首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A.D. Fox  J. Kahlert 《Bird Study》2013,60(3):266-274
Flightless moulting Greylag Geese on the Danish island of Saltholm fed on Puccinellia maritima almost exclusively within 150 m of the coastline, despite abundant equivalent food further away. This distribution pattern could theoretically be explained by two alternative (but not necessarily mutually exclusive) explanations: predation risk (since birds take to open water when disturbed) or variation in food quantity/quality. Above ground green parts of this plant showed consistently higher protein and lower fibre content inland than on the coast, hence differences in food quality could not account for the difference in foraging distribution. However, in grazed plots, shoot density was greater at the coast than inland, resulting in an increase of 1.2–2.8 times the available green above-ground biomass. Hence, the greater abundance of Puccinellia at the coast may contribute to the explanation. However, within exclosures at the coast, Puccinellia shoot density was no different to inland areas, suggesting that some function of goose grazing at the coast was involved in enhancing biomass there. It therefore seems likely that the greater food biomass at the coast is a consequence of geese feeding to within 150 m of the coast, though not necessarily the cause. The fact that the Greylag Geese fed throughout the island whilst able to fly but fed exclusively on the coast during flightlessness suggests that a predator escape mechanism could be the most important factor constraining the feeding distribution of moulting geese.  相似文献   

2.
The pre-nesting feeding behaviour of greylag Anser anser and pink-footed geese A brachyrhynchus was studied on agricultural land at low altitude in southern Iceland from 10 April to 8 May 1990 Greylag geese were already present on 12 April increased to 4580 birds by 24 April, but declined to 1300 by 3 May Pink-footed geese arrived around 20 April and numbers continued to increase to a peak count of 11340 on 3 May Over 60% of greylag geese initially used stubble fields on the coast where this habitat was most frequent, but increasingly resorted to grassland and wetland habitats during late April Later-arriving pink-feet predominantly used managed grassland, away from coastal areas At inland grassland sites, greylag numbers peaked on 20 April, pink-feet m early May The early exploitation by greylags was associated with grass growth initiated under protective snow-patches Greylags spent 90 times more time feeding within 1 m of snow patches with enhanced grass growth than expected by chance and their feeding rates near snow patches were faster and their step rates slower than further away By early May, grass growth was uniform and, although snow-patches persisted, no difference in forage quality, goose feeding rates or step rates could be detected It is concluded that, in spring 1990 at least, habitat segregation during spring migration in southern Iceland minimised competition between these two closely related goose species within the same geographical area In areas where both species exploit the same habitat, a two week difference m timing of breeding (and hence phenology of migration) further assures minimal overlap in feeding exploitation  相似文献   

3.
Seasonal changes in the distribution and feeding behaviour of dark-bellied brent geese Branta b. bernicla (L.) and the biomass of their food plants were studied in three successive winters on the Norfolk coast. The data was used, in conjunction with published information, to show how depletion, productivity and mortality of food plants drive the pattern of habitat switching in this species. It is then possible to explain the habitat shifts observed over the last 35 years and predict future changes. On arrival, geese fed first on algal beds and then on salt marsh, grass and arable fields before returning to feed entirely on the salt marsh in spring. The biomass of green algae, and subsequently the salt marsh vegetation, declined during the autumn and this could be attributed to depletion through goose grazing and natural mortality. As depletion occurred the geese fed more intensively, for a greater percentage of time and with an increasing pace rate, the net result, however, was a declining intake rate (as measured by defaecation rate). The algal biomass at which the geese switched from the algal beds to salt marsh was consistent between years, with heavy storm-induced loss of algae in one year resulting in an earlier switch. That the timing of habitat switches may be explained by depletion of food plants was further supported by historical data: the number of brent geese wintering at the site has increased dramatically over the last 30–35 years and the time of switching from algal beds to salt marsh and from salt marsh to salt marsh and fields has become progressively earlier, as expected from the increased depletion. The expected further increase in brent goose numbers will increase the rate of depletion of intertidal vegetation so that the switches between habitats will be more rapid and the geese will move inland earlier and remain inland longer. The expected increase in the brent goose population will thus result in a disproportionate increase in the levels of conflict between brent geese and agriculture.  相似文献   

