首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The genetic constitution of the cell hybrids Atropa belladonna + Nicotiana chinensis, obtained by cloning of individual heteroplasmic protoplast fusion products (Gleba et al. 1982) and cultured in vitro for 12 months, has been studied. The study comprised 11 hybrid cell clones of independent origin and included analysis of a) chromosome number, size, morphology, and relative position in metaphase plates, b) multiple molecular forms of the enzymes esterase and amylase, and c) relative nuclear DNA content. The data obtained permit us to conclude that, after one year of unorganized growth in vitro, the cells of most (8) clones had retained chromosomes of both parents, while species-specific elimination of nearly all Atropa chromosomes had occurred in three clones. About half of the non-segregating clones possess 120–150 chromosomes including 50–70 of Atropa and 50–90 of Nicotiana. Other clones are polyploid and possess 200–250 chromosomes with a predominance of either Atropa or Nicotiana chromosome types. Only a few chromosomal changes (reconstituted chromosomes, ring chromosomes) have been detected. In some metaphase plates, chromosomes of the two parents tend to group separately, indicating non-random arrangement of chromosomes of the two parents within the hybrid nucleus. Cytophotometric studies of the relative nuclear DNA content showed that distribution histograms for cell clones were similar to those of non-hybrid cultured cells. Cell populations were relatively homogenous and do not indicate any genetic instability as a result of hybridization between remote plant species. Biochemical analysis of isoenzyme patterns confirmed that in most cell clones, species-specific multiple molecular forms of esterase and amylase from both parents were present, i.e. genetic material of both parental species was expressed in the cell hybrids.Dedicated to Professor G. Melchers with gratitude  相似文献   

2.
Summary After fusion of isolated mesophyll protoplasts of belladonna (Atropa belladonna) with callus protoplasts of Chinese tobacco (Nicotiana chinensis) followed by mechanical isolation and cloning of individual heteroplasmic fusion products, 13 cell clones were obtained. The hybrid nature of most of the clones has been confirmed by biochemical (studies of amylase isozymes), cytogenetic (size and morphology of chromosomes) and physiological (peculiarities of cell-growth in vitro) analyses. Study of chromosomes and isozyme patterns in the hybrid cell lines revealed the presence of both parental genomes, without an indication of chromosome elimination, six months after hybridization. In 4 cell lines shootlike structures and plantlets have been produced by means of transfer to organogenesis-inducing media. The data obtained are interpreted as new evidence for the possibility of using non-sexual hybridization for the production of intergeneric, intertribal plant hybrids which cannot be obtained by sexual crossing. From these results the potential of Atropa (X) Nicotiana hybrids as a model system for genetic studies of distantly related plant species is discussed.This work is part of a joint project between Institute of Botany of the Ukrainian Academy of Sciences, Kiev, USSR, and Institute of Pharmaceutical Biology, University of Munich, FRG  相似文献   

3.
Deng J  Cui H  Zhi D  Zhou C  Xia G 《Plant cell reports》2007,26(8):1233-1241
Callus-derived protoplasts of common wheat (Triticum aestivum L. cv. Hesheng 3) irradiated with ultraviolet light were fused by using the PEG method with cell suspension-derived protoplasts of Arabidopsis thaliana. Regenerated calli and green plants resembling that of wheat were obtained. The hybrid nature of putative calli and plants were confirmed by isozyme, random amplified polymorphic DNA and genomic in situ hybridization (GISH) analyses. GISH results indicated that 1∼3 small chromosome fragments of A. thaliana were found introgression into the terminals of wheat chromosomes, forming highly asymmetric hybrids. Cytoplasmic genome tests did not show any cytoplasmic genetic materials from A. thaliana. However, variations from the normal wheat cytoplasmic genome were found, indicating recombination or rearrangement occurred during the process of somatic hybridization. The chromosome elimination in the asymmetric somatic hybridization of remote phylogenetic relationship was discussed. A miniature inverted-repeat transposable element related sequence was found by chance in the hybrids which might accompany and impact the process of somatic hybridization. Jingyao Deng and Haifeng Cui provided same contribution to this work.  相似文献   

