首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Warmer temperatures associated with climate change are expected to have a direct impact on plant pathogens, challenging crops and altering plant disease profiles in the future. In this study, we have investigated the effect of increasing temperature on the pathogenic fitness of Fusarium pseudograminearum, an important necrotrophic plant pathogen associated with crown rot disease of wheat in Australia. Eleven wheat lines with different levels of crown rot resistance were artificially inoculated with F. pseudograminearum and maintained at four diurnal temperatures 15/15°C, 20/15°C, 25/15°C and 28/15°C in a controlled glasshouse. To quantify the success of F. pseudograminearum three fitness measures, these being disease severity, pathogen biomass in stem base and flag leaf node, and deoxynivalenol (DON) in stem base and flag leaf node of mature plants were used. F. pseudograminearum showed superior overall fitness at 15/15°C, and this was reduced with increasing temperature. Pathogen fitness was significantly influenced by the level of crown rot resistance of wheat lines, but the influence of line declined with increasing temperature. Lines that exhibited superior crown rot resistance in the field were generally associated with reduced overall pathogen fitness. However, the relative performance of the wheat lines was dependent on the measure of pathogen fitness, and lines that were associated with one reduced measure of pathogen fitness did not always reduce another. There was a strong correlation between DON in stem base tissue and disease severity, but length of browning was not a good predictor of Fusarium biomass in the stem base. We report that a combination of host resistance and rising temperature will reduce pathogen fitness under increasing temperature, but further studies combining the effect of rising CO2 are essential for more realistic assessments.  相似文献   

3.
BACKGROUND: Plants have evolved efficient mechanisms to combat pathogen attack. One of the earliest responses to attempted pathogen attack is the generation of oxidative burst that can trigger hypersensitive cell death. This is called the hypersensitive response (HR) and is considered to be a major element of plant disease resistance. The HR is thought to deprive the pathogens of a supply of food and confine them to initial infection site. Necrotrophic pathogens, such as the fungi Botrytis cinerea and Sclerotinia sclerotiorum, however, can utilize dead tissue. RESULTS: Inoculation of B. cinerea induced an oxidative burst and hypersensitive cell death in Arabidopsis. The degree of B. cinerea and S. sclerotiorum pathogenicity was directly dependent on the level of generation and accumulation of superoxide or hydrogen peroxide. Plant cells exhibited markers of HR death, such as nuclear condensation and induction of the HR-specific gene HSR203J. Growth of B. cinerea was suppressed in the HR-deficient mutant dnd1, and enhanced by HR caused by simultaneous infection with an avirulent strain of the bacterium Pseudomonas syringae. HR had an opposite (inhibitory) effect on a virulent (biotrophic) strain of P. syringae. Moreover, H(2)O(2) levels during HR correlated positively with B. cinerea growth but negatively with growth of virulent P. syringae. CONCLUSIONS: We show that, although hypersensitive cell death is efficient against biotrophic pathogens, it does not protect plants against infection by the necrotrophic pathogens B. cinerea and S. sclerotiorum. By contrast, B. cinerea triggers HR, which facilitates its colonization of plants. Hence, these fungi can exploit a host defense mechanism for their pathogenicity.  相似文献   

4.
Nitric oxide (NO) production by Botrytis cinerea and the effect of externally supplied NO were studied during saprophytic growth and plant infection. Fluorescence analysis with 4,5-diaminofluorescein diacetate and electrochemical studies were conducted in vitro between 4 and 20 h of incubation and in planta between 15 and 75 h post-inoculation. The production of NO by B. cinerea in vitro was detected inside the germinating spores and mycelium and in the surrounding medium. In planta production of NO showed a large variation that was dependent on the host plant and developmental stage of the infection. The induced production of NO was detected from 16 h of in vitro incubation in response to externally added NO. The production of NO by B. cinerea is probably modulated to promote fungal colonization of the plant tissue. The production of NO which diffuses outside the fungal cells and the induction of NO production by exogenous NO open up the possibility of NO cross-talk between the fungus and the plant. Finally, the existence of an NO concentration threshold is proposed, which may increase or reduce the plant defence against necrotrophic fungal pathogens.  相似文献   