4.
Canada geese (Branta canadensis) can cause serious damage to turfgrass areas and create human health and safety concerns (e.g., collisions with aircraft, disease transmission). We conducted a study during 2005–2007 to determine if Canada geese exhibit a feeding preference among various commercially available turfgrasses. Behavioral responses of captive geese to 9 turfgrasses, bare ground, and litter were observed over 6 4-week trials during July–September following the installation of selected turfgrasses into experimental arenas. Captive geese preferred to forage on Kentucky bluegrass, creeping bentgrass, and fine fescue sods compared to centipedegrass, St. Augustinegrass, and zoysiagrass. Forage qualities and macronutrient levels varied among the turfgrasses and might explain the foraging preferences geese exhibited during this study. Canada goose feeding rate was positively correlated with crude protein, nitrogen content, and calcium, but negatively correlated with acid detergent fiber content, within various turfgrasses. Our findings suggest careful selection of turfgrasses could be an effective method for reducing Canada goose conflicts in urban and suburban areas. © 2011 The Wildlife Society.  相似文献   

5.
Quantifying spatial patterns of bird nests and nest fate provides insights into processes influencing a species’ distribution. At Cape Churchill, Manitoba, Canada, recent declines in breeding Eastern Prairie Population Canada geese (Branta canadensis interior) has coincided with increasing populations of nesting lesser snow geese (Chen caerulescens caerulescens) and Ross’s geese (Chen rossii). We conducted a spatial analysis of point patterns using Canada goose nest locations and nest fate, and lesser snow goose nest locations at two study areas in northern Manitoba with different densities and temporal durations of sympatric nesting Canada and lesser snow geese. Specifically, we assessed (1) whether Canada geese exhibited territoriality and at what scale and nest density; and (2) whether spatial patterns of Canada goose nest fate were associated with the density of nesting lesser snow geese as predicted by the protective-association hypothesis. Between 2001 and 2007, our data suggest that Canada geese were territorial at the scale of nearest neighbors, but were aggregated when considering overall density of conspecifics at slightly broader spatial scales. The spatial distribution of nest fates indicated that lesser snow goose nest proximity and density likely influence Canada goose nest fate. Our analyses of spatial point patterns suggested that continued changes in the distribution and abundance of breeding lesser snow geese on the Hudson Bay Lowlands may have impacts on the reproductive performance of Canada geese, and subsequently the spatial distribution of Canada goose nests.  相似文献   

6.
Abstract: Accurately predicting occurrence of wildlife damage is crucial for effective management of problematic wildlife species, because accurate predication allows deterrence efforts to be focused at sites or times where damage is most likely. We explored methods to predict occurrence of white-fronted geese (Anser albifrons) grazing in wheat fields around Lake Miyajimanuma, Japan. Depletion of waste rice grains caused geese to forage on wheat leaves in spring, reducing wheat harvest in grazed fields. The cumulative number of goose-days per hectare of rice-planted area from the beginning of the staging period explained the variation in the proportion of geese foraging in wheat fields. A logistic regression model on the location of vulnerable fields showed that goose grazing was likely to occur in wheat fields far from roads and windbreaks and those close to (within 1,000–2,000 m of) previously grazed fields. Although probability of occurrence of goose grazing was initially low in wheat fields with scaring devices, effectiveness of such devices was lost over the 4 survey years. We recommend farmers in the study area prepare counter-damage measures when the cumulative number of goose-days per rice-planted area approaches a threshold above which some geese are predicted to start foraging on wheat (e.g., 199.46 goose-days/ha rice × 28.95 for 10% of geese foraging on wheat). Further, farmers should be aware that grazing on wheat is more likely to occur if wheat fields within 1,000–2,000 m have already been exploited during that particular season and should concentrate deterrence efforts to wheat fields that are far from roads and windbreaks. Systematic deployment of scaring devices over the entire habitat has a risk of accelerating the decline in effectiveness. Thus, we need methods to retard goose habituation to scaring devices, such as scaring with guns, providing alternative feeding sites, and preventing diet change by geese.  相似文献   

