ability to maintain transport of rubidium ions against a concentration gradient; decreased tissue hydration as indexed by the lens wet weight; inhibition of protein glycation, and higher levels of ATP. Since pyruvate, being a normal tissue metabolite, is likely to be non-toxic, the findings are considered useful for further pharmacological studies with this and other similar metabolites, relevant to protection against various secondary complications of diabetes and galactosemia.  相似文献   

17.
Cataracts, the loss of lens transparency, are the leading cause of human blindness. The zebrafish embryo, with its transparency and relatively large eyes, is an excellent model for studying ocular disease in vivo. We found that the zebrafish cloche mutant, both the cloche(m39) and cloche(S5) alleles, which have defects in hematopoiesis and blood vessel development, also have lens cataracts. Quantitative examination of the living zebrafish lens by confocal microscopy showed significant increases in lens reflectance. Histological analysis revealed retention of lens fiber cell nuclei owing to impeded terminal differentiation. Proteomics identified gamma-crystallin as a protein that was substantially diminished in cloche mutants. Crystallins are the major structural proteins in mouse, human and zebrafish lens. Defects in crystallins have previously been shown in mice and humans to contribute to cataracts. The loss of gamma-crystallin protein in cloche was not due to lowered mRNA levels but rather to gamma-crystallin protein insolubility. AlphaA-crystallin is a chaperone that protects proteins from misfolding and becoming insoluble. The cloche lens is deficient in both alphaA-crystallin mRNA and protein during development from 2-5 dpf. Overexpression of exogenous alphaA-crystallin rescued the cloche lens phenotype, including solubilization of gamma-crystallin, increased lens transparency and induction of lens fiber cell differentiation. Taken together, these results indicate that alphaA-crystallin expression is required for normal lens development and demonstrate that cataract formation can be prevented in vivo. In addition, these results show that proteomics is a valuable tool for detecting protein alterations in zebrafish.  相似文献   

18.
19.
Proteins in basement membrane (BM) are long‐lived and accumulate chemical modifications during aging; advanced glycation endproduct (AGE) formation is one such modification. The human lens capsule is a BM secreted by lens epithelial cells. In this study, we have investigated the effect of aging and cataracts on the AGE levels in the human lens capsule and determined their role in the epithelial‐to‐mesenchymal transition (EMT) of lens epithelial cells. EMT occurs during posterior capsule opacification (PCO), also known as secondary cataract formation. We found age‐dependent increases in several AGEs and significantly higher levels in cataractous lens capsules than in normal lens capsules measured by LC‐MS/MS. The TGFβ2‐mediated upregulation of the mRNA levels (by qPCR) of EMT‐associated proteins was significantly enhanced in cells cultured on AGE‐modified BM and human lens capsule compared with those on unmodified proteins. Such responses were also observed for TGFβ1. In the human capsular bag model of PCO, the AGE content of the capsule proteins was correlated with the synthesis of TGFβ2‐mediated α‐smooth muscle actin (αSMA). Taken together, our data imply that AGEs in the lens capsule promote the TGFβ2‐mediated fibrosis of lens epithelial cells during PCO and suggest that AGEs in BMs could have a broader role in aging and diabetes‐associated fibrosis.  相似文献   

20.
Chronic treatment of rats with the amphipilic drugs chloroquine and chlorphentermine caused prominent anterior polar cataracts in virtually all rats. The basic pathologic changes underlying these cataracts were: (a) degeneration of anterior polar and sutural endings of cortical lens cells and (b) multilayered proliferation and invasion of epithelial cells into the anterior polar cortex. Ultrastructurally cortical lens cells displayed various patterns of degeneration, finally undergoing complete liquification. Liquified lens substance was phagocytosed by invading epithelial cells. Cortical lens cells and epithelial cells contained numerous lipidosis-like (lamellated) inclusions, which possessed cytochemical acid phosphatase activity. The present drug-induced lenticular alterations are interpreted as the direct or indirect consequences of a drug-induced disturbance of polar lipid metabolism in the lens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号