首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Na(+)/H(+) exchanger 3 (NHE3) is the major Na(+) transporter in the intestine. Serum- and glucocorticoid-induced kinase (SGK) 1 interacts with NHE regulatory factor 2 (NHERF2) and mediates activation of NHE3 by dexamethasone (Dex) in cultured epithelial cells. In this study, we compared short-term regulation of NHE3 by Dex in SGK1-null and NHERF2-null mice. In comparison to wild-type mice, loss of SGK1 or NHERF2 significantly attenuated regulation of NHE3 by Dex but did not completely obliterate the effect. We show that transfection of SGK2 or SGK3 in PS120 cells resulted in robust activation of NHE3 by Dex. However, unlike SGK1 or SGK2, SGK3 rapidly activated NHE3 within 15 min of Dex treatment in both PS120 and Caco-2bbe cells. Immunofluorescence analysis showed that SGK3 colocalized with NHE3 in recycling endosomes, whereas SGK1 and SGK2 were diffusely distributed. Mutation of Arg-90 of SGK3 disrupted the endosomal localization of SGK3 and delayed NHE3 activation. Activation of SGK3 and NHE3 by Dex was dependent on phosphoinositide 3-kinase (PI3K) and phosphoinositide-dependent kinase 1 (PDK1), and Dex induced translocation of PDK1 to endosomes. Our study identifies SGK3 as a novel endosomal kinase that acutely regulates NHE3 in a PI3K-dependent mechanism.  相似文献   

2.
Glucocorticoids stimulate the intestinal absorption of Na+ and water partly by regulation of the Na+/H+ exchanger 3 (NHE3). Previous studies have shown both genomic and nongenomic regulation of NHE3 by glucocorticoids. Serum and glucocorticoid-inducible kinase 1 (SGK1) has been shown to be part of this cascade, where phosphorylation of NHE3 by SGK1 initiates the translocation of NHE3 to the cell surface. In the present work, we examined a series of changes in SGK1 and NHE3 induced by glucocorticoids using human colonic Caco-2 and opossum kidney cells. We found that dexamethasone rapidly stimulated SGK1 mRNAs, but a significant change in protein abundance was not detected. Instead, there was an increase in SGK1 kinase activity as early as at 2 h. An increase in NHE3 protein abundance was not detected until 12 h of dexamethasone exposure, although the transport activity was significantly stimulated at 4 h. These data demonstrate that the changes of SGK1 precede those of NHE3. Chronic regulation (24 h) of NHE3 was blocked completely by prevention of protein synthesis with cycloheximide or actinomycin D and by the glucocorticoid receptor blocker RU486. The acute effect of dexamethasone was similarly abrogated by RU486, but was insensitive to cycloheximide and actinomycin D. Similarly, the stimulation of SGK1 activity by dexamethasone was blocked by RU486 but not by actinomycin D. Together, these data show that the acute effect of glucocorticoids on NHE3 is mediated by a glucocorticoid receptor dependent mechanism that activates SGK1 in a nongenomic manner. Na+/H+ exchanger 3; serum and glucocorticoid-inducible kinase 1  相似文献   

3.
4.
The brush border (BB) Na(+)/H(+) exchanger NHE3 is rapidly activated or inhibited by changes in trafficking, which mimics renal and intestinal physiology. However, there is a paradox in that NHE3 has limited mobility in the BB due to its binding to the multi-PDZ domain containing the NHERF family. To allow increased endocytosis, as occurs with elevated intracellular Ca(2+), we hypothesized that NHE3 had to be, at least transiently, released from the BB cytoskeleton. Because NHERF1 and -2 are localized at the BB, where they bind NHE3 as well as the cytoskeleton, we tested whether either or both might dynamically interact with NHE3 as part of Ca(2+) signaling. We employed FRET to study close association of NHE3 and these NHERFs and fluorescence recovery after photobleaching to monitor NHE3 mobility in the apical domain in polarized opossum kidney cells. Under basal conditions, NHERF2 and NHE3 exhibited robust FRET signaling. Within 1 min of A23187 (0.5 μm) exposure, the NHERF2-NHE3 FRET signal was abolished, and BB NHE3 mobility was transiently increased. The dynamics in FRET signal and NHE3 mobility correlated well with a change in co-precipitation of NHE3 and NHERF2 but not NHERF1. We conclude the following. 1) Under basal conditions, NHE3 closely associates with NHERF2 in opossum kidney cell microvilli. 2) Within 1 min of elevated Ca(2+), the close association of NHE3-NHERF2 is abolished but is re-established in ~60 min. 3) The change in NHE3-NHERF2 association is accompanied by an increased BB mobile fraction of NHE3, which contributes to inhibition of NHE3 transport activity via increased endocytosis.  相似文献   

