首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel in situ electrochemical surface plasmon resonance (EC-SPR) immunosensor is presented in this paper. The EC-SPR measurement can be used to in situ monitor the polymer formation, probe immobilization, antigen-antibody interaction and protein immunosensing process. A sandwich immunosensor based on permeable polypyrrole propylic acid (PPA) film is constructed using mouse IgG as a model analyte. The results show that the introduction of capture antibody conjugated enzyme not only enhances the current responses but also increases the SPR angle shift. The calibration curves of electrochemical (EC) and surface plasmon resonance (SPR) measurement exhibit a similar dependence on the bulk concentration of antigen. An approximate linear relationship can be obtained by plotting the data in semi-logarithmic reference frame. Compared with SPR, EC shows higher sensitivity with prolonged time. The in situ EC-SPR immunosensor described herein could have important potentials for diagnostics and medicine applications.  相似文献   

2.
Sandwich and colloidal Au techniques for enhancing the sensitivity of a wavelength-modulation surface plasmon resonance (SPR) immunosensor are demonstrated by the detection of human complement factor 4 (C4). The design of the wavelength-modulation SPR biosensor is based on fixing the incident angle of light and measuring the reflected intensity of light in the wavelength range spanning 500-900 nm simultaneously. The human C4 had good response in the concentration range 2-20 microg/mL in the direct assay. However, in the sandwich assay, the human C4 had good response in the concentration range 0.2-20 microg/mL and the lowest concentration is 10-fold lower than that obtained by the direct assay. With human C4-Au colloidal conjugate, the human C4 had good response in the concentration range 0.1-20 microg/mL and the lowest concentration is 20-fold lower than that obtained by the direct assay. In the colloidal-Au-enhanced sandwich assay, the human C4 had good response in the concentration range 0.05-5 microg/mL and the lowest concentration is 40-fold lower than that obtained by the direct assay. Under selected experimental conditions, the reproducibility, sensitivity, and reversibility of the enhanced SPR immunoassay are very satisfactory. The results represent potentially significant advantages in the sensitivity of SPR biosensors.  相似文献   

3.
This study evaluated construction of a highly affinitive quartz crystal microbalance (QCM) immunosensor using anti-C-reactive protein (CRP) antibody and its fragments for CRP detection. Three types of antibody were immobilized on the surface of a QCM via covalent-bounding. Then affinity was evaluated through antigen-antibody binding between CRP and its antibody. Affinity between antigen-antibody was shown to be highest when anti-CRP F(ab')2-IgG antibody (70 microg/mL) was immobilized on the QCM. In case of anti-CRP F(ab')2-IgG antibody, affinity which was attributable to antigen-antibody binding was almost twice that of anti-CRP IgG antibody, which is used conventionally for QCM immunosensors. In addition, when it was treated with 2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate, so-called MPC polymer, highly affinitive and selective immunosensing for CRP was achieved without non-specific binding from plasma proteins in human serum. When anti-CRP F(ab')2-IgG antibody was immobilized on the QCM, the detection limit and the linearity of CRP calibration curve were achieved at concentrations from 0.001 to 100 microg/dL even during investigation in serum samples. Experimental results verified the successful construction of a highly affinitive and selective QCM-immunosensor which was modified with anti-CRP F(ab')2-IgG antibody and MPC polymer.  相似文献   

4.
We demonstrated a simple and efficient strategy, which based on the enzymatically biocatalytic precipitates amplified antibody-antigen interaction, for improving the response signals of surface plasmon resonance (SPR) immunosensing. The antibody-antigen-alkaline phosphatase (AP) labeled secondary antibody sandwich were successfully prepared and characterized by SPR, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The SPR signal amplification was accomplished through probing resonance angle shift and Faradaic electron impedance of [Fe(CN)(6)](3-/4-) redox pair after the enzymatically biocatalytic products precipitating on the immunosensing electrode surface. As a result, the accumulation of the enzymatically biocatalytic precipitates leads to significantly resonance angle shift and increase of electron transfer impedance of [Fe(CN)(6)](3-/4-) probe. The precipitates-enhanced sandwich SPR immunoassay for mouse immunoglobulin G (m-IgG) can easily detect solution protein concentrations in the linear range of 0.02-40 ng mL(-1) and with a detection limit of 200 fg mL(-1), which is more than four-orders and 10 times better compared with the values using streptavidin-biotinylated protein complex and biotinylated HRP biocatalyzation amplification methods. Moreover, this method is generally applicable to other sandwich immunoassays and also can be expanded to monitor other antibody-antigen interaction for immunosensing detection at low concentrations.  相似文献   

