首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Insulin is secreted as a series of punctuated secretory bursts superimposed on variable basal insulin release. The contribution of these secretory bursts to overall insulin secretion has been estimated on the basis of peripheral vein sampling in humans to encompass > or =75% of overall insulin release. A similar contribution of the pulsatile mode of release was inferred in a canine model by use of portal vein sampling. The primary regulation of insulin secretion is through perturbation of the mass and frequency of these secretory bursts. The mode of delivery of insulin into the circulation seems important for insulin action; therefore, physiological conditions that alter the pattern of insulin release may affect insulin action through this mechanism. Transhepatic intraportal shunt in humans may provide access to portal vein samples, thus potentially improving the sensitivity of detecting and quantitating the frequency, mass, and amplitude of secretory bursts along with basal release and the regularity of these variables. To establish the insulin-secretory mechanism in nondiabetic humans by the use of portal vein sampling, we here assessed the mass, frequency, amplitude, and overall contribution of pulsatile insulin secretion by deconvolution analysis of portal vein insulin profiles. We find that, in nondiabetic humans fasted overnight, the portal vein insulin concentration oscillates at a periodicity of 4.1 +/- 0.2 min/pulse and with secretory peak amplitudes averaging 660% of basal (interpulse) release. The frequency was confirmed by spectral and autocorrelation analyses. The punctuated insulin-secretory bursts partially overlap and are responsible for the majority (70 +/- 4%) of insulin release. After ingestion of a mixed meal, the insulin release was increased through amplification of the secretory burst mass (507 +/- 104 vs. 1,343 +/- 211 pmol x l(-1) x min(-1), P < 0.001), whereas frequency (4.4 +/- 0.2 vs. 4.3 +/- 0.2, P = 0.86) and basal secretion (62 +/- 14 vs. 91 +/- 22 pmol x l(-1) x min(-1), P = 0.33) were unaffected. One subject with diabetes and cirrhosis had a similar insulin-secretory pattern, whereas a subject with insulin-dependent diabetes mellitus and minimal insulin release had preserved pulsatile release. A single subject was entrained to show agreement between entrained frequency and portal vein insulin oscillations. We conclude that insulin release in the human portal vein occurs at a mean periodicity of 4.4 +/- 0.2 min with a high signal-to-noise ratio (pulse amplitude 660% of basal). The impact of noise on the detected high frequency cannot be excluded.  相似文献   

2.
During insulin resistance, glucose homeostasis is maintained by an increase in plasma insulin via increased secretion and/or decreased first-pass hepatic insulin extraction. However, the relative importance of insulin secretion vs. clearance to compensate for insulin resistance in obesity has yet to be determined. This study utilizes the fat-fed dog model to examine longitudinal changes in insulin secretion and first-pass hepatic insulin extraction during development of obesity and insulin resistance. Six dogs were fed an isocaloric diet with an approximately 8% increase in fat calories for 12 wk and evaluated at weeks 0, 6, and 12 for changes in 1) insulin sensitivity by euglycemic-hyperinsulinemic clamp, 2) first-pass hepatic insulin extraction by direct assessment, and 3) glucose-stimulated insulin secretory response by hyperglycemic clamp. We found that 12 wk of a fat diet increased subcutaneous and visceral fat as assessed by MR imaging. Consistent with increased body fat, the dogs exhibited a approximately 30% decrease in insulin sensitivity and fasting hyperinsulinemia. Although insulin secretion was substantially increased at week 6, beta-cell sensitivity returned to prediet levels by week 12. However, peripheral hyperinsulinemia was maintained because of a significant decrease in first-pass hepatic insulin extraction, thus maintaining hyperinsulinemia, despite changes in insulin release. Our results indicate that when obesity and insulin resistance are induced by an isocaloric, increased-fat diet, an initial increase in insulin secretion by the beta-cells is followed by a decrease in first-pass hepatic insulin extraction. This may provide a secondary physiological mechanism to preserve pancreatic beta-cell function during insulin resistance.  相似文献   