5.
Enteropathogenic Escherichia coli (EPEC) have been previously shown to alter sodium hydrogen exchanger 3 (NHE3) activity in human intestinal epithelial cells. To further characterize these observations, PS120 fibroblasts transfected with NHE3 were studied. EPEC E2348/69 infection decreased NHE3 activity in PS120 fibroblasts. The effect on NHE3 was enhanced when PS120 cells were co-transfected with the scaffolding/regulatory proteins NHERF1 or NHERF2 or EBP50 and E3KARP respectively. The decrease in NHE3 activity was dependent on an intact type III secretion system, although intimate attachment mediated by translocated intimin receptor was not required. Despite its ability to bind to NHERF proteins, the EPEC effector Map had no impact on the regulation of NHE activity. Instead, EspF was found to be responsible for decreased NHE3 activity. However, neither EspF-induced apoptosis nor the interaction of EspF with sorting nexin-9, an endocytic protein, were involved.  相似文献   

6.
The multi-PDZ domain containing protein Na(+)/H(+) Exchanger Regulatory Factor 1 (NHERF1) binds to Na(+)/H(+) exchanger 3 (NHE3) and is associated with the brush border (BB) membrane of murine kidney and small intestine. Although studies in BB isolated from kidney cortex of wild type and NHERF1(-/-) mice have shown that NHERF1 is necessary for cAMP inhibition of NHE3 activity, a role of NHERF1 in NHE3 regulation in small intestine and in intact kidney has not been established. Here a method using multi-photon microscopy with the pH-sensitive dye SNARF-4F (carboxyseminaphthorhodafluors-4F) to measure BB NHE3 activity in intact murine tissue and use it to examine the role of NHERF1 in regulation of NHE3 activity. NHE3 activity in wild type and NHERF1(-/-) ileum and wild type kidney cortex were inhibited by cAMP, whereas the cAMP effect was abolished in kidney cortex of NHERF1(-/-) mice. cAMP inhibition of NHE3 activity in these two tissues is mediated by different mechanisms. In ileum, a protein kinase A (PKA)-dependent mechanism accounts for all cAMP inhibition of NHE3 activity since the PKA antagonist H-89 abolished the inhibitory effect of cAMP. In kidney, both PKA-dependent and non-PKA-dependent mechanisms were involved, with the latter reproduced by the effect on an EPAC (exchange protein directly activated by cAMP) agonist (8-(4-chlorophenylthio)-2'O-Me-cAMP). In contrast, the EPAC agonist had no effect in proximal tubules in NHERF1(-/-) mice. These data suggest that in proximal tubule, NHERF1 is required for all cAMP inhibition of NHE3, which occurs through both EPAC-dependent and PKA-dependent mechanisms; in contrast, cAMP inhibits ileal NHE3 only by a PKA-dependent pathway, which is independent of NHERF1 and EPAC.  相似文献   

7.
The sodium-hydrogen exchanger regulatory factor (NHERF) is an essential cofactor for cAMP-mediated inhibition of the Na(+)/H(+) exchanger isoform, NHE3, in renal brush border membranes. NHERF is also an ezrin-binding protein. To define the functional importance of ezrin binding for NHERF's function as a NHE3 regulator, we transfected stable PS120 cells expressing NHE3 with plasmids encoding WT and truncated mouse NHERF proteins. Co-immunoprecipitation established that in PS120 cells, NHE3 bound to full-length NHERF(1-355), the C-terminal domain, NHERF(147-355), and NHERF(1-325), which lacks the proposed ezrin-binding domain. The N-terminal domain, NHERF(1-146), failed to bind the antiporter. Ezrin was also co-immunoprecipitated with NHERF(1-355) but not with NHERF(1-325). 8Br-cAMP inhibited NHE3 activity in cells that expressed NHERF(1-355) or NHERF(147-355) but had no effect on the formation of NHE3-NHERF or NHERF-ezrin complexes. Na(+)/H(+) exchange was unaffected by 8Br-cAMP in cells that expressed NHERF(1-146) or NHERF(1-325). NHE3 phosphorylation in vivo was enhanced by 8Br-cAMP only in cells where NHERF bound to both NHE3 and ezrin. The data suggest that NHERF functions as a scaffold to link NHE3 with ezrin and that this multiprotein complex is essential for cAMP-mediated phosphorylation of NHE3 and the inhibition of Na(+)/H(+) exchange.  相似文献   