5.
An immunosensing system based on surface plasmon resonance (SPR) was used for on-line detection and characterization of carbohydrate molecules separated by high-performance liquid chromatography. These analytes, with or without serum, were continuously separated and analyzed in the combined liquid chromatography-surface plasmon resonance (LC-SPR) system. By using weak and readily reversible monoclonal antibodies, the SPR system allowed specific on-line monitoring of the substances. To increase the specificity of the immunosensor, nonrelevant antibodies were used as reference in a serial flow cell. The sensitivity of the LC-SPR system was dependent on molecular weight of the carbohydrate, affinity of binding, and design of the sensor.  相似文献   

6.
Using a surface plasmon resonance (SPR)-based biosensor (BIA-technology), we have studied the interaction of ten different murine monoclonal antibodies (mAbs, all IgG1), raised against the main protein constituent of human low density lipoprotein (LDL), i.e. the apolipoprotein B-100 (apoB-100). These mAbs identify distinct domains on apoB-100, relevant to LDL-receptor interaction: epitopes in the amino-terminal region (mAbs L7, L9, L10 and L11: aa 1–1297) and in the middle region (mAb 6B: aa 1480–1693; mAbs 2A, 3B: aa 2152–2377; mAbs 9A, L2 and L4: aa 2657–3248) of native apoB-100. A multisite binding analysis was performed to further characterize the epitopes recognized by all these mAbs. A rabbit anti-mouse IgG1-Fc antibody (RAM.Fc) was first coupled to the gold surface in order to capture one anti-human apoB-100 mAb. ApoB-100 protein was subsequently injected and allowed to react with this immobilized, oriented antibody. Multisite binding assays were then performed, by sequentially flowing other mAbs, in different orders, over the sensing surface. The capacity of each mAb to interact with the entrapped apoB-100 in a multimolecular complex was monitored in real time by SPR. The results achieved were comparable to those obtained by western immunoblotting using the same reagents. However, SPR ensures a more detailed epitope identification, demonstrating that BIA-technology can be successfully used for mapping distinct epitopes on apoB-100 protein in solution dispensing with labels and secondary tracers; moreover, compared with conventional immunoassays, it is significantly time saving (CNR-P.F. MADESS 2).  相似文献   

7.
The sensitivity and specificity of a polyethylene glycol terminated alkanethiol mixed self-assembled monolayers (SAM) on surface plasmon resonance (SPR) immunosensor to detect Escherichia coli O157:H7 is demonstrated. Purified monoclonal (Mabs) or polyclonal antibodies (PAbs) against E. coli O157:H7 were immobilized on an activated sensor chip and direct and sandwich assays were carried to detect E. coli O157:H7. Effect of Protein G based detection and effect of concentrations of primary and secondary antibodies in sandwich assay were investigated. The sensor surface was observed under an optical microscope at various stages of the detection process. The sensor could detect as low as 10(3)CFU/ml of E. coli O157:H7 in a sandwich assay, with high specificity against Salmonella Enteritidis. The detection limit using direct assay and Protein G were 10(6)CFU/ml and 10(4)CFU/ml, respectively. Results indicate that an alkanethiol SAM based SPR biosensor has the potential for rapid and specific detection of E. coli O157:H7, using a sandwich assay.  相似文献   

8.
Cathepsin L is a lysosomal cysteine protease involved in intracellular protein degradation. Recently, several new cysteine proteases have been identified. Human cathepsin V, a thymus- and testis-specific human cysteine protease, shares 78% sequence identity with human cathepsin L. Due to the strong sequence similarity, highly selective reagents are needed to elucidate the physiological functions of the two enzymes. Monoclonal antibodies (mAbs) have been prepared against recombinant human cathepsin L. Antibodies produced by five clones reacted with procathepsin L and mature cathepsin L. They also reacted with cathepsin L in complex with a peptide fragment, which is identical to the alternatively spliced segment of the p41 form of MHC Class II associated invariant chain. Two mAbs, (M105 and H102) were specific for cathepsin L, while three (N135, B145 and D24) cross-reacted with cathepsin V. None of the mAbs cross-reacted with cathepsins B, H and S. We have developed a sandwich enzyme-linked immunosorbent assay (ELISA) for quantifying cathepsin L. This sandwich ELISA uses a combination of two monoclonal antibodies which recognize different, non-overlapping epitopes on the cathepsin L molecule. The lower detection limit of the sandwich ELISA was 5 ng of cathepsin L per ml.  相似文献   