3.
It has previously been shown that insulin is secreted in discrete secretory bursts by sampling directly from the portal vein in the dog and humans. Deficient pulsatile insulin secretion is the basis for impaired insulin secretion in type 2 diabetes. However, while novel genetically modified disease models of diabetes are being developed in rodents, no validated method for quantifying pulsatile insulin secretion has been established for rodents. To address this we 1) developed a novel rat model with chronically implanted portal vein catheters, 2) established the parameters to permit deconvolution of portal vein insulin concentrations profiles to measure insulin secretion and resolve its pulsatile components, and 3) measured total and pulsatile insulin secretion compared with that in the dog, the species in which this sampling and deconvolution approach was validated for quantifying pulsatile insulin secretion. In rats, portal vein catheter patency and function were maintained for periods up to 2-3 wk with no postoperative complications such as catheter tract infection. Rat portal vein insulin concentration profiles in the fasting state revealed distinct insulin oscillations with a periodicity of approximately 5 min and an amplitude of up to 600 pmol/l, which was remarkably similar to that in the dogs and in humans. Deconvolution analysis of portal vein insulin concentrations revealed that the majority of insulin ( approximately 70%) in the rat is secreted in distinct insulin pulses occurring at approximately 5-min intervals. This model therefore permits direct accurate measurements of pulsatile insulin secretion in a relatively inexpensive animal. With increased introduction of genetically modified rat models will be an important tool in elucidating the underlying mechanisms of impaired pulsatile insulin secretion in diabetes.  相似文献   

4.
Brown JE  Onyango DJ  Dunmore SJ 《FEBS letters》2007,581(17):3273-3276
The adipokine resistin is known to induce insulin resistance in rodent tissues. Increases in adipose tissue mass are known to have a negative effect on pancreatic beta-cell function, although the mechanisms are poorly understood. This study investigated the effects of resistin on insulin secretion, insulin receptor expression and cell viability in pancreatic beta-cells. BTC-6 or BRIN-BD11 cells were treated for 24h with resistin, and insulin receptor expression, insulin secretion and cell viability were measured. Incubation with 40ng/ml resistin caused significant decreases in insulin receptor mRNA and protein expression, but did not affect insulin secretion. At low concentrations, resistin caused significant increases in cell viability. These data implicate resistin as a factor that may regulate beta-cell function/viability, and suggests a potential mechanism by which increased adiposity causes beta-cell dysfunction.  相似文献   

5.
6.
Type 2 diabetes is characterized by both peripheral insulin resistance and reduced insulin secretion by beta-cells. The reasons for beta-cell dysfunction in this disease are incompletely understood but may include the accumulation of toxic lipids within this cell type. We examined the role of Abca1, a cellular cholesterol transporter, in cholesterol homeostasis and insulin secretion in beta-cells. Mice with specific inactivation of Abca1 in beta-cells had markedly impaired glucose tolerance and defective insulin secretion but normal insulin sensitivity. Islets isolated from these mice showed altered cholesterol homeostasis and impaired insulin secretion in vitro. We found that rosiglitazone, an activator of the peroxisome proliferator-activated receptor-gamma, which upregulates Abca1 in beta-cells, requires beta-cell Abca1 for its beneficial effects on glucose tolerance. These experiments establish a new role for Abca1 in beta-cell cholesterol homeostasis and insulin secretion, and suggest that cholesterol accumulation may contribute to beta-cell dysfunction in type 2 diabetes.  相似文献   

7.
Induction of anesthesia is accompanied by modest hyperglycemia and a decreased plasma insulin concentration. Most insulin is secreted in discrete pulses occurring at approximately 6- to 8-min intervals. We sought to test the hypothesis that anesthesia inhibits insulin release by disrupting pulsatile insulin secretion in a canine model by use of direct portal vein sampling. We report that induction of anesthesia causes an abrupt decrease in the insulin secretion rate (1.1 +/- 0.2 vs. 0.7 +/- 0.1 pmol. kg(-1). min(-1), P < 0.05) by suppressing insulin pulse mass (630 +/- 121 vs. 270 +/- 31 pmol, P < 0.01). Anesthesia also elicited an approximately 30% higher increase in insulin pulse frequency (P < 0.01) and more orderly insulin concentration profiles (P < 0.01). These effects were evoked by either sodium thiamylal or nitrous oxide and isoflurane. In conclusion, anesthesia represses insulin secretion through the mechanism of a twofold blunting of pulse mass despite an increase in orderly pulse frequency. These data thus unveil independent amplitude and frequency controls of beta-cells' secretory activity in vivo.  相似文献   