7.
Intensification of agriculture since the 1950s has enhanced the availability, competitive ability, crude protein content, digestibility and extended growing seasons of forage grasses. Spilled cereal grain also provides a rich food source in autumn and in winter. Long‐distance migratory herbivorous geese have rapidly exploited these feeding opportunities and most species have shown expansions in range and population size in the last 50 years. Results of long‐term studies are presented from two Arctic‐breeding populations, the Svalbard pink‐footed goose and the Greenland white‐fronted goose (GWFG). GWFGs have shown major habitat shifts since the 1950s from winter use of plant storage organs in natural wetlands to feeding on intensively managed farmland. Declines in local density on, and abandonment of, unmodified traditional wintering habitat and increased reproductive success among those birds wintering on farmland suggest that density‐dependent processes were not the cause of the shift in this winter‐site‐faithful population. Based on enhanced nutrient and energy intake rates, we argue that observed shifts in both species from traditionally used natural habitats to intensively managed farmland on spring staging and wintering areas have not necessarily been the result of habitat destruction. Increased food intake rates and potential demographic benefits resulting from shifts to highly profitable foraging opportunities on increasingly intensively managed farmland, more likely explain increases in goose numbers in these populations. The geographically exploratory behaviour of subdominant individuals enables the discovery and exploitation of new winter feeding opportunities and hence range expansion. Recent destruction of traditional habitats and declines in farming at northern latitudes present fresh challenges to the well being of both populations. More urgently, Canada geese colonizing breeding and moulting habitats of white‐fronted geese in Greenland are further affecting their reproductive output.  相似文献   

8.
In pink-footed goose (Anser brachyrhynchus) wintering in Denmark, The Netherlands and Belgium, the proportion of juveniles in the hunting bag is consistently higher than that observed in the autumn population. Such juvenile bias in the bag is usually ascribed to young geese lacking experience with hunting or disruption of juveniles from families. An alternative explanation may be that flocking behaviour of families make juveniles more vulnerable. Observations of morning flights of pink-footed geese to the feeding grounds from two of the major autumn-staging areas showed that geese were distributed in many small flocks (median flock size = 9). This was not significantly different from the flock size distribution shot at by hunters (median = 8), suggesting that hunters targeted goose flock size in proportion to the general probability of encounter. The rate at which hunters downed geese was independent of flock size. The ratio between juveniles and adults in flocks decreased with flock size and flocks of <60 individuals primarily comprised family groups. The likelihood of being shot at was 2.4 times higher for juveniles and 3.4 times higher for older birds in small flocks (<10 individuals) compared to larger flocks. The observations suggest that both juveniles as well as successful adult breeding birds were more vulnerable than non-breeding/failed breeding birds as a result of flocking behaviour.  相似文献   

9.
The origins of the European domestic goose are uncertain. The available information comes from archaeological findings and historical literature, but genetic evidence has hitherto been scarce. The domestic goose in Europe is derived from the greylag goose (Anser anser), but it is not known where the initial domestication took place and which of the two subspecies of greylag goose was ancestral. We aimed to determine the amount and geographical distribution of genetic diversity in modern populations of greylag geese as well as in different breeds of the domestic goose to make inferences about goose domestication. We studied DNA sequence variation in the mitochondrial control region of greylag geese from multiple populations across Europe and western Asia as well as specimens of domestic geese representing 18 modern breeds and individuals not belonging to any recognised breed. Our results show notable differences in genetic diversity between different greylag goose populations and the presence of six mitochondrial haplogroups which show a degree of geographical partitioning. The genetic diversity of the domestic goose is low, with 84% of sampled individuals having one of two major closely related haplotypes, suggesting that modern European domestic geese may derive from a narrow genetic base. The site of domestication remains unresolved, but domestic geese in Turkey were unusually diverse, indicating the importance of further sampling in the vicinity of the eastern Mediterranean and the Near East. There appears to be past or ongoing hybridisation between greylags and domestic geese in particular areas, consistent with field observations.  相似文献   

10.
ABSTRACT In many urban metropolitan areas, resident Canada goose (Branta canadensis) populations have grown to nuisance levels in spite of increasing harvest opportunity. To document differences in demographic parameters between urban and rural geese, I estimated probabilities of survival, recapture, recovery, and fidelity for adult resident Canada geese between 2001 and 2006 using banding, live recapture, and dead recovery data from 2 distinct banding locations in Georgia, USA. Adult survival rates were higher for urban geese (0.958, SE = 0.020) than for rural geese (0.682, SE = 0.049). Using estimated recovery probabilities of 0.505 (SE = 0.107) for urban and 0.463 (SE = 0.045) for rural geese, along with current estimates of crippling loss and reporting rate, the estimated mean harvest rate for urban geese was 0.029 (SE = 0.006) and for rural geese was 0.202 (SE = 0.020). Fidelity rates were similar between urban (0.730, SE = 0.033) and rural geese (0.713, SE = 0.069). This information suggests that urban segments of the Canada goose population have substantially higher survival than rural geese and are harvested at a very low rate, and that liberalizing hunting regulations may have little impact on Georgia's urban goose population. Wildlife managers may need to consider options other than sport hunting to control nuisance goose populations in urban areas.  相似文献   

