首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Tpp1 is a DNA 3'-phosphatase in Saccharomyces cerevisiae that is believed to act during strand break repair. It is homologous to one domain of mammalian polynucleotide kinase/3'-phosphatase. Unlike in yeast, we found that Tpp1 could confer resistance to methylmethane sulfonate when expressed in bacteria that lack abasic endonuclease/3'-phosphodiesterase function. This species difference was due to the absence of delta-lyase activity in S. cerevisiae, since expression of bacterial Fpg conferred Tpp1-dependent resistance to methylmethane sulfonate in yeast lacking the abasic endonucleases Apn1 and Apn2. In contrast, beta-only lyases increased methylmethane sulfonate sensitivity independently of Tpp1, which was explained by the inability of Tpp1 to cleave 3' alpha,beta-unsaturated aldehydes. In parallel experiments, mutations of TPP1 and RAD1, encoding part of the Rad1/Rad10 3'-flap endonuclease, caused synthetic growth defects in yeast strains lacking Apn1. In contrast, Fpg expression led to a partial rescue of apn1 apn2 rad1 synthetic lethality by converting lesions into Tpp1-cleavable 3'-phosphates. The collected experiments reveal a profound toxicity of strand breaks with irreparable 3' blocking lesions, and extend the function of the Rad1/Rad10 salvage pathway to 3'-phosphates. They further demonstrate a role for Tpp1 in repairing endogenously created 3'-phosphates. The source of these phosphates remains enigmatic, however, because apn1 tpp1 rad1 slow growth could be correlated with neither the presence of a yeast delta-lyase, the activity of the 3'-phosphate-generating enzyme Tdp1, nor levels of endogenous oxidation.  相似文献   

2.
Collura A  Kemp PA  Boiteux S 《DNA Repair》2012,11(3):294-303
In Saccharomyces cerevisiae, inactivation of base excision repair (BER) AP endonucleases (Apn1p and Apn2p) results in constitutive phosphorylation of Rad53p and delay in cell cycle progression at the G2/M transition. These data led us to investigate genetic interactions between Apn1p, Apn2p and DNA damage checkpoint proteins. The results show that mec1 sml1, rad53 sml1 and rad9 is synthetic lethal with apn1 apn2. In contrast, apn1 apn2 rad17, apn1 apn2 ddc1 and apn1 apn2 rad24 triple mutants are viable, although they exhibit a strong Can(R) spontaneous mutator phenotype. In these strains, high Can(R) mutation rate is dependent upon functional uracil DNA N-glycosylase (Ung1p) and mutation spectra are dominated by AT to CG events. The results point to a role for Rad17-Mec3-Ddc1 (9-1-1) checkpoint clamp in the prevention of mutations caused by abasic (AP) sites linked to incorporation of dUTP into DNA followed by the excision of uracil by Ung1p. The antimutator role of the (9-1-1) clamp can either rely on its essential function in the induction of the DNA damage checkpoint or to another function that specifically impacts DNA repair and/or mutagenesis at AP sites. Here, we show that the abrogation of the DNA damage checkpoint is not sufficient to enhance spontaneous mutagenesis in the apn1 apn2 rad9 sml1 quadruple mutant. Spontaneous mutagenesis was also explored in strains deficient in the two major DNA N-glycosylases/AP-lyases (Ntg1p and Ntg2p). Indeed, apn1 apn2 ntg1 ntg2 exhibits a strong Ung1p-dependent Can(R) mutator phenotype with a spectrum enriched in AT to CG, like apn1 apn2 rad17. However, genetic analysis reveals that ntg1 ntg2 and rad17 are not epistatic for spontaneous mutagenesis in apn1 apn2. We conclude that under normal growth conditions, dUTP incorporation into DNA is a major source of AP sites that cause high genetic instability in the absence of BER factors (Apn1p, Apn2p, Ntg1p and Ntg2p) and Rad17-Mec3-Ddc1 (9-1-1) checkpoint clamp in yeast.  相似文献   