9.
In this study, three different rat hybridoma cell lines secreting monoclonal antibodies (mAbs) recognizing the spores from Alternaria alternata, a plant pathogenic fungus, contaminant of food products and important cause of both allergic rhinitis and asthma, have been characterized. These three mAbs are all of IgM isotype. Two antibodies, A1 and F10, were cross-reactive antibodies recognizing spores from Alternaria, Cladosporium, Penicillium, Aspergillus and Stachybotrys genera, but not the yeasts Saccharomyces cerevisiae or Candida albicans. Competitive and sandwich assays demonstrated that these two mAbs were directed against the same or very close repetitive(s) epitope(s). A1-based sandwich ELISA efficiently detected this epitope in various mould (but not yeast)-soluble extracts prepared from strains grown in the laboratory. Moreover, this A1-based sandwich ELISA detected its cognate epitope in air and dust samples obtained from dwellings. The third antibody, E5, recognized only the spores of Alternaria and the phylogenetically very close Ulocladium botrytis. This E5 antibody is directed against a repetitive epitope found in Alternaria and Ulocladium laboratory extracts and can be used in a sandwich assay for the quantification of these moulds. Therefore, E5 antibody is a promising tool for the development of Alternaria-Ulocladium-specific immunoassays, while A1 and F10 could be interesting tools for the quantification of the total mould biomass.  相似文献   

10.
A novel immunosensing device based on a piezoelectric sensor for direct detection of the biological warfare agent Francisella tularensis was developed. This sensor includes mouse polyclonal antibody immobilized in a layer of protein A covalently linked to the gold electrode of the sensor. The immunosensor is able to detect F. tularensis with the limit of detection 10(5) CFU/mL with a typical measuring cycle > 5 min. The sensor was successfully evaluated for rapid detection of F. tularensis spikes in drinking water and milk; no deterioration of sensitivity in comparison with buffer solutions was observed. The proposed concept of a rapid measurement of microbial agents seems to be promising for evaluation of samples after short pre-cultivation enrichment.  相似文献   

11.
Sensitive and rapid detection of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) was achieved with a newly developed evanescent wave all-fiber immunosensor (EWAI). A reusable functional sensing surface of the immunosensor is prepared by covalent binding of 2,4-D-bovine serum albumin (2,4-D-BSA) conjugate to a self-assembled alkanethiol monolayer formed onto the fiber optic probe through heterobifunctional reagent. The quantification of free 2,4-D in samples was based on indirect competitive immunoreaction principle. Under optimum conditions, calibration curve obtained for 2,4-D had detection limits of 0.07 microg L(-1), the 50% inhibition concentration (IC(50)) was 3.93+/-0.03 microg L(-1) and the quantitative detection range was 0.22-69.5 microg L(-1). The antibodies binding on the sensor surface could be removed simply by the flow of a pepsin solution (pH 1.9), facilitating reuse of the same probe. The regeneration of the sensor surface allowed the performance of more than 100 assay cycles without significant loss of reactivity. The antibody showed negligible cross-reactivity against a few compounds structurally similar to 2,4-D. The immunosensor developed was successfully applied to the monitoring of 2,4-D in spiked water samples without significant effect of the matrix. The proposed portable immunosensor is promising for real-time on-site analysis of small molecules of environmental interest.  相似文献   

12.
Immunosensor using surface plasmon resonance (SPR) onto self-assembled protein G layer was developed for the detection of Legionella pneumophila. A self-assembled protein G layer on gold (Au) surface was fabricated by adsorbing a mixture of 11-mercaptoundecanoic acid (MUA) and hexanethiol (molar ratio of 1:2) and the activation process for chemical binding between free amine (-NH(2)) of protein G and 11-(MUA) using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDAC) in series. The formation of self-assembled protein G layer on Au substrate and the binding of antibody and antigen in series were confirmed by SPR spectroscopy. The surface morphology analyses of self-assembled protein G layer on Au substrate and monoclonal antibody against L. pneumophila immobilized on protein G were performed by atomic force microscope (AFM). The immunosensor for detection of L. pneumophila using SPR was developed and its detection limit could find up to 10(5) cells/ml.  相似文献   

13.
An immunosensor based on surface plasmon resonance imaging (SPR imaging) using a specific monoclonal antibody 11E5 (MAb 11E5) was developed for the detection of the seed-borne bacterium Acidovorax avenae subsp. citrulli (Aac), which causes fruit blotch in watermelons and cantaloupes, and compared to the conventional ELISA technique. The 1:40 mixed self-assembled monolayer (mixed SAM) surface was used for the immobilized MAb 11E5 on sensor surface for the detection of Aac. Both whole cells and broken cells of Aac were tested by using direct and sandwich detection assay. The limit of detection (LOD) of Aac using the SPR imaging technique and a direct detection assay was 10(6)cfu/ml and a subsequent amplification of the SPR signal using a polyclonal antibody (PAb) lowered the LOD to 5×10(5) cfu/ml. The LOD for the ELISA technique was 5×10(4) cfu/ml for the detection of Aac, which was slightly better than that for the SPR technique. However, the sensor surface based on SPR imaging offered a major advantage in terms of surface regeneration, allowing at least five cycles with a shorter time assay, multi-channel analysis with an application on multiplex detection, and an ease of the surface usage for the detection of Aac in the naturally infected plant. The surface was tested against the naturally infected sample and showed good selectivity toward the Aac bacteria.  相似文献   