11.
Abstract: OvoControl G is a relatively new product that reduces hatchability of Canada goose (Branta canadensis) eggs, and few data are available on its cost effectiveness. Variables such as presence of nontargets, alternative foods, and public support can affect cost efficacy. We present a model that uses these and other factors to estimate the cost of application of OvoControl G for managing nuisance Canada geese. We found that at low goose densities (<35 pairs of geese), fixed labor was a significant portion of costs. As goose densities increase, OvoControl G becomes more cost effective than other methods, such as egg oiling or addling. Managers can use this model to determine whether OvoControl G will provide a successful and cost-effective treatment for population control of Canada geese in specific management areas.  相似文献   

12.
Jouke Prop  John L. Quinn 《Oikos》2003,102(3):571-580
In this paper we aim to explain the distribution of red-breasted geese Branta ruficollis over different nesting habitats. To be safe from land predators red-breasted goose colonies were restricted to i) islands on rivers, ii) cliffs with peregrine falcons Falco peregrinus , and iii) the close proximity of snowy owl Nyctea scandiaca and rough-legged buzzard Buteo lagopus nests. Among years nest site availability varied by fluctuations in numbers of owls and buzzards in association with cycles in lemming abundance, but the total number of goose nests found in the study area did not vary. The distribution of geese, in combination with data on reproductive success, suggested a despotic mechanism: at cliffs, goose numbers were constant among years with an invariably high reproductive success, whereas large fluctuations in numbers on islands coincided with opposite trends in success. Apparently, geese nesting with owls or buzzards moved to the few islands present in the study area during years when these birds of prey were absent. Consequently, in such years the average density of geese on islands was more than twice as high as at cliff colonies (5.4 and 2.3 pairs per ha of foraging habitat, respectively). Colony size at cliffs may have been restricted by territorial behaviour of the geese, though there is evidence that, additionally, the host falcons also limited the number of nesting geese. Apparently rare in closely related species, we observed a negative density-dependent effect on reproductive success during the nest phase, and attribute this to limited food resources, reinforced by the high frequency of territorial interactions. This leads to the conclusion that, in addition to predation pressure, nesting density is an important agent in the link between lemming cycles and goose breeding success.  相似文献   

13.
Summary We tested Buchsbaum's hypothesis that food palatability in geese is determined by a hierarchy of feeding cues among which deterrent secondary metabolites (mostly phenols) have a primary role (Buchsbaum et al. 1984). In preference tests, greater snow goose feeding was slightly depressed when grass was sprayed with ferulic acid but not when grass was sprayed with p-coumaric and tannic acids. Extracts of Timothy grass, red clover or alfalfa sprayed on grass also failed to depress goose feeding. In a multifactor experiment, phenol and protein content and height of grass were manipulated simultaneously. When ferulic acid was sprayed, protein and phenol content interacted in determining goose feeding preferences; protein content had no effect in the absence of phenol but did have an effect when phenol was added. When tannic acid was used in a similar experiment, results were inconclusive because of a significant and complex interaction between protein content and height of grass. Our results generally failed to support Buchsbaum's hypothesis that phenol content of plants has a primary role in determining food preference in geese. Protein content of plants seemed to be a more important factor.  相似文献   

14.
Lesser snow geese Anser caerulescens caeruteseens from the western Canadian Arctic feed on underground parts of tall cotton–grass Eriophorum angustifolium during autumn staging on the coastal plain of the Beaufort Sea in Canada and Alaska. We studied revegetation of sites where cotton–grass had been removed either by human–imprinted snow geese or by hand to simulate snow goose feeding. Aerial cover of cotton–grass at sites (n = 4) exploited by human–imprinted snow geese averaged 60 and 39 Mi lower than in undisturbed control plots during the first and second year after feeding, respectively. Underground biomass of cotton–grass stembases and rhizomes in hand–treated plots was 80 and 62% less than in control plots 2 and 4 yr after removal, respectively (n = 10 yr-1). Aerial cover and biomass of common non-forage species such as Carex aquatilis did not increase on treated areas. Removal of cotton-grass by geese likely reduces forage availability at exploited sites for at least 2–4 yr after feeding but probably does not affect long-term community composition. Temporal heterogeneity in forage abundance likely contributes to the large spatial requirement of snow geese during staging.  相似文献   