3.
Guillet M  Boiteux S 《The EMBO journal》2002,21(11):2833-2841
In Saccharomyces cerevisiae, mutations in APN1, APN2 and either RAD1 or RAD10 genes are synthetic lethal. In fact, apn1 apn2 rad1 triple mutants can form microcolonies of approximately 300 cells. Expression of Nfo, the bacterial homologue of Apn1, suppresses the lethality. Turning off the expression of Nfo induces G(2)/M cell cycle arrest in an apn1 apn2 rad1 triple mutant. The activation of this checkpoint is RAD9 dependent and allows residual DNA repair. The Mus81/Mms4 complex was identified as one of these back-up repair activities. Furthermore, inactivation of Ntg1, Ntg2 and Ogg1 DNA N-glycosylase/AP lyases in the apn1 apn2 rad1 background delayed lethality, allowing the formation of minicolonies of approximately 10(5) cells. These results demonstrate that, under physiological conditions, endogenous DNA damage causes death in cells deficient in Apn1, Apn2 and Rad1/Rad10 proteins. We propose a model in which endogenous DNA abasic sites are converted into 3'-blocked single-strand breaks (SSBs) by DNA N-glycosylases/AP lyases. Therefore, we suggest that the essential and overlapping function of Apn1, Apn2, Rad1/Rad10 and Mus81/Mms4 is to repair 3'-blocked SSBs using their 3'-phosphodiesterase activity or their 3'-flap endonuclease activity, respectively.  相似文献   

4.
In Saccharomyces cerevisiae, the apurinic/apyrimidinic (AP) endonucleases Apn1 and Apn2 act as alternative pathways for the removal of various 3'-terminal blocking lesions from DNA strand breaks and in the repair of abasic sites, which both result from oxidative DNA damage. Here we demonstrate that Tpp1, a homologue of the 3' phosphatase domain of polynucleotide kinase, is a third member of this group of redundant 3' processing enzymes. Unlike Apn1 and Apn2, Tpp1 is specific for the removal of 3' phosphates at strand breaks and does not possess more general 3' phosphodiesterase, exonuclease, or AP endonuclease activities. Deletion of TPP1 in an apn1 apn2 mutant background dramatically increased the sensitivity of the double mutant to DNA damage caused by H2O2 and bleomycin but not to damage caused by methyl methanesulfonate. The triple mutant was also deficient in the repair of 3' phosphate lesions left by Tdp1-mediated cleavage of camptothecin-stabilized Top1-DNA covalent complexes. Finally, the tpp1 apn1 apn2 triple mutation displayed synthetic lethality in combination with rad52, possibly implicating postreplication repair in the removal of unrepaired 3'-terminal lesions resulting from endogenous damage. Taken together, these results demonstrate a clear role for the lesion-specific enzyme, Tpp1, in the repair of a subset of DNA strand breaks.  相似文献   

5.
The APN1 gene of Saccharomyces cerevisiae encodes the major apurinic/apyrimidinic endonuclease and 3'-repair DNA diesterase in yeast cell extracts. The Apn1 protein is a homolog of Escherichia coli endonuclease IV, which functions in the repair of some oxidative and alkylation damages in that organism. We show here that yeast strains lacking Apn1 (generated by targeted gene disruption or deletion-replacement) are hypersensitive to both oxidative (hydrogen peroxide and t-butylhydroperoxide) and alkylating (methyl- and ethylmethane sulfonate) agents that damage DNA. These cellular hypersensitivities are correlated with the accumulation of unrepaired damages in the chromosomal DNA of apn1 mutant yeast cells. Hydrogen peroxide-treated APN1+ but not apn1 mutant cells regenerate high-molecular-weight DNA efficiently after the treatment. The DNA strand breaks that accumulate in the Apn1-deficient mutant contain lesions that block the action of DNA polymerase but can be removed in vitro by purified Apn1. An analogous result with DNA from methylmethane sulfonate-treated cells corresponded to the accumulation of unrepaired DNA apurinic sites in the apn1 mutant cells. The rate of spontaneous mutation in apn1 mutant S. cerevisiae was 6- to 12-fold higher than that measured for wild-type yeast cells. This increase indicates that under normal growth conditions, the production of DNA damages that are targets for Apn1 is substantial and that such lesions can be mutagenic when left unrepaired.  相似文献   

