共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Underglycosylation of ATF6 as a novel sensing mechanism for activation of the unfolded protein response 总被引:4,自引:0,他引:4
Hong M Luo S Baumeister P Huang JM Gogia RK Li M Lee AS 《The Journal of biological chemistry》2004,279(12):11354-11363
7.
8.
9.
Sims RJ Chen CF Santos-Rosa H Kouzarides T Patel SS Reinberg D 《The Journal of biological chemistry》2005,280(51):41789-41792
Defining the protein factors that directly recognize post-translational, covalent histone modifications is essential toward understanding the impact of these chromatin "marks" on gene regulation. In the current study, we identify human CHD1, an ATP-dependent chromatin remodeling protein, as a factor that directly and selectively recognizes histone H3 methylated on lysine 4. In vitro binding studies identified that CHD1 recognizes di- and trimethyl H3K4 with a dissociation constant (Kd) of approximately 5 microm, whereas monomethyl H3K4 binds CHD1 with a 3-fold lower affinity. Surprisingly, human CHD1 binds to methylated H3K4 in a manner that requires both of its tandem chromodomains. In vitro analyses demonstrate that unlike human CHD1, yeast Chd1 does not bind methylated H3K4. Our findings indicate that yeast and human CHD1 have diverged in their ability to discriminate covalently modified histones and link histone modification-recognition and non-covalent chromatin remodeling activities within a single human protein. 相似文献
10.
11.
12.
13.
14.
Huifang M. Zhang Ye Qiu Guangze Zhao Hua Wang Yankuan T. Chen Sana Aghakeshmiri Paul Hanson Decheng Yang 《Cellular microbiology》2020,22(7)
Our previous study of coxsackievirus B3 (CVB3)‐induced unfolded protein responses (UPR) found that overexpression of ATF6a enhances CVB3 VP1 capsid protein production and increases viral particle formation. These findings implicate that ATF6a signalling benefits CVB3 replication. However, the mechanism by which ATF6a signalling is transduced to promote virus replication is unclear. In this study, using a Tet‐On inducible ATF6a HeLa cell line, we found that ATF6a signalling downregulated the protein expression of the endoplasmic reticulum (ER) degradation‐enhancing α‐mannosidase‐like protein 1 (EDEM1), resulting in accumulation of CVB3 VP1 protein; in contrast, expression of a dominant negative ATF6a had the opposite effect. Furthermore, we found that EDEM1 was cleaved by both CVB3 protease 3C and virus‐activated caspase and subsequently degraded via the ubiquitin‐proteasome pathway. However, overexpression of EDEM1 caused VP1 degradation, likely via a glycosylation‐independent and ubiquitin‐lysosome pathway. Finally, we demonstrated that CRISPR/Cas9‐mediated knockout of EDEM1 increased VP1 accumulation and thus CVB3 replication. This is the first study to report the ER protein quality control of non‐enveloped RNA virus and reveals a novel mechanism by which CVB3 evades host ER quality control pathways through cleavage and degradation of the UPR target gene EDEM1, to ultimately benefit its own replication. 相似文献
15.
Heterotrimeric G-proteins are molecular switches that convert signals from membrane receptors into changes in intracellular physiology. Recently, several peptides that bind heterotrimeric G-protein alpha subunits have been isolated including the novel Galpha(i1).GDP binding peptides R6A and KB-752. The R6A peptide and its minimized derivative R6A-1 interact with Galpha(i1).GDP. Based on spectroscopic analysis of BODIPYFL-GTPgammaS binding to Galpha(i1), it has been reported that R6A-1 has guanine nucleotide dissociation inhibitor (GDI) activity against Galpha(i1) [W.W. Ja, R.W. Roberts, Biochemistry 43 (28) (2004) 9265-9275]. Using radioligand binding, we show that R6A-1 is not a GDI for Galpha(i1) subunits. Furthermore, we demonstrate that R6A-1 reduces the fluorescence quantum yield of the Galpha(i1)-BODIPYFL-GTPgammaS complex, thus explaining the previously reported GDI activity as a fluorescence artifact. We further show that R6A-1 has significant sequence similarity to the guanine nucleotide exchange factor peptide KB-752 that binds to switch II of Galpha(i1). We use competitive binding analysis to show that R6A-1 also binds to switch II of Galpha subunits. 相似文献
16.