4.
Intergeneric asymmetric somatic hybrids have been obtained by the fusion of metabolically inactivated protoplasts from embryogenic suspension cultures ofFestuca arundinacea (recipient) and protoplasts from a non-morphogenic cell suspension ofLolium multiflorum (donor) irradiated with 10, 25, 50, 100, 250 and 500 Gy of X-rays. Regenerating calli led to the recovery of genotypically and phenotypically different asymmetric somatic hybridFestulolium plants. The genome composition of the asymmetric somatic hybrid clones was characterized by quantitative dot-blot hybridizations using dispersed repetitive DNA sequences specific to tall fescue and Italian ryegrass. Data from dot-blot hybridizations using two cloned Italian ryegrass-specific sequences as probes showed that irradiation favoured a unidirectional elimination of most or part of the donor chromosomes in asymmetric somatic hybrid clones obtained from fusion experiments using donor protoplasts irradiated at doses 250 Gy. Irradiation of cells of the donor parent with 500 Gy prior to protoplast fusion produced highly asymmetric nuclear hybrids with over 80% elimination of the donor genome as well as clones showing a complete loss of donor chromosomes. Further information on the degree of asymmetry in regenerated hybrid plants was obtained from chromosomal analysis including in situ hybridizations withL. multiflorum-specific repetitive sequences. A Southern blot hybridization analysis using one chloroplast and six mitochondrial-specific probes revealed preferentially recipient-type organelles in asymmetric somatic hybrid clones obtained from fusion experiments with donor protoplasts irradiated with doses higher than 100 Gy. It is concluded that the irradiation of donor cells before fusion at different doses can be used for producing both nuclear hybrids with limited donor DNA elimination or highly asymmetric nuclear hybrid plants in an intergeneric graminaceous combination. For a wide range of radiation doses tested (25–250Gy), the degree of the species-specific genome elimination from the irradiated partner seems not to be dose dependent. A bias towards recipient-type organelles was apparent when extensive donor nuclear genome elimination occurred.Abbreviations cpDNA Chloroplast DNA - 2, 4-D 2,4-dichlorophenoxyacetic acid - FDA fluorescein diacetate - IOA iodoacetamide - mtDNA mitochondrial DNA - RFLP restriction fragment length polymorphism  相似文献   

5.
G. Krumbiegel  O. Schieder 《Planta》1981,153(5):466-470
After protoplast fusion somatic hybrid calli were obtained by complementation selection between an albino mutant of Datura innoxia and the wildtype of Atropa belladonna (Krumbiegel and Schieder, 1979. Planta 145, 371–375). In the present study experiments are described concerning leaf and shoot induction on several media supplemented with different combinations and concentrations of hormones. Except for fleshy leaves and embryos, no well-formed shoot could be obtained. However, under standard culture conditions after one and a half years, one line produced numerous green shoots, showing a reduced number of chromosomes from Atropa belladonna. The loss of some chromosomes decreased the degree of somatic incompatibility. The additional appearance of shoots with albino sectors, of total albino shoots, and of green shoots showing a different phenotype, demonstrated that the elimination of the chromosomes occurred not only once, but several times. At least one shoot nearly stable in chromosome content and green subline could be obtained possessing only 6 chromosomes of Atropa belladonna and the original chromosome number of Datura innoxia. Experiments were carried out to test the feasibility of producing sexual hybrids through in vivo and in vitro methods by cross pollination. However, no embryos, seeds, or plantlets were obtained, thus demonstrating that protoplast fusion is the only possibility for obtaining hybrids between these two species.Abbreviations BAP 6-benzylaminopurine - 2,4-D 2,4-dichlor-phenoxyacetic acid - IAA indoleacetic acid - NAA -naphtaleneacetic acid - SDS sodiumdodecylsulfate  相似文献   

6.
Symmetric and asymmetric protoplast fusion between long term cell suspension-derived protoplasts ofTriticum aestivum (cv. Jinan 177) and protoplasts ofHaynaldia villosa prepared from one-year-old embryogeneric calli was performed by PEG method. In asymmetric fusion, donor calli were treated with gamma ray at a dose of 40, 60, 80 Gy (1.3 Gy/min) respectively and then used to isolate protoplasts. Results of morphological, cytological, biochemical (isozyme) and 5S rDNA spacer sequence analysis revealed that we obtained somatic hybrid lines at high frequency from both symmetric and asymmetric fusion. Hybrid plants were recovered from symmetric and low dose γ-fusion combinations. GISH (genomicin situ hybridization) analysis proved exactly the existence of both parental chromosomes and the common occurrence of several kinds of translocation between them in the hybrid clones regenerated from symmetric and asymmetric fusion. And the elimination of donor DNA in hybrid clones regenerated from asymmetric fusion combinations was found to increase with the increasing gamma doses. It is concluded that transference and recombination of nuclear DNA can be achieved effectively by symmetric and asymmetric fusion, hybrids with small fragment translocation which are valuable in plant breeding can be obtained directly by asymmetric fusion.  相似文献   