6.
The mitochondrial genome is continuously subject to attack by reactive oxygen species generated through aerobic metabolism. This leads to the formation of a variety of highly genotoxic DNA lesions, including abasic sites. Yeast Apn1p is localized to the nucleus, where it functions to cleave abasic sites, and apn1 Delta mutants are hypersensitive to agents such as methyl methanesulfonate (MMS) that induce abasic sites. Here we demonstrate for the first time that yeast Apn1p is also localized to the mitochondria. We found that Pir1p, initially isolated as a cell wall constituent of unknown function, interacts with the C-terminal end of Apn1p, which bears a bipartite nuclear localization signal. Further analysis revealed that Pir1p is required to cause Apn1p mitochondrial localization, presumably by competing with the nuclear transport machinery. pir1 Delta mutants displayed a striking (approximately 3-fold) increase of Apn1p in the nucleus, which coincided with drastically reduced levels in the mitochondria. To explore the functional consequences of the Apn1p-Pir1p interaction, we measured the rate of mitochondrial mutations in the wild type and pir1 Delta and apn1 Delta mutants. pir1 Delta and apn1 Delta mutants exposed to MMS exhibited 3.6- and 5.8-fold increases, respectively, in the rate of mitochondrial mutations, underscoring the importance of Apn1p in repair of the mitochondrial genome. We conclude that Pir1p interacts with Apn1p, at the level of either the cytoplasm or nucleus, and facilitates Apn1p transport into the mitochondria to repair damaged DNA.  相似文献   

7.
One of the most frequent lesions formed in cellular DNA are abasic (apurinic/apyrimidinic, AP) sites that are both cytotoxic and mutagenic, and must be removed efficiently to maintain genetic stability. It is generally believed that the repair of AP sites is initiated by the AP endonucleases; however, an alternative pathway seems to prevail in Schizosaccharomyces pombe. A mutant lacking the DNA glycosylase/AP lyase Nth1 is very sensitive to the alkylating agent methyl methanesulfonate (MMS), suggesting a role for Nth1 in base excision repair (BER) of alkylation damage. Here, we have further evaluated the role of Nth1 and the second putative S.pombe AP endonuclease Apn2, in abasic site repair. The deletion of the apn2 open reading frame dramatically increased the sensitivity of the yeast cells to MMS, also demonstrating that the Apn2 has an important function in the BER pathway. The deletion of nth1 in the apn2 mutant strain partially relieves the MMS sensitivity of the apn2 single mutant, indicating that the Apn2 and Nth1 act in the same pathway for the repair of abasic sites. Analysis of the AP site cleavage in whole cell extracts of wild-type and mutant strains showed that the AP lyase activity of Nth1 represents the major AP site incision activity in vitro. Assays with DNA substrates containing base lesions removed by monofunctional DNA glycosylases Udg and MutY showed that Nth1 will also cleave the abasic sites formed by these enzymes and thus act downstream of these enzymes in the BER pathway. We suggest that the main function of Apn2 in BER is to remove the resulting 3′-blocking termini following AP lyase cleavage by Nth1.  相似文献   

8.
Rad53 protein, the yeast orthologue of the human checkpoint kinase Chk2, presents two highly conserved phosphorylatable threonine residues (T354 and T358) in the activation domain, whose phosphorylation is critical to allow the activation of the kinase. In this study we found that Rad53 protein variants in which alanine and/or aspartate replace the threonine residues 354 and/or 358 do not retain kinase activity and do not undergo auto-phosphorylation, leading to defect in the checkpoint response and iper-sensitivity to DNA damage and DNA replication stress agents. Interestingly, we found that the rad53-T358D mutation severely affects the kinase activity and causes accumulation of the S129-phosphorylated isoform of histone H2A, even during an unperturbed cell cycle, thus indicating the accumulation of spontaneous DNA breaks. We further found that the protein level of Sml1, which is the physiological inhibitor of ribonucleotide reductase, remains high during DNA replication in rad53-T358D cells, suggesting that an inadequate pool of dNTPs in checkpoint defective cells causes the accumulation of spontaneous DNA breaks.