14.
基于原子力显微术,利用电化学、胶体金修饰等,进行与生物分子的结构与功能相关的免疫识别研究。利用分子自组装技术,设计出胶体金修饰CD29免疫传感器,并将原子力显微镜(AFM)针尖修饰CD29后,利用力曲线模式,对免疫传感器进行分子识别及活性点分析。CD29免疫传感器的活性点分析表明,只有62.5%的表面区域有明显力的黏附性,即活性部位,其余部分无活性。通过AFM扫描表面,发现抗体在表面聚集成团状,失去蛋白分子的原有结构,且将活性部位隐藏于内部。推断出这可能是导致蛋白失活的主要原因。  相似文献   

15.
目的:制备人绒毛膜促性腺激素(beta-HCG)单克隆抗体,建立人beta-HCG双抗体夹心CLIA 检测方法。方法:用人beta-HCG 抗原 免疫小鼠,通过细胞融合、筛选后得到杂交瘤细胞株,然后将细胞株扩大培养并纯化上清液获得抗体,测定抗体亲和力、特异性及 表位,最后建立双抗体夹心CLIA方法。结果:获得4 株抗人茁-HCG的杂交瘤细胞株(beta-1-1、beta-2-1、beta-3-1、beta-4-1)。用beta-1-1 和 beta-2-1 建立的双抗体夹心法的检测范围为0.5 mIU/mL-800 mIU/mL,灵敏度0.23 mIU/mL,检测结果的相对偏差均在± 10 %内,回 收率在90 %以上。结论:本研究最终成功制备了抗人beta-HCG mAb,建立了定量检测人beta-HCG 的双抗体夹心CLIA 方法,为 beta-HCG 检测及疾病的诊断奠定基础。  相似文献   

16.
Zeng G  Yang P  Zheng Z  Feng Q  Cai J  Zhang S  Chen ZW 《Proteomics》2005,5(17):4347-4353
While biosensors have been constructed using various strategies, there is no report describing nanostructures of antibody-immobilized electrode interface in an immunosensor. Here, atomic force microscopy (AFM) and electrochemistry analyses were employed to construct and characterize the nanostructures and electrochemistry of biosensing surface that was created by a sequential self-assembling of bioactive aminobenzenthiol oligomer (o-ABT), glutareldehyde and anti-transferrin (anti-Tf) antibody on the electrode gold surface. Under AFM, a complete coverage of bioactive o-ABT interface could be achieved by anti-Tf antibody at an optimal concentration. The anti-Tf antibody immobilized on electrode surface of the immunosensor exhibited globular-shape topography with some degree of aggregation. Extensive force-curve analysis allowed mapping the functional spots of the anti-Tf immunosensor. Surprisingly, although immunosensing surface was fully covered by anti-Tf antibodies at the optimal concentration, only about 52% of coated anti-Tf antibody molecules (spots) on the electrode surface were able to specifically capture or bind Tf antigen under AFM. Despite limited functional spots, however, the anti-Tf immunosensor was highly specific and sensitive for sensitizing Tf antigen in solution. The anti-Tf molecules on the immunosensor exhibited a greater molecular force bound to holo-Tf (iron-containing form of Tf) than that to apo-Tf (iron-absent form of Tf). Consistently, the anti-Tf immunosensor had a greater electrochemical capacity to sensitize apo-Tf than holo-Tf, supporting the molecular force-based finding by AFM. Thus, the present study elucidated the nanostructures and molecular force bases for the immunosensing capacity of a highly sensitive capacitive immunosensor.  相似文献   