8.
Lipid metabolism plays an important role in glucose homeostasis under normal and pathological conditions. In adipocytes, skeletal muscle, and pancreatic beta-cells, lipids are mobilized from acylglycerides by the hormone-sensitive lipase (HSL). Here, the consequences of a targeted disruption of the HSL gene for glucose homeostasis were examined. HSL null mice were slightly hyperglycemic in the fasted, but not fed state, which was accompanied by moderate hyperinsulinemia. During glucose challenges, however, disposal of the sugar was not affected in HSL null mice, presumably because of release of increased amounts of insulin. Impaired insulin sensitivity was further indicated by retarded glucose disposal during an insulin tolerance test. A euglycemic hyperinsulinemic clamp revealed that hepatic glucose production was insufficiently blocked by insulin in HSL null mice. In vitro, insulin-stimulated glucose uptake into soleus muscle, and lipogenesis in adipocytes were moderately reduced, suggesting additional sites of insulin resistance. Morphometric analysis of pancreatic islets revealed a doubling of beta-cell mass in HSL null mice, which is consistent with an adaptation to insulin resistance. Insulin secretion in vitro, examined by perifusion of isolated islets, was not impacted by HSL deficiency. Thus, HSL deficiency results in a moderate impairment of insulin sensitivity in multiple target tissues of the hormone but is compensated by hyperinsulinemia.  相似文献   

9.
Lipoprotein lipase (LpL) provides tissues with triglyceride-derived fatty acids. Fatty acids affect beta-cell function, and LpL overexpression decreases insulin secretion in cell lines, but whether LpL is regulated in beta-cells is unknown. To test the hypothesis that glucose and insulin regulate LpL activity in beta-cells, we studied pancreatic islets and INS-1 cells. Acute exposure of beta-cells to physiological concentrations of glucose stimulated both total cellular LpL activity and heparin-releasable LpL activity. Glucose had no effect on total LpL protein mass but instead promoted the appearance of LpL protein in a heparin-releasable fraction, suggesting that glucose stimulates the translocation of LpL from intracellular to extracellular sites in beta-cells. The induction of heparin-releasable LpL activity was unaffected by treatment with diazoxide, an inhibitor of insulin exocytosis that does not alter glucose metabolism but was blocked by conditions that inhibit glucose metabolism. In vitro hyperinsulinemia had no effect on LpL activity in the presence of low concentrations of glucose but increased LpL activity in the presence of 20 mm glucose. Using dual-laser confocal microscopy, we detected intracellular LpL in vesicles distinct from those containing insulin. LpL was also detected at the cell surface and was displaced from this site by heparin in dispersed islets and INS-1 cells. These results show that glucose metabolism controls the trafficking of LpL activity in beta-cells independent of insulin secretion. They suggest that hyperglycemia and hyperinsulinemia associated with insulin resistance may contribute to progressive beta-cell dysfunction by increasing LpL-mediated delivery of lipid to islets.  相似文献   

10.
Impaired insulin secretion in type 2 diabetes is characterized by decreased first-phase insulin secretion, an increased proinsulin-to-insulin molar ratio in plasma, abnormal pulsatile insulin release, and heightened disorderliness of insulin concentration profiles. In the present study, we tested the hypothesis that these abnormalities are at least partly reversed by a period of overnight suspension of beta-cell secretory activity achieved by somatostatin infusion. Eleven patients with type 2 diabetes were studied twice after a randomly ordered overnight infusion of either somatostatin or saline with the plasma glucose concentration clamped at approximately 8 mmol/l. Controls were studied twice after overnight saline infusions and then at a plasma glucose concentration of either 4 or 8 mmol/l. We report that in patients with type 2 diabetes, 1) as in nondiabetic humans, insulin is secreted in discrete insulin secretory bursts; 2) the frequency of pulsatile insulin secretion is normal; 3) the insulin pulse mass is diminished, leading to decreased insulin secretion, but this defect can be overcome acutely by beta-cell rest with somatostatin; 4) the reported loss of orderliness of insulin secretion, attenuated first-phase insulin secretion, and elevated proinsulin-to-insulin molar ratio also respond favorably to overnight inhibition by somatostatin. The results of these clinical experiments suggest the conclusion that multiple parameters of abnormal insulin secretion in patients with type 2 diabetes mechanistically reflect cellular depletion of immediately secretable insulin that can be overcome by beta-cell rest.  相似文献   