In conclusion, our results indicate that phosphorylation of both T354 and T358 residues strongly influences the catalytic activity of Rad53 also in unperturbed cell cycles, and support the notion that Rad53 is essential to preserve genome integrity, by controlling the level of Sml1 and the functionality of ribonucleotide reductase.  相似文献   

9.
Yeast Rad27 is a 5'-->3' exonuclease and a flap endo-nuclease. Apn1 is the major apurinic/apyrimidinic (AP) endonuclease in yeast. The rad27 deletion mutants are highly sensitive to methylmethane sulfonate (MMS). By examining the role of Rad27 in different modes of DNA excision repair, we wish to understand why the cytotoxic effect of MMS is dramatically enhanced in the absence of Rad27. Base excision repair (BER) of uracil-containing DNA was deficient in rad27 mutant extracts in that (i) the Apn1 activity was reduced, and (ii) after DNA incision by Apn1, hydrolysis of 1-5 nucleotides 3' to the baseless sugar phosphate was deficient. Thus, some AP sites may lead to unprocessed DNA strand breaks in rad27 mutant cells. The severe MMS sensitivity of rad27 mutants is not caused by a reduction of the Apn1 activity. Surprisingly, we found that Apn1 endonuclease sensitizes rad27 mutant cells to MMS. Deleting the APN1 gene largely restored the resistance of rad27 mutants to MMS. These results suggest that unprocessed DNA strand breaks at AP sites are mainly responsible for the MMS sensitivity of rad27 mutants. In contrast, nucleotide excision repair and BER of oxidative damage were not affected in rad27 mutant extracts, indicating that Rad27 is specifically required for BER of AP sites in DNA.  相似文献   

10.
M Qu  B Yang  L Tao  JR Yates  P Russell  MQ Dong  LL Du 《PLoS genetics》2012,8(7):e1002817
In response to DNA damage, the eukaryotic genome surveillance system activates a checkpoint kinase cascade. In the fission yeast Schizosaccharomyces pombe, checkpoint protein Crb2 is essential for DNA damage-induced activation of downstream effector kinase Chk1. The mechanism by which Crb2 mediates Chk1 activation is unknown. Here, we show that Crb2 recruits Chk1 to double-strand breaks (DSBs) through a direct physical interaction. A pair of conserved SQ/TQ motifs in Crb2, which are consensus phosphorylation sites of upstream kinase Rad3, is required for Chk1 recruitment and activation. Mutating both of these motifs renders Crb2 defective in activating Chk1. Tethering Crb2 and Chk1 together can rescue the SQ/TQ mutations, suggesting that the main function of these phosphorylation sites is promoting interactions between Crb2 and Chk1. A 19-amino-acid peptide containing these SQ/TQ motifs is sufficient for Chk1 binding in vitro when one of the motifs is phosphorylated. Remarkably, the same peptide, when tethered to DSBs by fusing with either recombination protein Rad22/Rad52 or multi-functional scaffolding protein Rad4/Cut5, can rescue the checkpoint defect of crb2Δ. The Rad22 fusion can even bypass the need for Rad9-Rad1-Hus1 (9-1-1) complex in checkpoint activation. These results suggest that the main role of Crb2 and 9-1-1 in DNA damage checkpoint signaling is recruiting Chk1 to sites of DNA lesions.  相似文献   

11.
Eukaryotic cells respond to DNA damage and S phase replication blocks by arresting cell-cycle progression through the DNA structure checkpoint pathways. In Schizosaccharomyces pombe, the Chk1 kinase is essential for mitotic arrest and is phosphorylated after DNA damage. During S phase, the Cds1 kinase is activated in response to DNA damage and DNA replication blocks. The response of both Chk1 and Cds1 requires the six 'checkpoint Rad' proteins (Rad1, Rad3, Rad9, Rad17, Rad26 and Hus1). We demonstrate that DNA damage-dependent phosphorylation of Chk1 is also cell-cycle specific, occurring primarily in late S phase and G2, but not during M/G1 or early S phase. We have also isolated and characterized a temperature-sensitive allele of rad3. Rad3 functions differently depending on which checkpoint pathway is activated. Following DNA damage, rad3 is required to initiate but not maintain the Chk1 response. When DNA replication is inhibited, rad3 is required for both initiation and maintenance of the Cds1 response. We have identified a strong genetic interaction between rad3 and cds1, and biochemical evidence shows a physical interaction is possible between Rad3 and Cds1, and between Rad3 and Chk1 in vitro. Together, our results highlight the cell-cycle specificity of the DNA structure-dependent checkpoint response and identify distinct roles for Rad3 in the different checkpoint responses. Keywords: ATM/ATR/cell-cycle checkpoints/Chk1/Rad3  相似文献   