15.
Once extirpated from much of their North American range, temperate-breeding Canada geese (Branta canadensis maxima) have reached high abundance. As a result, focus has shifted from restoration to managing harvest and addressing human-goose conflict. Conflict persists or is increasing in urban areas throughout the Mississippi Flyway. Managers need more information regarding demographic rates to determine how hunting affects geese breeding in urban areas and what management actions may be required to achieve management goals. We estimated survival, dead recovery, live recapture, and fidelity probabilities using data from 77,872 Canada geese banded in Iowa, USA, during 1999–2019 using Burnham joint live-dead band recovery models. Factors predicted to affect parameters in candidate models included age (juvenile, subadult, adult), banding site (urban, rural), time, trend, harvest regulation index, and winter severity index. We predicted Canada geese banded in urban areas would have higher survival and lower dead recovery rates than geese banded at rural sites. The top model indicated support for age and banding site effects, and trends in survival and recovery rate (Brownie parameterization). Adult survival was similar for urban (0.75; range = 0.60–0.92) and rural (0.75; range = 0.66–0.82) geese and relatively constant across years. Mean juvenile survival was lower in urban (0.74; range = 0.48–0.93) than rural (0.85; range = 0.68–0.92) areas. Survival increased for urban-banded juveniles and recovery rates increased during liberalization of harvest regulations and decreased after regulations stabilized. Recovery rates of subadults increased for the urban and rural groups. Our results suggest Canada geese breeding in urban areas contribute to harvest and specialized regulations can affect these populations. Harvest regulations in place during our analysis may not have reached a threshold required to observe substantial changes in survival. Current human-goose conflict in urban areas suggests survival has not decreased to a level required to completely address conflict via reduction in goose abundance. Managers may consider additional liberalization of harvest regulations and monitoring via banding to determine to what degree hunter harvest contributes to reducing human-goose conflict and what additional management actions will be required to achieve goals. © 2020 The Wildlife Society.  相似文献   

16.
The feeding ecology of barnacle geese and pink-footed geese was studied in Sassendalen, Svalbard during the pre-nesting period (late May) to assess the potential for inter-specific competition. Barnacle geese fed almost exclusively (97%) by grazing above-ground plant material, mostly (79%) along snow edges in moss-mat habitats. Pink-footed geese fed mostly (93%) by excavating below-ground parts of plants, mostly (56%) away from snow and were more evenly distributed between habitat types. Barnacle goose faeces contained mostly (62%) moss, that of pink-footed geese mostly (48%) below-ground plant storage organs (especially Bistorta viviparum L.). Principal components analysis of dropping contents showed no overlap in species diet in allopatry or sympatry. There was little overlap in diet and feeding ecology of the two species at this pre-nesting feeding site. Hence, unless increased goose feeding densities affect future vegetation density and composition, under present circumstances, increasing numbers of either species is unlikely to affect foraging conditions for the other at this important stage in the annual cycle. However, such changes could have local density-dependent intra-specific effects.  相似文献   

17.
Nesting migratory geese are among the dominant herbivores in (sub) arctic environments, which have undergone unprecedented increases in temperatures and plant growing days over the last three decades. Within these regions, the Hudson Bay Lowlands are home to an overabundant breeding population of lesser snow geese that has dramatically damaged the ecosystem, with cascading effects at multiple trophic levels. In some areas the overabundance of geese has led to a drastic reduction in available forage. In addition, warming of this region has widened the gap between goose migration timing and plant green‐up, and this ‘mismatch’ between goose and plant phenologies could in turn affect gosling development. The dual effects of climate change and habitat quality on gosling body condition and juvenile survival are not known, but are critical for predicting population growth and related degradation of (sub) arctic ecosystems. To address these issues, we used information on female goslings marked and measured between 1978 and 2005 (4125 individuals). Goslings that developed within and near the traditional center of the breeding colony experienced the effects of long‐term habitat degradation: body condition and juvenile survival declined over time. In newly colonized areas, however, we observed the opposite pattern (increase in body condition and juvenile survival). In addition, warmer than average winters and summers resulted in lower gosling body condition and first‐year survival. Too few plant ‘growing days’ in the spring relative to hatch led to similar results. Our assessment indicates that geese are recovering from habitat degradation by moving to newly colonized locales. However, a warmer climate could negatively affect snow goose populations in the long‐run, but it will depend on which seasons warm the fastest. These antagonistic mechanisms will require further study to help predict snow goose population dynamics and manage the trophic cascade they induce.  相似文献   