17.
An immunosensor based on surface plasmon resonance (SPR) using protein G was developed for the detection of Salmonella typhimurium. A protein G layer was fabricated by binding chemically to self-assembly monolayer (SAM) of 11-mercaptoundecanoic acid (MUA) on gold (Au) surface. The formation of protein G layer on Au surface modified with 11-MUA and the binding of antibody and antigen in series were confirmed by SPR spectroscopy. The effect of detergent such as Tween-20 on binding efficiency of antibody and antigen was investigated by SPR. The binding efficiency of antigen to the antibody immobilized on Au surface was improved up to about 85% and 100% by using protein G and Tween-20, respectively. The surface morphology analyses of 11-MUA monolayer on Au substrate, protein G layer on 11-MUA monolayer and antibody layer immobilized on protein G layer were performed by atomic force microscope (AFM). Consequently, an immunosensor based on SPR for the detection of S. typhimurium using protein G was developed with a detection range of 10(2) to 10(9)CFU/ml. The current fabrication technique of a SPR immunosensor for the detection of S. typhimurium could be applied to construct other immnosensors or protein chips.  相似文献   

18.
A SPR-based immunosensor for the detection of isoproturon   总被引:1,自引:0,他引:1  
The proof of principle of a reusable surface plasmon resonance (SPR)-based immunosensor for the monitoring of isoproturon (IPU), a selective and systemic herbicide, is presented. The detecting rat monoclonal anti-isoproturon antibody (mAb IOC 7E1) was reversibly immobilized through the use of a capture mouse anti-rat (kappa-chain) monoclonal antibody (mAb TIB 172), which was covalently immobilized on the sensor chip surface. Such strategy features a controlled binding of the captured detecting antibody as well as facilitates the surface regeneration. The capture of the anti-IPU mAb by the antibody (TIB 172) coated sensor surface could be carried out up to 120 times (immobilization/regeneration cycles) without any evidence of activity loss. With a high test midpoint and a low associated SPR signal, the direct detection format was shown to be unsuitable for the routine analysis of isoproturon. However, the limit of detection (LOD) could be easily enhanced by using a strategy based on a surface competition assay, which improved all immunosensor parameters. Moreover, the sensitivity and working range of the indirect format were found to be dependent on the surface density of the anti-IPU mAb IOC 7E1. As expected for competitive formats, the lowest surface coverage (0.5 ng/mm(2)) allowed a lower detection of the herbicide isoproturon with a calculated LOD of 0.1 microg/l, an IC(50) (50% inhibition) of 5.3+/-0.6 microg/l, and a working range (20-80% inhibition) of 1.3-16.3 microg/l.  相似文献   

19.
We report a novel method of electrochemical signaling from antigen-antibody interactions at immunoelectrodes with bioelectrocatalyzed enzymatic signal amplification. For the immunosensing surface construction, a poly(amidoamine) G4-dendrimer was employed not only as a building block for the electrode surface modification but also as a matrix for ligand functionalization. As a model biorecognition reaction, the dinitrophenyl (DNP) antigen-functionalized electrode was fabricated and an anti-DNP antibody was used. Glucose oxidase (GOX) was chosen to amplify electrochemical signal by enzymatic catalysis. The signal amplification strategy introduced in this study is based on the back-filling immobilization of biocatalytic enzyme to the immunosensor surface, circumventing the use of an enzyme-labeled antibody. The non-labeled native antibody was biospecifically bound to the immobilized ligand, and the activated enzyme (periodate-treated GOX) reacted and "back-filled" the remaining surface amine groups on the dendrimer layer by an imine formation reaction. From the bioelectrocatalyzed signal registration with the immobilized GOX, the surface density of biospecifically bound antibody could be estimated. The DNP functionalization reaction was optimized to facilitate the antibody recognition and signaling reactions, and approximately 6% displacement of surface amine to DNP was found to be an optimum. From quartz crystal microbalance measurement, immunosensing reaction timing and the surface inertness to the nonspecific biomolecular binding were tested. By changing the surface functionalization level of DNP in the calibration experiments, immunosensors exhibited different dynamic detection ranges and limits of detection, supporting the capability of parameters modulation for the immunosensors. For the anti-DNP antibody assay, the fabricated immunosensor having 65% functionalization ratio exhibited the linear detection range of 10(-4) to 0.1 g/L protein and a limit of detection around 2 x 10(-5) g/L.  相似文献   

20.
Seven monoclonal antibodies (mAbs) against the wheat allergen, Tri a Bd 17 K, were prepared to obtain mAbs suitable for a sandwich enzyme-linked immunosorbent assay (sandwich ELISA) for determination of the allergen. Two of the mAbs strongly immunoblotted the allergen purified from wheat flour. However, only one (1G11) of them was found to be suitable for sandwich ELISA. Epitope mapping against mAb-1G11 on the allergen showed that the mAb recognized the peptide containing Lys-38 and Gln-39 of the allergen. We developed a sandwich ELISA method consisting of Aleuria aurantia lectin for fixing the allergen and 1G11 as the first antibody that enabled 4-4,000 ng/well of the allergen to be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号