12.
The abasic (AP) sites, the major mutagenic and cytotoxic genomic lesions, induced directly by oxidative stress and indirectly after excision of damaged bases by DNA glycosylases, are repaired by AP-endonucleases (APEs). Among two APEs in Saccharomyces cerevisiae, Apn1 provides the major APE activity, and Apn2, the ortholog of the mammalian APE, provides back-up activity. We have cloned apn1 and apn2 genes of Schizosaccharomyces pombe, and have shown that inactivation of Apn2 and not Apn1 sensitizes this fission yeast to alkylation and oxidative damage-inducing agents, which is further enhanced by Apn1 inactivation. We also show that Uve1, present in S.pombe but not in S.cerevisiae, provides the back-up APE activity together with Apn1. We confirmed the presence of APE activity in recombinant Apn2 and in crude cell extracts. Thus S.pombe is distinct from S.cerevisiae, and is similar to mammalian cells in having Apn2 as the major APE.  相似文献   

13.
Origin of endogenous DNA abasic sites in Saccharomyces cerevisiae   总被引:1,自引:0,他引:1       下载免费PDF全文
Abasic (AP) sites are among the most frequent endogenous lesions in DNA and present a strong block to replication. In Saccharomyces cerevisiae, an apn1 apn2 rad1 triple mutant is inviable because of its incapacity to repair AP sites and related 3'-blocked single-strand breaks (M. Guillet and S. Boiteux, EMBO J. 21:2833, 2002). Here, we investigated the origin of endogenous AP sites in yeast. Our results show that the deletion of the UNG1 gene encoding the uracil DNA glycosylase suppresses the lethality of the apn1 apn2 rad1 mutant. In contrast, inactivation of the MAG1, OGG1, or NTG1 and NTG2 genes encoding DNA glycosylases involved in the repair of alkylation or oxidation damages does not suppress lethality. Although viable, the apn1 apn2 rad1 ung1 mutant presents growth delay due to a G(2)/M checkpoint. These results point to uracil as a critical source of the formation of endogenous AP sites in DNA. Uracil can arise in DNA by cytosine deamination or by the incorporation of dUMP during replication. Here, we show that the overexpression of the DUT1 gene encoding the dUTP pyrophosphatase (Dut1) suppresses the lethality of the apn1 apn2 rad1 mutant. Therefore, this result points to the dUTP pool as an important source of the formation of endogenous AP sites in eukaryotes.  相似文献   

14.
We screened radiation-sensitive yeast mutants for DNA damage checkpoint defects and identified Dot1, the conserved histone H3 Lys 79 methyltransferase. DOT1 deletion mutants (dot1Delta) are G1 and intra-S phase checkpoint defective after ionizing radiation but remain competent for G2/M arrest. Mutations that affect Dot1 function such as Rad6-Bre1/Paf1 pathway gene deletions or mutation of H2B Lys 123 or H3 Lys 79 share dot1Delta checkpoint defects. Whereas dot1Delta alone confers minimal DNA damage sensitivity, combining dot1Delta with histone methyltransferase mutations set1Delta and set2Delta markedly enhances lethality. Interestingly, set1Delta and set2Delta mutants remain G1 checkpoint competent, but set1Delta displays a mild S phase checkpoint defect. In human cells, H3 Lys 79 methylation by hDOT1L likely mediates recruitment of the signaling protein 53BP1 via its paired tudor domains to double-strand breaks (DSBs). Consistent with this paradigm, loss of Dot1 prevents activation of the yeast 53BP1 ortholog Rad9 or Chk2 homolog Rad53 and decreases binding of Rad9 to DSBs after DNA damage. Mutation of Rad9 to alter tudor domain binding to methylated Lys 79 phenocopies the dot1Delta checkpoint defect and blocks Rad53 phosphorylation. These results indicate a key role for chromatin and methylation of histone H3 Lys 79 in yeast DNA damage signaling.  相似文献   

