首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
BACKGROUND: Intra-peritoneal adipose tissue is recognized as a predictor of metabolic syndrome and may contribute to the risk for cardiovascular disease by the production of adipocytokines, including adiponectin. Nevertheless, there is no knowledge on whether other visceral depots of adipose tissue, including the epicardial fat, have any metabolically active role, including production of adiponectin. AIM OF THE STUDY: We sought to evaluate adiponectin protein expression in epicardial adipose tissue in vivo both in patients with severe coronary artery disease (CAD) and in subjects without CAD. METHODS: Twenty-two patients were enrolled for the study. We selected 16 patients who underwent elective coronary artery bypass graft surgery for critical CAD, 5 who underwent surgery for valve replacement and 1 for correction of an interatrial defect. Epicardial adipose tissue biopsy samples were obtained before the initiation of cardiopulmonary bypass. Adiponectin protein level in epicardial adipose tissue was evaluated by Western blotting. RESULTS: Adiponectin protein value, expressed as adiponectin/actin ratio, in epicardial adipose tissue was significantly lower in patients with severe CAD than in those without CAD (1.42 +/- 0.77 vs 2.36 +/- 0.84 p = 0.02, 95% CI 0.64-1.74). CONCLUSIONS: This study showed for the first time that human epicardial adipose tissue expresses adiponectin. Adiponectin expression is significantly lower in epicardial fat isolated from patients with CAD.  相似文献   

4.
Obesity, characterized by excessive adiposity, is a risk factor for many metabolic pathologies, such as type 2 diabetes mellitus (T2DM). Numerous studies have shown that adipose tissue distribution may be a greater predictor of metabolic health. Upper-body fat (visceral and subcutaneous abdominal) is commonly associated with the unfavorable complications of obesity, while lower-body fat (gluteal–femoral) may be protective. Current research investigations are focused on analyzing the metabolic properties of adipose tissue, in order to better understand the mechanisms that regulate fat distribution in both men and women. This review will highlight the adipose tissue depot- and sex-dependent differences in white adipose tissue function, including adipogenesis, adipose tissue developmental patterning, the storage and release of fatty acids, and secretory function. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.  相似文献   

5.
Leptin's role in the regulation of food intake, energy expenditure and weight control are widely recognized, especially in rodents. Likewise, the potential regulation of leptin secretion by insulin (and vice versa) has been of particular interest insofar as these nutrient signals may have meaningful, even adverse (inter)actions, in diabetes. We used a freshly isolated rat adipose tissue culture model to examine the effect of insulin, metformin and glibenclamide on basal and steroid-stimulated leptin secretion. This model was selected because of its physiologic rates of leptin formation and preservation of potentially significant cell-cell interactions compared to isolated cells. The basal rate of leptin secretion was 3. 4+/-1.2 ng/100 mg tissue/24 h. The addition of 100 nM dexamethasone or 400 nM hydrocortisone stimulated leptin secretion by 3-4 fold over basal (no steroid). Insulin inhibited both basal and steroid-activated leptin secretion by 35-50%. This inhibition was present with either 1 mM pyruvate or 5 mM glucose as a substrate suggesting that glycolysis was not required. Metformin inhibited basal and dexamethasone-stimulated leptin secretion in a dose dependent manner (50% inhibition occurred at 1 mM metformin) while glibenclamide was ineffective. The effect of insulin on isolated fat cells versus fat tissue was tested in parallel. After 24 h in culture, insulin inhibited leptin secretion similarly in both adipose preparations. The addition of 200 nM (-)N6-(2-phenylisopropyl)-adenosine did not alter the results.  相似文献   

6.
Objective: The fat mass and obesity associated (FTO) gene is related to obesity, but the regulation of FTO expression in adipose tissue is not fully understood. We investigated FTO expression in paired subcutaneous and omental adipose tissues (SAT and OAT) from healthy women undergoing gynecological surgeries, and its relation with adiposity and insulin sensitivity. Design and Methods: FTO expression in SAT of type 2 diabetic patients treated or not with Rosiglitazone was also compared. Results: Both the mRNA and protein levels of FTO were higher in OAT from women than in SAT. Only OAT FTO protein levels negatively correlated with BMI and body fat mass, whereas SAT FTO mRNA levels were negatively correlated with subcutaneous fat deposition. In addition, SAT FTO mRNA and protein levels were increased in insulin resistant women (high HOMA) compared to insulin sensitive women (low HOMA), whereas OAT FTO expression was not different between these two subgroups. Interestingly, FTO mRNA levels were increased in SAT of type 2 diabetic patients, and treatment of diabetics with Rosiglitazone improved insulin sensitivity and reduced SAT FTO mRNA levels. Lastly, FTO expression was transiently increased in the early phase of 3T3‐L1 cell differentiation, which coincides with the induction of PPARγ2 expression. However, partial reduction of FTO did not impact PPARγ2 expression and adipocyte differentiation. Conclusion: Therefore, FTO gene expression is higher in OAT than in SAT in lean to moderately obese women. OAT FTO expression is associated with adiposity, whereas SAT FTO expression is associated with insulin sensitivity. These associations are independent of an effect of FTO on adipocyte differentiation.  相似文献   