7.
Summary The production of asymmetric somatic hybrid calli after fusion between gamma-irradiated protoplasts from transgenic Solanum brevidens and protoplasts from S. tuberosum are reported. Transgenic (kanamycin-resistant, GUS-positive) S. brevidens plants and hairy root clones were obtained after transformation with Agrobacterium tumefaciens LBA 1060 (pRi1855) (pBI121) and LBA 4404 (pRAL4404) (pBI121), and A. rhizogenes LBA 9402 (pRi1855) (pBI121), respectively. Leaf protoplasts isolated from the transgenic plants or root protoplasts from the hairy root clones were fused with S. tuberosum leaf protoplasts, and several calli were selected on kanamycin-containing medium. The relative nuclear DNA content of the hybrid calli was measured by flow cytometry (FCM), and the percentages of DNA of the S. brevidens and S. tuberosum genomes in the calli were determined by dot blot analysis using species-specific DNA probes. Chromosome-specific restriction fragment length polymorphism (RFLP) markers were used to investigate the elimination of specific S. brevidens chromosomes in the hybrids. The combined data on FCM, dot blot and RFLP analysis revealed that 18–62% of the S. brevidens DNA was eliminated in the hybrid calli and that the RFLP marker for chromosome 7 was absent in seven out of ten calli. The absence of RFLP markers for chromosomes 5 and 11 hardly ever occurred. In most of the hybrids the ploidy level of the S. tuberosum genome had increased considerably.  相似文献   

8.
Summary In terms of chromosome morphology, karyotype organisation, taxonomy and genetic relationship as judged from chromosome pairing in the Fl hybrid, A. cepa and A.fistulosum are two closely related species. But large variation in nuclear DNA amounts has occurred during the evolution of the two species. A comparison of the molecular composition of DNA in the two species has confirmed that the excess DNA acquired during evolution was predominantly repetitive sequences (sequences which do not encode genetic information). However, its distribution within the chromosome complements was equal in all chromosomes irrespective of the differences in chromosome size. The even distribution of the excess DNA within complements suggests strong constraints underlying evolutionary changes in genome organisation. The nature of the constraints is discussed, and it is shown that such constraints can influence the direction of karyotype evolution during speciation.  相似文献   

9.
Summary Transpositions of copia-like mobile genetic elements (MDG1, MDG3 and copia) were studied in crosses of the inbred maladaptive LA line with other laboratory lines made in order to replace specific chromosome pairs in the LA line. Individuals with various hybrid genotypes displayed changed chromosomal patterns of mobile elements compared with the parent LA chromosomes. Variability of the chromosomal molecular structure in hybrids was observed when crossing over was suppressed in the process of hybrid genome constructions. Multiple transposition events were detected in hybrid genomes carrying the second chromosomal pair of the LA line, but not if it was replaced by the second chromosome of the Swedish-b stock. No transpositions were detected in control crosses that did not involve the LA line. Outcross-dependent MDG1 transposition hot spots in the LA second chromosome were found to coincide with previously established hot spots for spontaneous transpositions in the LA line coupled with a fitness increase. The data obtained demonstrate that crosses involving inversions suppressing crossing over cannot guarantee that the chromosomal molecular content will remain the same: it can change as a result of mobile element trans-positions.  相似文献   