15.
Caenorhabditis elegans possesses two distinct DNA repair enzymes EXO-3 and APN-1 that have been identified by cross-specie complementation analysis of the Saccharomyces cerevisiae apn1Δ apn2Δ tpp1Δ triple mutant deficient in the ability to repair apurinic/apyrimidinc (AP) sites and DNA strand breaks with blocked 3′-ends. While purified EXO-3 directly incises AP sites and removes 3′-blocking groups, such characterization has not been previously reported for APN-1. We recently documented that C. elegans knockdown for apn-1 is unable to maintain integrity of the genome. Despite the presence of EXO-3, the apn-1 knockdown animals are also defective in the division of the P1 blastomere, an observation consistent with the accumulation of unrepaired DNA lesions suggesting a unique role for APN-1 DNA repair functions. Herein, we show that C. elegans APN-1 is stably expressed as GST-fusion protein in S. cerevisiae only when it carries a nuclear localization signal, and with this requirement rescued the DNA repair defects of the S. cerevisiae apn1Δ apn2Δ tpp1Δ triple mutant. We purified the APN-1 from the yeast expression system and established that it displays AP endonuclease and 3′-diesterase activities. In addition, we showed that APN-1 also possesses a 3′- to 5′-exonuclease and the nucleotide incision repair activity. This latter activity is capable of directly incising DNA at the 5′-side of various oxidatively damaged bases, as previously observed for Escherichia coli endonuclease IV and S. cerevisiae Apn1, underscoring the importance of this family of enzymes in removing these types of lesions. Glycine substitution of the conserved amino acid residue Glu261 of APN-1, corresponding to Glu145 involved in coordinating Zn2+ ions in the active site pocket of E. coli endonuclease IV, resulted in an inactive variant that lose the ability to rescue the DNA repair defects of S. cerevisiae apn1Δ apn2Δ tpp1Δ mutant. Interestingly, the Glu261Gly variant did not sustain purification and yielded a truncated polypeptide. These data suggest that the Glu261 residue of APN-1 may have a broader role in maintaining the structure of the protein.  相似文献   

16.
17.
ATR/Rad3-like kinases promote the DNA damage checkpoint through regulating Chk1 that restrains the activation of cyclin-dependent kinases. In fission yeast, Crb2, a BRCT-domain protein that is similar to vertebrate 53BP1, plays a crucial role in establishing this checkpoint. We report here that Crb2 regulates DNA damage checkpoint through temporal and dynamic interactions with Rad3, Chk1 and replication factor Cut5. The active complex formation between Chk1 and Crb2 is regulated by Rad3 and became maximal during the checkpoint arrest. Chk1 activation seems to need two steps of interaction changes: the loss of Rad3-Chk1 and Rad3-Crb2 interactions, and the association between hyperphosphorylated forms of Chk1 and Crb2. Chk1 is the major checkpoint kinase for the arrest of DNA polymerase mutants. The in vitro assay of Chk1 showed that its activation requires the presence of Crb2 BRCT. Hyperphosphorylation of Crb2 is also dependent on its intact BRCT. Finally, we show direct interaction between Rad3 and Crb2, which is inhibitory to Rad3 activity. Hence, Crb2 is the first to interact with both Rad3 and Chk1 kinases.  相似文献   