7.
8.
Adiponectin is suggested to be an important mediator of insulin resistance. Therefore, we investigated the association between adiponectin and insulin sensitivity in 22 healthy first-degree relatives (FDR) to type 2 diabetic patients and 13 matched control subjects. Subcutaneous adipose tissue biopsies were taken before and after a hyperinsulinemic euglycemic clamp. FDR subjects were insulin resistant, as indicated by a reduced M value (4.44 vs. 6.09 mg x kg(-1) x min(-1), P < 0.05). Adiponectin mRNA expression was 45% lower in adipose tissue from FDR compared with controls (P < 0.01), whereas serum adiponectin was similar in the two groups (6.4 vs. 6.6 microg/ml, not significant). Insulin infusion reduced circulating levels of adiponectin moderately (11-13%) but significantly in both groups (P < 0.05). In the control group, adiponectin mRNA levels were negatively correlated with fasting insulin (P < 0.05) and positively correlated with insulin sensitivity (P < 0.05). In contrast, these associations were not found in the FDR group. In conclusion, FDR have reduced adiponectin mRNA in subcutaneous adipose tissue but normal levels of circulating adiponectin. Adiponectin mRNA levels are positively correlated with insulin sensitivity in control subjects but not in FDR. These findings indicate dysregulation of adiponectin gene expression in FDR.  相似文献   

9.
Angiotensin II is synthesized locally in various tissues. However, the role of interstitial angiotensin II in the regulation of regional metabolism and tissue perfusion has not as yet been clearly defined. We characterized the effect of interstially applied angiotensin II in abdominal subcutaneous adipose tissue of young, normal-weight, healthy men (n = 8) and women (n = 6) using the microdialysis technique. Adipose tissue was perfused with 0.01, 0.1, and 1 micro M angiotensin II. Dialysate concentrations of ethanol, glycerol, glucose, and lactate were measured to assess changes in blood flow (ethanol dilution technique), lipolysis, and glycolysis, respectively. Baseline ethanol ratio and dialysate lactate were both significantly higher, whereas dialysate glucose was significantly lower in men vs. women. In men, ethanol ratio and dialysate glucose, lactate and glycerol did not change significantly during perfusion with angiotensin II. In women, however, angiotensin II induced a significant increase in ethanol ratio and dialysate lactate and a decrease in dialysate glucose close to values found for men and this response was almost maximal at the lowest angiotensin II concentration used. Dialysate glycerol did not change significantly. We conclude that baseline blood flow and glucose supply and metabolism is significantly higher in women than in men. In men, interstitial Ang II has only a minimal effect on adipose tissue blood flow and metabolism. In women, however, a high physiological concentration of interstitial angiotensin II can reduce blood flow down to values found in men. This is associated with an impaired glucose supply and metabolism. Additionally, Ang II inhibits lipolysis.  相似文献   

10.
11.
12.
The potential use of human mesenchymal stem cells for therapeutic applications implies large scale in vitro culture, increasing the probability of genetic instability and transformation. We examine here the incidence of unbalanced and balanced chromosome rearrangements in polyclonal and single cell-derived cultures of human adipose stem cells to senescence. G-banding karyotyping of the polyclonal cultures shows a normal karyotype. In addition, high-resolution microarray-based comparative genomic hybridization analyses relative to uncultured adipose stem cells from the same donors reveal overall genomic stability in long-term (approximately 6 months) polyclonal and clonal culture. One adipose stem cell clone displayed minor deletions in gene-rich telomeric and sub-telomeric regions on three chromosomes in early passage. This however, was detected only in a sub-population of cells that was subsequently spontaneously eliminated from the culture. Apparent pericentromeric instabilities are also occasionally detected in specific chromosomes. Our results indicate that clonal chromosomal aberrations may arise transiently in early passage adipose stem cells (ASC) cultures. Nonetheless, incidence of these aberrations seems to be negligible in the majority of long-term ASC cultures, at least under the culture conditions used here.  相似文献   

13.
Glycerokinase activity was measured in homogenates of rat and human adipocytes. Human adipocyte glycerokinase activity was not altered by various dietary and hormonal treatments. In contrast, glycerokinase activity in rat adipocytes was decreased by fasting 48 hr and returned toward normal levels after refeeding for 36 hr. This increase in enzyme activity during refeeding was blocked by prior administration of uromycin. Glycerokinase activity was also significantly increased following prolonged incubation of rat adipocytes with dexamethasone in vitro. This stimulation of glycerokinase was further augmented by the simultaneous addition of insulin. Glycerokinase activity in rat and human adipocytes was also dependent on the body weight of the respective tissue donor. Other data presented indicate that glycerokinase is not involved in the "anti-lipolytic" action of insulin. The possible metabolic significance of glycerokinase in adipose tissue is discussed.  相似文献   