11.
Mouse models of insulin resistance   总被引:1,自引:0,他引:1  
The hallmarks of type 2 diabetes are impaired insulin action in peripheral tissues and decreased pancreatic beta-cell function. Classically, the two defects have been viewed as separate entities, with insulin resistance arising primarily from impaired insulin-dependent glucose uptake in skeletal muscle, and beta-cell dysfunction arising from impaired coupling of glucose sensing to insulin secretion. Targeted mutagenesis and transgenesis involving components of the insulin action pathway have changed our understanding of these phenomena. It appears that the role of insulin signaling in the pathogenesis of type 2 diabetes has been overestimated in classic insulin target tissues, such as skeletal muscle, whereas it has been overlooked in liver, pancreatic beta-cells, and brain, which had been thought not to be primary insulin targets. We review recent progress and try to reconcile areas of apparent controversy surrounding insulin signaling in skeletal muscle and pancreatic beta-cells.  相似文献   

12.
Islet beta-cells are the regulatory element of the glucose homeostasis system. When functioning normally, they precisely counterbalance changes in insulin sensitivity or beta-cell mass to preserve normoglycemia. This understanding seems counter to the dogma that beta-cells are regulated by glycemia. We studied 60% pancreatectomy rats (Px) 4 wk postsurgery to elucidate the beta-cell adaptive mechanisms. Nonfasting glycemia and insulinemia were identical in Px and sham-operated controls. There was partial regeneration of the excised beta-cells in the Px rats, but it was limited in scope, with the pancreas beta-cell mass reaching 55% of the shams (40% increase from the time of surgery). More consequential was a heightened glucose responsiveness of Px islets so that glucose utilization and insulin secretion per milligram of islet protein were both 80% augmented at normal levels of glycemia. Investigation of the biochemical basis showed a doubled glucokinase maximal velocity in Px islets, with no change in the glucokinase protein concentration after adjustment for the different beta-cell mass in Px and sham islets. Hexokinase activity measured in islet extracts was also minimally increased, but the glucose 6-phosphate concentration and basal glucose usage of Px islets were not different from those in islets from sham-operated rats. The dominant beta-cell adaptive response in the 60% Px rats was an increased catalytic activity of glucokinase. The remaining beta-cells thus sense, and respond to, perceived hyperglycemia despite glycemia actually being normal. beta-Cell mass and insulin secretion are both augmented so that whole pancreas insulin output, and consequently glycemia, are maintained at normal levels.  相似文献   

13.
14.
The function of pancreatic beta-cells is the synthesis and release of insulin, the main hormone involved in blood glucose homeostasis. Estrogen receptors, ER alpha and ER beta, are important molecules involved in glucose metabolism, yet their role in pancreatic beta-cell physiology is still greatly unknown. In this report we show that both ER alpha and ER beta are present in pancreatic beta-cells. Long term exposure to physiological concentrations of 17beta-estradiol (E2) increased beta-cell insulin content, insulin gene expression and insulin release, yet pancreatic beta-cell mass was unaltered. The up-regulation of pancreatic beta-cell insulin content was imitated by environmentally relevant doses of the widespread endocrine disruptor Bisphenol-A (BPA). The use of ER alpha and ER beta agonists as well as ER alphaKO and ER betaKO mice suggests that the estrogen receptor involved is ER alpha. The up-regulation of pancreatic insulin content by ER alpha activation involves ERK1/2. These data may be important to explain the actions of E2 and environmental estrogens in endocrine pancreatic function and blood glucose homeostasis.  相似文献   

15.
16.
Diabetes is a devastating disease that is ultimately caused by the malfunction or loss of insulin-producing pancreatic beta-cells. Drugs capable of inducing the development of new beta-cells or improving the function or survival of existing beta-cells could conceivably cure this disease. We report a novel high-throughput screening platform that exploits multi-parameter high-content analysis to determine the effect of compounds on beta-cell survival, as well as the promoter activity of two key beta-cell genes, insulin and pdx1. Dispersed human pancreatic islets and MIN6 beta-cells were infected with a dual reporter lentivirus containing both eGFP driven by the insulin promoter and mRFP driven by the pdx1 promoter. B-score statistical transformation was used to correct systemic row and column biases. Using this approach and 5 replicate screens, we identified 7 extracts that reproducibly changed insulin and/or pdx1 promoter activity from a library of 1319 marine invertebrate extracts. The ability of compounds purified from these extracts to significantly modulate insulin mRNA levels was confirmed with real-time PCR. Insulin secretion was analyzed by RIA. Follow-up studies focused on two lead compounds, one that stimulates insulin gene expression and one that inhibits insulin gene expression. Thus, we demonstrate that multi-parameter, high-content screening can identify novel regulators of beta-cell gene expression, such as bivittoside D. This work represents an important step towards the development of drugs to increase insulin expression in diabetes and during in vitro differentiation of beta-cell replacements.  相似文献   