8.
Electroneutral NaCl absorption mediated by Na+/H+ exchanger 3 (NHE3) is important in intestinal and renal functions related to water/Na+ homeostasis. cGMP inhibits NHE3 in intact epithelia. However, unexpectedly it failed to inhibit NHE3 stably transfected in PS120 cells, even upon co-expression of cGMP-dependent protein kinase type II (cGKII). Additional co-expression of NHERF2, the tandem PDZ domain adapter protein involved in cAMP inhibition of NHE3, restored cGMP as well as cAMP inhibition, whereas NHERF1 solely restored cAMP inhibition. In vitro conditions were identified in which NHERF2 but not NHERF1 bound cGKII. The NHERF2 PDZ2 C terminus, which binds NHE3, also bound cGKII. A non-myristoylated mutant of cGKII did not support cGMP inhibition of NHE3. Although cGKI also bound NHERF2 in vitro, it did not evoke inhibition of NHE3 unless a myristoylation site was added. These results show that NHERF2, acting as a novel protein kinase G-anchoring protein, is required for cGMP inhibition of NHE3 and that cGKII must be bound both to the plasma membrane by its myristoyl anchor and to NHERF2 to inhibit NHE3.  相似文献   

9.
10.
Calcium (Ca2+) is a highly versatile second messenger that regulates various cellular processes. Previous studies showed that elevation of intracellular Ca2+ regulates the activity of Na+/H+ exchanger 3 (NHE3). However, the effect of Ca2+-dependent signaling on NHE3 activity varies depending on cell types. In this study, we report the identification of IP3 receptor-binding protein released with IP3 (IRBIT) as a NHE3 interacting protein and its role in regulation of NHE3 activity. IRBIT bound to the carboxyl-terminal domain of NHE3, which is necessary for acute regulation of NHE3. Ectopic expression of IRBIT resulted in Ca2+-dependent activation of NHE3 activity, whereas silencing of endogenous IRBIT resulted in inhibition of NHE3 activity. Ca2+-dependent stimulation of NHE3 activity was dependent on the binding of IRBIT to NHE3. Previously Ca2+-dependent inhibition of NHE3 was demonstrated in the presence of NHERF2. Co-expression of IRBIT was able to reverse the NHERF2-dependent inhibition of NHE3. We also showed that IRBIT-dependent activation of NHE3 involves exocytic trafficking of NHE3 to the plasma membrane and this activation was blocked by inhibition of calmodulin (CaM) or CaM-dependent kinase II. These results suggest that the overall effect of Ca2+ on NHE3 activity is balanced by IRBIT-dependent activation and NHERF2-dependent inhibition.  相似文献   

11.
12.
The Na(+)/H(+) exchanger regulatory factor 2 (NHERF2/TKA-1/E3KARP) contains two PSD-95/Dlg/ZO-1 (PDZ) domains which interact with the PDZ docking motif (X-(S/T)-X-(V/L)) of proteins to mediate the assembly of transmembrane and cytosolic proteins into functional signal transduction complexes. One of the PDZ domains of NHERF2 interacts specifically with the DSLL, DSFL, and DTRL motifs present at the carboxy-termini of the 2-adrenergic receptor, the platelet-derived growth factor receptor, and the cystic fibrosis transmembrane conductance regulator, respectively. Serum- and glucocorticoid-induced protein kinase 1 (SGK1) also carries a putative PDZ-binding motif (D-S-F-L) at its carboxy tail, implicated in the specific interaction with NHERF2. There is a 3-phosphoinositide-dependent protein kinase 1 (PDK1) interacting fragment (PIF) in the tail of NHERF2. Using pull-down assays and co-transfection experiments, we demonstrated that the DSFL tail of SGK1 interacts with the first PDZ domain of NHERF2 and the PIF of NHERF2 binds to the PIF-binding pocket of PDK1 to form an SGK1-NHERF2-PDK1 complex. Formation of the protein complex promoted the phosphorylation and activation of SGK1 by PDK1. Thus, it was suggested that NHERF2 mediates the activation and phosphorylation of SGK1 by PDK1 through its first PDZ domain and PIF motif, as a novel SGK1 activation mechanism.  相似文献   