14.
15.
16.
17.
The role of PPARs in the regulation of human adipose tissue secretome has received little attention despite its potential importance in the therapeutic actions of PPAR agonists. Here, we have investigated the effect of selective PPARgamma, PPARalpha, and PPARbeta/delta agonists on the production of adipokines by human subcutaneous adipose tissue. Antibody arrays were used to measure secreted factors in media from cultured adipose tissue explants. Sixteen proteins were produced in significant amounts. Activation of PPARs regulated the production of five proteins. Treatments with the three PPAR agonists decreased the secretion of leptin and interleukin-6. PPARalpha and beta/delta agonists markedly enhanced hepatocyte growth factor secretion whereas PPARbeta/delta down-regulated angiogenin and up-regulated TIMP-1 release. Hepatocyte growth factor, interleukin-6, and TIMP-1 are chiefly expressed in cells from the stromal vascular fraction whereas angiogenin is expressed in both adipocytes and cells from the stromal vascular fraction. Our data show that PPAR agonists modulate secretion of bioactive molecules from the different cell types composing human adipose tissue.  相似文献   

18.
Lipoprotein lipase (LPL), a key enzyme for triglyceride hydrolysis, is an insulin-dependent enzyme and mainly synthesized in white adipose tissue (WAT) and skeletal muscles (SM). To explore how pioglitazone, an enhancer of insulin action, affects LPL synthesis, we examined the effect of pioglitazone on LPL mRNA levels in WAT or SM of brown adipose tissue (BAT)-deficient mice, which develop insulin resistance and hypertriglyceridemia. Both LPL mRNA of WAT and SM were halved in BAT-deficient mice. Pioglitazone increased LPL mRNA in WAT by 8-fold, which was substantially associated with a 4-fold increase of peroxisome proliferator activated receptor (PPAR)-gamma mRNA (r=0.97, p<0.0001), whereas pioglitazone did not affect LPL mRNA in SM. These results suggest that pioglitazone exclusively increases LPL production in WAT via stimulation of PPAR-gamma synthesis. Since pioglitazone does not affect LPL production in SM, this would contribute to prevent the development of insulin resistance due to lipotoxicity.  相似文献   

19.
White adipose tissue (WAT) has been examined to determine whether the gene encoding metallothionein (MT), a low-molecular-weight stress response protein, is expressed in the tissue and whether MT may be a secretory product of adipocytes. The MT-1 gene was expressed in epididymal WAT, with MT-1 mRNA levels being similar in lean and obese (ob/ob) mice. MT-1 mRNA was found in each of the main adipose tissue sites (epididymal, perirenal, omental, subcutaneous), and there was no major difference between depots. Separation of adipocytes from the stromal-vascular fraction of WAT indicated that the MT gene (MT-1 and MT-2) was expressed in adipocytes themselves. Treatment of mice with zinc had no effect on MT-1 mRNA levels in WAT, despite strong induction of MT-1 expression in the liver. MT-1 gene expression in WAT was also unaltered by fasting or norepinephrine. However, administration of a beta(3)-adrenoceptor agonist, BRL-35153A, led to a significant increase in MT-1 mRNA. On differentiation of fibroblastic preadipocytes to adipocytes in primary culture, MT was detected in the medium, suggesting that the protein may be secreted from WAT. It is concluded that WAT may be a significant site of MT production; within adipocytes, MT could play an antioxidant role in protecting fatty acids from damage.  相似文献   

20.
Adipocytes secrete many proteins that regulate metabolic functions. The gene inter-α (globulin) inhibitor H5 (ITIH-5) encodes a secreted protein and is known to be expressed abundantly in the placenta. However, using gene expression profiles data we observed high expression of ITIH-5 in adipose tissue. The aim of this study was to test the hypothesis that ITIH-5 is strongly expressed in human adipocytes and adipose tissue, and is related to obesity and clinical metabolic variables. ITIH-5 adipose tissue mRNA expression was analyzed with DNA microarray and real-time PCR, and its association with clinical variables was examined. ITIH-5 protein expression was analyzed using western blot. ITIH-5 mRNA expression was abundant in human adipose tissue, adipocytes, and placenta, and higher in subcutaneous (sc) compared to omental adipose tissue (P < 0.0001). ITIH-5 mRNA and protein expression in sc adipose tissue were higher in obese compared to lean subjects (P < 0.0001 and P < 0.001, respectively). ITIH-5 mRNA expression was reduced after diet-induced weight loss (P < 0.0001). ITIH-5 mRNA expression was associated with anthropometry and clinical metabolic variables. In conclusion, ITIH-5 is highly expressed in sc adipose tissue, increased in obesity, down regulated after weight loss, and associated with measures of body size and metabolism. Together, this indicates that ITIH-5 merits further investigation as a regulator of human metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号