18.
The effects of simulated goose grazing on common saltmarsh-grass Puccinellia maritima plants were tested on a Danish salt marsh during the flightless moulting period of greylag geese Anser anser (3–21 June 1998). Plants in an area exclosed from the influence of grazing and the nutrient effects of goose faeces were subject to removal of youngest lamina at 3-, 6-, 9- and 18-day intervals during this period. Average biomass and protein accumulation between harvests was highest at defoliation intervals of 9 days or more. Field observations from two separate study areas demonstrated geese returned to regraze the Puccinellia sward after 6–8 days and oesophageal contents from feeding geese showed selection for lamina lengths consistent with the results of clipping every 6 days. Geese therefore regrazed Puccinellia patches at shorter intervals than expected were they to maximise their intake of biomass or protein at each visit. However, total cumulative lamina elongation, equivalent to the long term gain during the entire moult period, showed no significant difference between the three most intensive defoliation treatments, which were significantly greater than those of plants defoliated at 18 day intervals. Highest overall lamina protein levels were maintained at 6- and 9-day defoliation intervals. This suggests geese regrazed Puccinellia patches at a rate that maximised their number of harvests during the flightless period, but maintained highest protein levels and overall biomass in the sward. This suggests, in line with earlier studies, that moulting greylag geese combine dietary selection, reduced nitrogen excretion and regrazing patterns to meet protein demands during regrowth of flight feathers.  相似文献   

19.
Bar-headed geese (Anser indicus) migrate over the Himalayan mountains, at altitudes up to 9000 m above sea level, where air density and oxygen availability are extremely low. This study determined whether alterations in wing morphology or wingbeat frequency during free flight have evolved in this species to facilitate extreme high altitude migration, by comparing it to several closely related goose species. Wingspan and wing loading scaled near isometrically with body mass across all species (with power scaling exponents of 0.22 and 0.47, respectively), and wingbeat frequency scaled negatively to mass (scaling exponent of -0.167). Bar-headed geese had the largest wingspan residual and smallest wing loading residual from these allometric relationships, suggesting that they are at the top end of the wing size distribution. These morphological characters of bar-headed geese were not outside the normal variation exhibited by low altitude species, however, being within the prediction intervals of the regression. This was particularly true after the data were corrected for phylogeny using the independent contrasts method. Wingbeat frequencies of bar-headed geese during steady flight were the same as low altitude geese, both with and without correcting for phylogeny. Without adjusting other kinematic features (e.g., wing motion and generated wake structure) to supplement lift generation in low air densities, the metabolic costs of flight in bar-headed geese at high altitude could exceed the already high costs at sea level. The apparent lack of morphological and kinematic adaptation emphasizes the importance of physiological adaptations for enhancing oxygen transport and utilization in this species.  相似文献   

20.
Bird strikes to aircraft are a serious economic and safety problem in the United States, annually causing millions of dollars in damage to civilian and military aircraft and the occasional loss of human life. We observed movements of 1236 neckbanded lesser Canada geese (Branta canadensis parvipes) to determine efficacy of hazing as a means to reduce goose presence at Elmendorf Air Force Base (EAFB), Anchorage, Alaska from August to October 1997. Emphasis was on movements of geese onto EAFB with additional data collected at the other two major airports in the area, Anchorage International Airport (AIA) and Merrill Field Airport (MFA). Daily observations indicated the presence of 208 individual neckbanded geese on EAFB, and 20% returned more than once after being hazed from EAFB. We identified three staging areas, geese utilized prior to entering EAFB, and three post-hazing dispersal sites. Collared geese began moving onto EAFB 30–40 days post-molt with the largest proportions moving onto EAFB 70–90 days post-molt. We observed 75 neckbanded geese on AIA from seven molting sites, and 23% returned more than once after being hazed from AIA. We observed 141 neckbanded geese on MFA from 14 molting sites, and 21% returned more than once after being hazed from MFA. Our data indicated that as long as local goose populations increase, large numbers of Anchorage area geese are likely to enter one of the airports creating a variety of management problems. Hazed geese returning to airports multiple times present a special hazard to aircraft safety because they appear to have become habituated to non-lethal scare tactics. We recommend an integrated management approach to limit the Anchorage area goose population utilizing various control techniques which are acceptable to Anchorage residents while continuing the hazing program at area airports.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号