18.
The Mre11.Rad50.Nbs1 (MRN) complex binds DNA double strand breaks to repair DNA and activate checkpoints. We report MRN deficiency in three of seven colon carcinoma cell lines of the NCI Anticancer Drug Screen. To study the involvement of MRN in replication-mediated DNA double strand breaks, we examined checkpoint responses to camptothecin, which induces replication-mediated DNA double strand breaks after replication forks collide with topoisomerase I cleavage complexes. MRN-deficient cells were deficient for Chk2 activation, whereas Chk1 activation was independent of MRN. Chk2 activation was ataxia telangiectasia mutated (ATM)-dependent and associated with phosphorylation of Mre11 and Nbs1. Mre11 complementation in MRN-deficient HCT116 cells restored Chk2 activation as well as Rad50 and Nbs1 levels. Conversely, Mre11 down-regulation by small interference RNA (siRNA) in HT29 cells inhibited Chk2 activation and down-regulated Nbs1 and Rad50. Proteasome inhibition also restored Rad50 and Nbs1 levels in HCT116 cells suggesting that Mre11 stabilizes Rad50 and Nbs1. Chk2 activation was also defective in three of four MRN-proficient colorectal cell lines because of low Chk2 levels. Thus, six of seven colon carcinoma cell lines from the NCI Anticancer Drug Screen are functionally Chk2-deficient in response to replication-mediated DNA double strand breaks. We propose that Mre11 stabilizes Nbs1 and Rad50 and that MRN activates Chk2 downstream from ATM in response to replication-mediated DNA double strand breaks. Chk2 deficiency in HCT116 is associated with defective S-phase checkpoint, prolonged G2 arrest, and hypersensitivity to camptothecin. The high frequency of MRN and Chk2 deficiencies may contribute to genomic instability and therapeutic response to camptothecins in colorectal cancers.  相似文献   

19.
Mammalian ATR and ATM checkpoint kinases modulate chromatin structures near DNA breaks by phosphorylating a serine residue in the carboxy-terminal tail SQE motif of histone H2AX. Histone H2A is similarly regulated in Saccharomyces cerevisiae. The phosphorylated forms of H2AX and H2A, known as gamma-H2AX and gamma-H2A, are thought to be important for DNA repair, although their evolutionarily conserved roles are unknown. Here, we investigate gamma-H2A in the fission yeast Schizosaccharomyces pombe. We show that formation of gamma-H2A redundantly requires the ATR/ATM-related kinases Rad3 and Tel1. Mutation of the SQE motif to AQE (H2A-AQE) in the two histone H2A genes caused sensitivity to a wide range of genotoxic agents, increased spontaneous DNA damage, and impaired checkpoint maintenance. The H2A-AQE mutations displayed a striking synergistic interaction with rad22Delta (Rad52 homolog) in ionizing radiation (IR) survival. These phenotypes correlated with defective phosphorylation of the checkpoint proteins Crb2 and Chk1 and a failure to recruit large amounts of Crb2 to damaged DNA. Surprisingly, the H2A-AQE mutations substantially suppressed the IR hypersensitivity of crb2Delta cells by a mechanism that required the RecQ-like DNA helicase Rqh1. We propose that gamma-H2A modulates checkpoint and DNA repair through large-scale recruitment of Crb2 to damaged DNA. This function correlates with evidence that gamma-H2AX regulates recruitment of several BRCA1 carboxyl terminus domain-containing proteins (NBS1, 53BP1, MDC1/NFBD1, and BRCA1) in mammals.  相似文献   

20.
Six checkpoint Rad proteins (Rad1, Rad3, Rad9, Rad17, Rad26, and Hus1) are needed to regulate checkpoint protein kinases Chk1 and Cds1 in fission yeast. Chk1 is required to prevent mitosis when DNA is damaged by ionizing radiation (IR), whereas either kinase is sufficient to prevent mitosis when DNA replication is inhibited by hydroxyurea (HU). Checkpoint Rad proteins are required for IR-induced phosphorylation of Chk1 and HU-induced activation of Cds1. IR activates Cds1 only during the DNA synthesis (S) phase, whereas HU induces Chk1 phosphorylation only in cds1 mutants. Here, we investigate the basis of the checkpoint signal specificity of Chk1 phosphorylation and Cds1 activation. We show that IR fails to induce Chk1 phosphorylation in HU-arrested cells. Release from the HU arrest following IR causes substantial Chk1 phosphorylation. These and other data indicate that Cds1 prevents Chk1 phosphorylation in HU-arrested cells, which suggests that Cds1 actively suppresses a repair process that leads to Chk1 phosphorylation. Cds1 becomes more highly concentrated in the nucleus only during the S phase of the cell cycle. This finding correlates with S-phase specificity of IR-induced activation of Cds1. However, constitutive nuclear localization of Cds1 does not enhance IR-induced activation of Cds1. This result suggests that Cds1 activation requires DNA structures or protein activities that are present only during S phase. These findings help to explain how Chk1 and Cds1 respond to different checkpoint signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号