10.
Summary Mesophyll protoplasts of plastome chlorophyll-deficient, streptomycin-resistant Nicotiana tabacum were fused with those of wild type Atropa belladonna using the polyethylene-glycol/high pH/high Ca++/dimethylsulfoxide method. Protoplasts were cultured in nutrient media suitable for regeneration of tobacco but not Atropa cells. In two experiments, a total of 41 cell lines have been selected as green colonies. Cytogenetic (chromosomal number and morphology) and biochemical (isozyme analyses of esterase, amylase and peroxidase) studies were used to evaluate the nuclear genetic constitution of regenerated plants. To study plastid genetic constitution, restriction endonuclease analysis of chloroplast DNA was performed. Three groups of regenerants have been identified: (a) nuclear hybrids (4 cell lines); (b) Atropa plants, most probably arising from rare surviving parental protoplasts (4 lines) and (c) Nicotiana/Atropa cybrids possessing a tobacco genome and an Atropa plastome (33 lines). Most of cybrids obtained were diploid, morphologically normal plants phenotypically similar to tobacco. Some plants flowered and yielded viable seeds. Part of cybrid regenerants were variegated, variegation being transmitted to sexual progeny. Electron microscopic analysis of the mesophyll cells of variegated leaves revealed the presence of heteroplastidic cells. Analysis of thylakoid membrane polypeptides shows that in the cybrids the content of at least one of the major polypeptides, presumably a chlorophyll a/b binding protein is drastically reduced.  相似文献   

11.
In cereals, interspecific and intergeneric hybridizations (wide crosses) which yield karyotypically stable hybrid plants have been used as starting points to widen the genetic base of a crop and to construct stocks for genetic analysis. Also, uniparental genome elimination in karyotypically unstable hybrids has been utilized for cereal haploid production. We have crossed hexaploid oat (2n=6x=42, Avena sativa L.) and maize (2n=2x=20, Zea mays L.) and recovered 90 progenies through embryo rescue. Fifty-two plants (58%) produced from oatxmaize hybridization were oat haploids (2n=3x=21) following maize chromosome elimination. Twenty-eight plants (31%) were found to be stable partial hybrids with 1–4 maize chromosomes in addition to a haploid set of 21 oat chromosomes (2n=21+1 to 2n=21+4). Ten of the ninety plants produced were found to be apparent chromosomal chimeras, where some tissues in a given plant contained maize chromosomes while other tissues did not, or else different tissues contained a different number of maize chromosomes. DNA restriction fragment length polymorphisms (RFLPs) were used to identify the maize chromosome(s) present in the various oat-maize progenies. Maize chromosomes 2, 3, 4, 5, 6, 7, 8, and 9 were detected in partial hybrids and chromosomal chimeras. Maize chromosomes 1 and 10 were not detected in the plants analyzed to-date. Furthermore, partial self-fertility, which is common in oat haploids, was also observed in some oat-maize hybrids. Upon selfing, partial hybrids with one or two maize chromosomes showed nearly complete transmission of the maize chromosome to give self-fertile maize-chromosome-addition oat plants. Fertile lines were recovered that contained an added maize chromosome or chromosome pair representing six of the ten maize chromosomes. Four independently derived disomic maize chromosome addition lines contained chromosome 4, one line carried chromosome 7, two lines had chromosome 9, one had chromosome 2, and one had chromosome 3. One maize chromosome-8 monosomic addition line was also identified. We also identified a double disomic addition line containing both maize chromosomes 4 and 7. This constitutes the first report of the production of karyotypically stable partial hybrids involving highly unrelated species from two subfamilies of the Gramineae (Pooideae — oat, and Panicoideae — maize) and the subsequent recovery of fertile oat-maize chromosome addition lines. These represent novel material for gene/ marker mapping, maize chromosome manipulation, the study of maize gene expression in oat, and the transfer of maize DNA, genes, or active transposons to oat.Joint contribution of the Minnesota Agricultural Experiment Station and USDA-ARS. Scientific journal series paper No. 21 859 of the Minnesota Agricultural Experiment Station. Mention of a trademark or proprietary product does not constitute a guarantee or warranty by the USDA-ARS or the University of Minnesota and does not imply approval over other products that also may be suitable  相似文献   

12.
The gene pool of Brassica oleracea was enriched via intergeneric somatic hybridization between B. oleracea (2n = 18) and Matthiola incana (2n = 14). One hundred and eighteen plants were obtained from 96 calli. Only four plants (H1, H2, H3 and H4) showed an intermediate phenotype from the parents; among these, H1 and H3 arose from the same callus. Random amplified polymorphic DNA (RAPD), sequence-related amplified polymorphism (SRAP), and cytological analyses confirmed that H1 and H3 were hybrids. The nuclear DNA content of the regenerated plants was determined by flow cytometry. More than half of the plants contained a nuclear DNA content of 1.3 to 3.9 pg/cell, which was higher than the content of B. oleracea but lower than that of M. incana. H1 contained 4.89 ± 0.02 pg of DNA per cell, while H3 nuclear DNA content was estimated at 4.87 ± 0.06 pg/cell. Cytological study of the root-tip cells revealed that the majority of the H1 and H3 hybrid cells contained 28 chromosomes.  相似文献   