17.
The role of intracellular calcium stores in stimulus-secretion coupling in the pancreatic beta-cell is largely unknown. We report here that tetracaine stimulates insulin secretion from collagenase-isolated mouse islets of Langerhans in the absence of glucose or extracellular calcium. We also found that the anesthetic evokes a dose-dependent rise of the intracellular free-calcium concentration ([Ca2+]i) in cultured rat and mouse beta-cells. The tetracaine-specific [Ca2+]i rise also occurs in the absence of glucose, or in beta-cells depolarized by exposure to a Ca(2+)-deficient medium (< 1 microM) or elevated [K+]o. Furthermore, tetracaine (> or = 300 microM) depolarized the beta-cell membrane in mouse pancreatic islets, but inhibited Ca2+ entry through voltage-gated Ca2+ channels in HIT cells, an insulin-secreting cell line. From these data we conclude that tetracaine-enhancement of insulin release occurs by mechanisms that are independent of Ca2+ entry across the cell membrane. The tetracaine-induced [Ca2+]i rise in cultured rat beta-cells and insulin secretion from mouse islets is insensitive to dantrolene (20 microM), a drug that inhibits Ca2+ release evoked by cholinergic agonists in the pancreatic beta-cell, and thapsigargin (3 microM), a blocker of the endoplasmic reticulum (ER) Ca2+ pump. We conclude that the Ca2+ required for tetracaine-potentiated insulin secretion is released from intracellular Ca2+ stores other than the ER. Furthermore, tetracaine-induced Ca2+ release was unaffected by the mitochondrial electron transfer inhibitors NaN3 and rotenone. Taken together, these data show that a calcium source other than the ER and mitochondria can affect beta-cell insulin secretion.  相似文献   

18.
19.
The insulin/insulin-like growth factor-1 (IGF-1) signalling pathways are present in most mammalian cells and play important roles in the growth and metabolism of tissues. Most proteins in these pathways have also been identified in the beta-cells of the pancreatic islets. Tissue-specific knockout of the insulin receptor (betaIRKO) or IGF-1 receptor (betaIGFRKO) in pancreatic beta-cells leads to altered glucose-sensing and glucose intolerance in adult mice, and betaIRKO mice show an age-dependent decrease in islet size and beta-cell mass. These data indicate that these receptors are important for differentiated function and are unlikely to play a major role in the early growth and/or development of the pancreatic islets. Conventional insulin receptor substrate-1 (IRS-1) knockouts manifest growth retardation and mild insulin resistance. The IRS-1 knockouts also display islet hyperplasia, defects in insulin secretory responses to multiple stimuli both in vivo and in vitro, reduced islet insulin content and an increased number of autophagic vacuoles in the beta-cells. Re-expression of IRS-1 in cultured beta-cells is able to partially restore the insulin content indicating that IRS-1 is involved in the regulation of insulin synthesis. Taken together, these data provide evidence that insulin and IGF-1 receptors and IRS-1, and potentially other proteins in the insulin/IGF-1 signalling pathway, contribute to the regulation of islet hormone secretion and synthesis and therefore in the maintenance of glucose homeostasis.  相似文献   

20.
A lysophospholipid series, such as lysophosphatidic acid, lysophosphatidylserine, and lysophosphatidylcholine (LPC), is a bioactive lipid mediator with diverse physiological and pathological functions. LPC has been reported to induce insulin secretion from pancreatic beta-cells, however, the precise mechanism has remained elusive to date. Here we show that an orphan G-protein-coupled receptor GPR119 plays a pivotal role in this event. LPC potently enhances insulin secretion in response to high concentrations of glucose in the perfused rat pancreas via stimulation of adenylate cyclase, and dose-dependently induces intracellular cAMP accumulation and insulin secretion in a mouse pancreatic beta-cell line, NIT-1 cells. The Gs-protein-coupled receptor for LPC was identified as GPR119, which is predominantly expressed in the pancreas. GPR119-specific siRNA significantly blocked LPC-induced insulin secretion from NIT-1 cells. Our findings suggest that GPR119, which is a novel endogenous receptor for LPC, is involved in insulin secretion from beta-cells, and is a potential target for anti-diabetic drug development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号