13.
14.
The epithelial brush border (BB) Na(+)/H(+) exchanger 3 (NHE3) accounts for most renal and intestinal Na(+) absorption. Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) inhibits NHE3 activity under basal conditions in intact intestine, acting in the BB, but the mechanism is unclear. We now demonstrate that in both PS120 fibroblasts and polarized Caco-2BBe cells expressing NHE3, CaMKII inhibits basal NHE3 activity, because the CaMKII-specific inhibitors KN-93 and KN-62 stimulate NHE3 activity. This inhibition requires NHERF2. CaMKIIγ associates with NHE3 between aa 586 and 605 in the NHE3 C terminus in a Ca(2+)-dependent manner, with less association when Ca(2+) is increased. CaMKII inhibits NHE3 by an effect on its turnover number, not changing surface expression. Back phosphorylation demonstrated that NHE3 is phosphorylated by CaMKII under basal conditions. This overall phosphorylation of NHE3 is not affected by the presence of NHERF2. Amino acids downstream of NHE3 aa 690 are required for CaMKII to inhibit basal NHE3 activity, and mutations of the three putative CaMKII phosphorylation sites downstream of aa 690 each prevented KN-93 stimulation of NHE3 activity. These studies demonstrate that CaMKIIγ is a novel NHE3-binding protein, and this association is reduced by elevated Ca(2+). CaMKII inhibits basal NHE3 activity associated with phosphorylation of NHE3 by effects requiring aa downstream of NHE3 aa 690 and of the CaMKII-binding site on NHE3. CaMKII binding to and phosphorylation of the NHE3 C terminus are parts of the physiologic regulation of NHE3 that occurs in fibroblasts as well as in the BB of an intestinal Na(+)-absorptive cell.  相似文献   

15.
The molecular and cellular basis of the psychotropic actions of adrenal corticosteroids is poorly understood. Previously, we reported that modulation of large conductance Ca2+-activated potassium channel (BK-channel) function by glucocorticoids can be recapitulated in human embryonic kidney293 (HEK293) cells (J Physiol 537:57, 2001). In the present paper, we examined the effect of dexamethasone on the expression of candidate mediator proteins of glucocorticoid action, dex-ras1 and serum and glucocorticoid inducible protein kinase 1 (SGK), in HEK293 cells. Dex-ras1 mRNA was readily detectable under basal conditions however, no changes of dex-ras1 mRNA expression occurred upon exposure to 100 nM of dexamethasone for 2 h. In contrast, a 2.5-fold increase of SGK mRNA was found under similar conditions. Total levels of cellular SGK protein were unaltered upon exposure to dexamethasone, but a marked increase of SGK in a Triton-X100 insoluble fraction was observed. BK-channel α-subunits could not be co-immunoprecipitated with SGK. In summary, SGK, but not dex-ras1, mRNA is rapidly induced by glucocorticoid stimulation in HEK293 cells. However, there appears to be no direct protein-protein interaction between SGK and BK-channel α-subunits. Presented to mark the 70th birthday of Professor George Fink. Special issue article in honor of George Fink.  相似文献   