13.
Summary Electrofusion was carried out between mesophyll protoplasts from the transformed diploid S. tuberosum clone 413 (2n=2x=24) which contains various genetic markers (hormone autotrophy, opine synthesis, kanamycin resistance, -glucuronidase activity) and mesophyll protoplasts of a diploid wild-type clone of N. plumbaginifolia (2n=2x=20). Hybrid calli were obtained after continuous culture on selection medium containing kanamycin. Parental chromosome numbers, determined at 2 months after fusion, revealed hybrid-specific differences between the individual calli. On the basis of these differences three categories of hybrids were distinguished. Category I hybrids contained between 8 and 24 potato chromosomes and more than 20 N. plumbaginifolia chromosomes; category II hybrids had between 1 and 20 N. plumbaginifolia chromosomes and more than 24 potato chromosomes; category III hybrids contained diploid or subdiploid numbers of chromosomes from both parents. The hybrids were evenly distributed over the three categories. After a 1-year culture of 24 representative hybrid callus lines on selection medium the karyotype of 10 hybrids remained stable, whereas 8 hybrids showed polyploidization of the genome of one parent, together with no or minor changes of the chromosome numbers of the other parent. Six hybrids showed slight changes in the hybrid karyotype. The elimination of chromosomes of a particular parent was not correlated to their metaphase location. The processes of spontaneous biparental chromosome elimination leading to the production of asymmetric hybrids of different categories are discussed.  相似文献   

14.
By fusion of thymidine kinase-deficient mink cells with pig leukocytes, a new type of cell hybrid was produced. It was demonstrated that pig chromosomes segregate in pig-mink hybrids and that hybrid cells contain no cytologically visible rearrangements between the chromosomes of parental species, or chromosome fragmentation. With a set of subclones of two primary hybrid clones, the genes for thymidine kinase-1 (TK1) and uridine 5-monophosphate hydrolase-2 (UMPH2) were assigned to pig Chromosome (Chr) 12. A cell line with a single pig Chr 8 on the background of mink chromosomes was established. This clone could serve as a source of DNA for building a chromosome-specific library of pig Chr 8. The data obtained suggest that pig-mink cell hybrids can be used for mapping of pig chromosomes.  相似文献   

15.
Somatic cell hybrids were produced by fusing protoplasts isolated from callus cells of a tobacco line transformed by Agrobacterium tumefaciens (octopine synthesizing strain B6S3), and mesophyll protoplasts from haploid plants of Nicotiana plumbaginifolia. Hybrids were selected by using differential medium (hormone-independent growth plus greening capacity), or by mechanical isolation and cloning of individual heterokaryocytes. The analysis of hybrid cell lines included the determination of lysopine dehydrogenase activity (encoded by the T-region of Agrobacterium tumefaciens plasmid), examination of isozymes of esterase, and study of chromosome number and morphology. All eight cell lines selected on the screening medium were identified as nuclear hybrids, while only three of the eight evaluated clones obtained by mechanical isolation and cloning were found to be nuclear hydrids; the rest of them were nuclear segregants of tobacco [1] or N. plumbaginifolia [4] type. These data give independent evidence for the occurrence of non-fusion and segregation of nuclei in fusion products, that can be revealed only by using nonselective methods for hybrid screening. In this paper we demonstrate the value of microisolation for the recovery of cytoplasmic hybrids.  相似文献   

16.
A long-term suspension culture ofBrachycome dichromosomatica (2n = 4) was induced from a cotyledon-derived callus. Subcultures were obtained every week up to three years. The bulk of the cultures displayed a stable diploid karyotype, while one cell line evolved with 2n = 5 chromosomes in the 86th reinoculation. No further chromosomal change occurred also in that cell line. It is assumed that the fifth chromosome is the expression of a trisomy 2.The chromatin ultrastructure was of the species-specific chromomeric type in the wild-type line, while the trisomic line displayed more condensed chromatin, what probably indicates a rather inactive state of the extra-chromosome.Brachycome dichromosomatica is suggested to represent an ideal species to follow-up karyotype stability and/or variation in cell culture.As a former student W. N. dedicates this paper in gratitude and admiration to Prof. DrElisabeth Tschermak-Woess on the occasion of her 70th birthday. Prof.Woess with her scientific work has stimulated in an unique manner the study of nuclear structures in plants, of endopolyploidy and polytene chromosomes, and has thus established the basis for the rapidly increasing research in these fields.  相似文献   