The tyrosine kinase substrate p120cas binds directly to E-cadherin but not to the adenomatous polyposis coli protein or alpha-catenin. 总被引:8,自引:0,他引:8 下载免费PDF全文
The tyrosine kinase substrate p120cas (CAS), which is structurally similar to the cell adhesion proteins beta-catenin and plakoglobin, was recently shown to associate with the E-cadherin-catenin cell adhesion complex. beta-catenin, plakoglobin, and CAS all have an Arm domain that consists of 10 to 13 repeats of a 42-amino-acid motif originally described in the Drosophila Armadillo protein. To determine if the association of CAS with the cadherin cell adhesion machinery is similar to that of beta-catenin and plakoglobin, we examined the CAS-cadherin-catenin interactions in a number of cell lines and in the yeast two-hybrid system. In the prostate carcinoma cell line PC3, CAS associated normally with cadherin complexes despite the specific absence of alpha-catenin in these cells. However, in the colon carcinoma cell line SW480, which has negligible E-cadherin expression, CAS did not associate with beta-catenin, plakoglobin, or alpha-catenin, suggesting that E-cadherin is the protein which bridges CAS to the rest of the complex. In addition, CAS did not associate with the adenomatous polyposis coli (APC) tumor suppressor protein in any of the cell lines analyzed. Interestingly, expression of the various CAS isoforms was quite heterogeneous in these tumor cell lines, and in the colon carcinoma cell line HCT116, which expresses normal levels of E-cadherin and the catenins, the CAS1 isoforms were completely absent. By using the yeast two-hybrid system, we confirmed the direct interaction between CAS and E-cadherin and determined that CAS Arm repeats 1 to 10 are necessary and sufficient for this interaction. Hence, like beta-catenin and plakoglobin, CAS interacts directly with E-cadherin in vivo; however, unlike beta-catenin and plakoglobin, CAS does not interact with APC or alpha-catenin. 相似文献
17.
Tynan SH Purohit A Doxsey SJ Vallee RB 《The Journal of biological chemistry》2000,275(42):32763-32768
The light intermediate chains (LICs) of cytoplasmic dynein consist of multiple isoforms, which undergo post-translational modification to produce a large number of species separable by two-dimensional electrophoresis and which we have proposed to represent at least two gene products. Recently, we demonstrated the first known function for the LICs: binding to the centrosomal protein, pericentrin, which represents a novel, non-dynactin-based cargo-binding mechanism. Here we report the cloning of rat LIC1, which is approximately 75% homologous to rat LIC2 and also contains a P-loop consensus sequence. We compared LIC1 and LIC2 for the ability to interact with pericentrin, and found that only LIC1 will bind. A functional P-loop sequence is not required for this interaction. We have mapped the interaction to the central region of both LIC1 and pericentrin. Using recombinant LICs, we found that they form homooligomers, but not heterooligomers, and exhibit mutually exclusive binding to the heavy chain. Additionally, overexpressed pericentrin is seen to interact with endogenous LIC1 exclusively. Together these results demonstrate the existence of two subclasses of cytoplasmic dynein: LIC1-containing dynein, and LIC2-containing dynein, only the former of which is involved in pericentrin association with dynein. 相似文献
18.
DEAF-1, a novel protein that binds an essential region in a Deformed response element. 总被引:5,自引:2,他引:5 下载免费PDF全文
A 120 bp homeotic response element that is regulated specifically by Deformed in Drosophila embryos contains a single binding site for Deformed protein. However, a 24 bp sub-element containing this site does not constitute a Deformed response element. Specific activation requires a second region in the 120 bp element, which presumably contains one or more binding sites for Deformed cofactors. We have isolated a novel protein from Drosophila nuclear extracts which binds specifically to a site in this second region. This protein, which we call DEAF-1 (Deformed epidermal autoregulatory factor-1), contains three conserved domains. One of these includes a cysteine repeat motif that is similar to a motif found in Drosophila Nervy and the human MTG8 proto-oncoprotein, and another matches a region of Drosophila Trithorax. Mutations in the response element designed to improve binding to DEAF-1 in vitro resulted in increased embryonic expression. Conversely, small mutations designed to diminish binding to DEAF-1 resulted in reduced expression of the element. Thus, DEAF-1 is likely to contribute to the functional activity, and perhaps to the homeotic specificity, of this response element. Consistent with this hypothesis, we have discovered DEAF-1 binding sites in other Deformed response elements. 相似文献
19.
Human immunodeficiency virus type 1 Nef binds directly to Lck and mitogen-activated protein kinase, inhibiting kinase activity. 总被引:2,自引:3,他引:2 下载免费PDF全文
It is now well established that human immunodeficiency virus type I (HIV-1) Nef contributes substantially to disease pathogenesis by augmenting virus replication and markedly perturbing T-cell function. The effect of Nef on host cell activation could be explained in part by its interaction with specific cellular proteins involved in signal transduction, including at least a member of the src family kinase, Lck, and the serine/threonine kinase, mitogen-activated protein kinase (MAPK). Recombinant Nef directly interacted with purified Lck and MAPK in coprecipitation experiments and binding assays. A proline-rich repeat sequence [(Pxx)4] in Nef occurring between amino acid residues 69 to 78 is highly conserved and bears strong resemblance to a defined consensus sequence identified as an SH3 binding domain present in several proteins which can interact with the SH3 domain of various signalling and cytoskeletal proteins. Binding and coprecipitation assays with short synthetic peptides corresponding to the proline-rich repeat sequence [(Pxx)4] of Nef and the SH2, SH3, or SH2 and SH3 domains of Lck revealed that the interaction between these two proteins is at least in part mediated by the proline repeat sequence of Nef and the SH3 domain of Lck. In addition to direct binding to full-length Nef, MAPK was also shown to bind the same proline repeat motif. Nef protein significantly decreased the in vitro kinase activity of Lck and MAPK. Inhibition of key members of signalling cascades, including those emanating from the T-cell receptor, by the HIV-1 Nef protein undoubtedly alters the ability of the infected T cell to respond to antigens or cytokines, facilitating HIV-1 replication and contributing to HIV-1-induced disease pathogenesis. 相似文献
20.