16.
To test the hypothesis that Na(+)/H(+) exchanger (NHE) regulatory factor 2 (NHERF2) is necessary for multiple aspects of acute regulation of NHE3 in intact mouse small intestine, distal ileal NHE3 activity was determined using two-photon microscopy/SNARF-4F in a NHERF2-null mouse model. The NHERF2-null mouse ileum had shorter villi, deeper crypts, and decreased epithelial cell number. Basal rates of NHE3 activity were reduced in NHERF2-null mice, which was associated with a reduced percentage of NHE3 in the apical domain and an increase in intracellular NHE3 amount but no change in total level of NHE3 protein. cAMP, cGMP, and elevated Ca(2+) due to apical exposure to UTP all inhibited NHE3 activity in wild-type mouse ileum but not in NHERF2-null mice, while inhibition by hyperosmolarity occurred normally. The cAMP-increased phosphorylation of NHE3 at aa 552; levels of PKAIIα and cGMP-dependent protein kinase II (cGKII); and elevation of Ca(2+) were similar in wild-type and NHERF2-null mouse ileum. Luminal lysophosphatidic acid (LPA) stimulated NHE3 in wild-type but not in NHERF2-null ileum. In conclusion, 1) there are subtle structural abnormalities in the small intestine of NHERF2-null mouse which include fewer villus epithelial cells; 2) the decreased basal NHE3 activity and reduced brush border NHE3 amount in NHERF2-null mice show that NHERF2 is necessary for normal basal trafficking or retention of NHE3 in the apical domain; 3) hyperosmolar inhibition of NHE3 occurs similarly in wild-type and NHERF2-null ileum, demonstrating that some inhibitory mechanisms of NHE3 are not NHERF2 dependent; 4) cAMP inhibition of NHE3 is NHERF2 dependent at a step downstream of cAMP/PKAII phosphorylation of NHE3 at aa 552; 5) cGMP- and UTP-induced inhibition of NHE3 are NHERF2 dependent at steps beyond cGKII and the UTP-induced increase of intracellular Ca(2+); and 6) LPA stimulation of NHE3 is also NHERF2 dependent.  相似文献   

17.
Two PDZ domain-containing proteins, NHERF and E3KARP are necessary for cAMP-dependent inhibition of Na(+)/H(+) exchanger 3 (NHE3). In this study, we demonstrate a specific role of E3KARP, which is not duplicated by NHERF, in Ca(2+)-dependent inhibition of NHE3 activity. NHE3 activity is inhibited by elevation of intracellular Ca(2+) ([Ca(2+)](i)) in PS120 fibroblasts stably expressing E3KARP but not those expressing NHERF. In addition, this Ca(2+)-dependent inhibition requires Ca(2+)-dependent association between alpha-actinin-4 and E3KARP. NHE3 is indirectly connected to alpha-actinin-4 in a protein complex through Ca(2+)-dependent interaction between alpha-actinin-4 and E3KARP, which occurs through the actin-binding domain plus spectrin repeat domain of alpha-actinin-4. Elevation of [Ca(2+)](i) results in oligomerization and endocytosis of NHE3 as well as in inhibition of NHE3 activity. Overexpression of alpha-actinin-4 potentiates the inhibitory effect of ionomycin on NHE3 activity by accelerating the oligomerization and endocytosis of NHE3. In contrast, overexpression of the actin-binding domain plus spectrin repeat domain acts as a dominant-negative mutant and prevents the inhibitory effect of ionomycin on NHE3 activity as well as the oligomerization and internalization of NHE3. From these results, we propose that elevated Ca(2+) inhibits NHE3 activity through oligomerization and endocytosis of NHE3, which occurs via formation of an NHE3-E3KARP-alpha-actinin-4 complex.  相似文献   

18.
Na(+)/H(+) exchanger 3 (NHE3) is expressed in the brush border (BB) of intestinal epithelial cells and accounts for the majority of neutral NaCl absorption. It has been shown that the Na(+)/H(+) exchanger regulatory factor (NHERF) family members of multi-PDZ domain-containing scaffold proteins bind to the NHE3 COOH terminus and play necessary roles in NHE3 regulation in intestinal epithelial cells. Most studies of NHE3 regulation have been in cell models in which NHERF1 and/or NHERF2 were overexpressed. We have now developed an intestinal Na(+) absorptive cell model in Caco-2/bbe cells by expressing hemagglutinin (HA)-tagged NHE3 with an adenoviral infection system. Roles of NHERF1 and NHERF2 in NHE3 regulation were determined, including inhibition by cAMP, cGMP, and Ca(2+) and stimulation by EGF, with knockdown (KD) approaches with lentivirus (Lenti)-short hairpin RNA (shRNA) and/or adenovirus (Adeno)-small interfering RNA (siRNA). Stable infection of Caco-2/bbe cells by NHERF1 or NHERF2 Lenti-shRNA significantly and specifically reduced NHERF protein expression by >80%. NHERF1 KD reduced basal NHE3 activity, while NHERF2 KD stimulated NHE3 activity. siRNA-mediated (transient) and Lenti-shRNA-mediated (stable) gene silencing of NHERF2 (but not of NHERF1) abolished cGMP- and Ca(2+)-dependent inhibition of NHE3. KD of NHERF1 or NHERF2 alone had no effect on cAMP inhibition of NHE3, but KD of both simultaneously abolished the effect of cAMP. The stimulatory effect of EGF on NHE3 was eliminated in NHERF1-KD but occurred normally in NHERF2-KD cells. These findings show that both NHERF2 and NHERF1 are involved in setting NHE3 activity. NHERF2 is necessary for cGMP-dependent protein kinase (cGK) II- and Ca(2+)-dependent inhibition of NHE3. cAMP-dependent inhibition of NHE3 activity requires either NHERF1 or NHERF2. Stimulation of NHE3 activity by EGF is NHERF1 dependent.  相似文献   