17.
Summary Thirteen nuclear asymmetric hybrids were regenerated under selective conditions following fusion of chlorophyll-deficient protoplasts from cultivated tomato (Lycopersicon esculentum Mill.) and -(-irradiated protoplasts from the wild species Lycopersicon peruvianum var. dentatum Dun. All hybrid plants were classified as being asymmetric based on morphological traits, chromosome numbers and isozyme patterns. The majority of the hybrids inherited Lycopersicon peruvianum var. dentatum chloroplasts. Mitochondrial DNA analysis revealed mixed mitochondria populations deriving from both parents in some of the hybrids and rearranged mitochondrial DNA in others. The asymmetric hybrids express some morphological traits that are not found in either of the parental species. Fertile F1 plants were obtained after self-pollination of the asymmetric hybrids in four cases. The results obtained confirm the potential of asymmetric hybridization as a new source of genetic variation, and as a method for transferring of a part of genetic material from donor to recipient, and demonstrate that it is possible to produce fertile somatic hybrids by this technique.  相似文献   

18.
Wang J  Xiang F  Xia G 《Planta》2005,221(2):277-286
The introgressed small-chromosome segment of Agropyron elongatum (Host.) Neviski (Thinopyrum ponticum Podp.) in F5 line II-1-3 of somatic hybrid between common wheat (Triticum aestivum L.) and A. elongatum was localized by sequential fluorescence in situ hybridization (FISH), genomic in situ hybridization (GISH) and karyotype data. Karyotype analysis offered basic data of arm ratios and relative lengths of 21 pairs of chromosomes in parent wheat Jinan177 and hybrid II-1–3. Using special high repetitive sequences pSc119.2 and pAs1 for FISH, the entire B- and D-genome chromosomes were detected. The FISH pattern of hybrid II-1-3 was the same as that of parent wheat. GISH using whole genomic DNA from A. elongatum as probe determined the alien chromatin. Sequential GISH and FISH, in combination with some of the karyotype data, localized the small chromosome segments of A. elongatum on the specific sites of wheat chromosomes 2AL, 1BL, 5BS, 1DL, 2DL and 6DS. FISH with probe OPF-031296 from randomly amplified polymorphic DNA (RAPD) detected E-genome chromatin of A. elongatum, which existed in all of the small chromosome segments introgressed. Microsatellite primers characteristic for the chromosome arms above were used to check the localization and reveal the genetic identity. These methods are complementary and provide comprehensive information about the genomic constitution of the hybrid. The relationship between hybrid traits and alien chromatin was discussed.  相似文献   

19.
Summary Brassica napus and B. nigra were combined via protoplast fusion into the novel hybrid Brassica naponigra. The heterokaryons were identified by fluorescent markers and selected by flow sorting. Thirty hybrid plants were confirmed by isozyme analysis to contain both B. nigra and B. napus chromosomes; of these, 20 plants had the sum of the parental chromosome numbers. A non-random segregation of the chloroplasts was found in the hybrids. Of 14 hybrid plants investigated, all had the B. napus type of chloroplast. The resistance to Phoma lingam found in the B. nigra cultivar used in the fusion experiments was expressed in 26 of the hybrid plants. The hybrids obtained in this study contain all of the three Brassica genomes (A, B and C) and have thus created unique possibilities for genetic exchanges between the genomes. Since most of the plants were fertile as well as resistant to P. lingam, they have been incorporated into conventional rapeseed breeding programs.  相似文献   

20.
Summary The degree of preferential pairing of homologous chromosomes was estimated in a series of tetraploid hybrids of Lolium temulentum x Lolium perenne by means of cytological and genetic analyses. The correlations between the frequency of bivalents at first metaphase of meiosis in the hybrid tetraploids and the degree of preferential pairing calculated from the segregation pattern of isozyme alleles in a test cross was extremely high. The results showed clearly that suppression of heterogenetic pairing in these Lolium tetraploids is achieved by a genetic system involving the A chromosomes as well as the B chromosome system which has been known for some time. Certain similarities with the genetic system controlling pairing in polyploid wheats are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号