19.
Phosphatidylinositol 3-kinase (PI 3-kinase) is a cytoplasmic signaling molecule that is recruited to activated growth factor receptors and has been shown to be involved in regulation of stimulated exocytosis and endocytosis. One of the downstream signaling molecules activated by PI 3-kinase is the protein kinase Akt. Previous studies have indicated that PI 3-kinase is necessary for basal Na(+)/H(+) exchanger 3 (NHE3) transport and for fibroblast growth factor-stimulated NHE3 activity in PS120 fibroblasts. However, it is not known whether activation of PI 3-kinase is sufficient to stimulate NHE3 activity or whether Akt is involved in this PI 3-kinase effect. We used an adenoviral infection system to test the possibility that activation of PI 3-kinase or Akt alone is sufficient to stimulate NHE3 activity. This hypothesis was investigated in PS120 fibroblasts stably expressing NHE3 after somatic gene transfer using a replication-deficient recombinant adenovirus containing constitutively active catalytic subunit of PI 3-kinase or constitutively active Akt. The adenovirus construct used was engineered with an upstream ecdysone promoter to allow time-regulated expression. Adenoviral infection was nearly 100% at 48 h after infection. Forty-eight hours after infection (24 h after activation of the ecdysone promoter), PI 3-kinase and Akt amount and activity were increased. Increases in both PI 3-kinase activity and Akt activity stimulated NHE3 transport. In addition, a membrane-permeant synthetic 10-mer peptide that binds polyphosphoinositides and increases PI 3-kinase activity similarly enhanced NHE3 transport activity and also increased the percentage of NHE3 on the plasma membrane. The magnitudes of stimulation of NHE3 by constitutively active PI 3-kinase, PI 3-kinase peptide, and constitutively active Akt were similar to each other. These results demonstrate that activation of PI 3-kinase or Akt is sufficient to stimulate NHE3 transport activity in PS120/NHE3 cells.  相似文献   

20.
NHERF1, NHERF2, and NHERF3 belong to the NHERF (Na+/H+ exchanger regulatory factor) family of PSD-95/Discs-large/ZO-1 (PDZ) scaffolding proteins. Individually, each NHERF protein has been shown to be involved in the regulation of multiple receptors or transporters including Na+/H+ exchanger 3 (NHE3). Although NHERF dimerizations have been reported, results have been inconsistent, and the physiological function of NHERF dimerizations is still unknown. The current study semiquantitatively compared the interaction strength among all possible homodimerizations and heterodimerizations of these three NHERF proteins by pulldown and co-immunoprecipitation assays. Both methods showed that NHERF2 and NHERF3 heterodimerize as the strongest interaction among all NHERF dimerizations. In vivo NHERF2/NHERF3 heterodimerization was confirmed by FRET and FRAP (fluorescence recovery after photobleach). NHERF2/NHERF3 heterodimerization is mediated by PDZ domains of NHERF2 and the C-terminal PDZ domain recognition motif of NHERF3. The NHERF3-4A mutant is defective in heterodimerization with NHERF2 and does not support the inhibition of NHE3 by carbachol. This suggests a role for NHERF2/NHERF3 heterodimerization in the regulation of NHE3 activity. In addition, both PDZ domains of NHERF2 could be simultaneously occupied by NHERF3 and another ligand such as NHE3, α-actinin-4, and PKCα, promoting formation of NHE3 macrocomplexes. This study suggests that NHERF2/NHERF3 heterodimerization mediates the formation of NHE3 macrocomplexes, which are required for the inhibition of NHE3 activity by carbachol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号