5.
Protein kinases have been implicated in the regulation of many processes that guide pathogen development throughout the course of infection. A survey of the Sclerotinia sclerotiorum genome for genes encoding proteins containing the highly conserved eukaryotic protein kinase (ePK) domain, the largest protein kinase superfamily, revealed 92 S. sclerotiorum ePKs. This review examines the composition of the S. sclerotiorum ePKs based on conserved motifs within the ePK domain family, and relates this to orthologues found in other filamentous fungi and yeasts. The ePKs are also discussed in terms of their proposed role(s) in aspects of host pathogenesis, including the coordination of mycelial growth/development and deployment of pathogenicity determinants in response to environmental stimuli, nutrients and stress.  相似文献   

6.
7.
The strategies used by necrotrophic fungal pathogens to infect plants are often perceived as lacking the sophistication of their haustorium producing, host defence suppressing, biotrophic counterparts. There is also a relative paucity of knowledge regarding how effective gene-for-gene based resistance reactions might function against necrotrophic plant pathogens. However, recent data has emerged from a number of systems which has highlighted that particular species of necrotrophic (and/or hemibiotrophic) fungi, have evolved very sophisticated strategies for plant infection which appear, in fact, to hijack the host resistance responses that are commonly deployed against biotrophs. Both disease resistance (R) protein homologues and mitogen-activated protein kinase (MAPK) cascades commonly associated with incompatible disease resistance responses; appear to be targeted by necrotrophic fungi during compatible disease interactions. These findings highlight an emerging sophistication in the strategies deployed by necrotrophic fungi to infect plants.Key words: Mycosphaerella graminicola, Septoria tritici, Triticum aestivum, mitogen-activated protein kinase, programmed cell death, fungal pathogen, disease resistance, disease susceptibility, toxin  相似文献   

8.
9.
The plant hormone, jasmonic acid (JA), is known to have a critical role in both resistance and susceptibility against bacterial and fungal pathogen attack. However, little is known about the involvement of JA in the interactions between plants and toxigenic necrotrophic fungal pathogens. Using the tomato pathotype of Alternaria alternata (Aa) and its AAL-toxin/tomato interaction as a model system, we demonstrate a possible role for JA in susceptibility of plants against pathogens, which utilize host-specific toxins as virulence effectors. Disease development and in planta growth of the tomato pathotype of Aa were decreased in the def1 mutant, defective in biosynthesis of JA, compared with the wild-type (WT) cultivar. Exogenous methyl jasmonate (MeJA) application restored pathogen disease symptoms to the def1 mutant and led to increased disease in the WT. On the other hand, necrotic cell death was similarly induced by AAL-toxin both on def1 and WT, and MeJA application to the tomatoes did not affect the degree of cell death by the toxin. These results indicate that the JA-dependent signaling pathway is not involved in host basal defense responses against the tomato pathotype of Aa, but rather might affect pathogen acceptability via a toxin-independent manner. Data further suggest that JA has a promotional effect on susceptibility of tomato to toxigenic and necrotrophic pathogens, such that pathogens might utilize the JA signaling pathway for successful infection.  相似文献   

10.
Salicylic acid (SA) acts antagonistically to jasmonic acid (JA) in plant immunity. We previously reported that CATALASE2 (CAT2) promotes JA-biosynthetic acyl-CoA oxidase (ACX) activity to enhance plant resistance to necrotrophic Botrytis cinerea, and SA represses JA biosynthesis through inhibiting CAT2 activity, while the underlying mechanism remains to be further elucidated. Here, we report that the truncated CAT2 N-terminus (CAT2-N) interacts with and promotes ACX2/3, and CAT2-N-overexpressing plants have increased JA accumulation and enhanced resistance to Bcinerea B05.10, but compromised antagonism of SA on JA. Catalase inhibitor treatment or mutating CAT2 active amino acids abolished CAT2 H2O2-decomposing activity but did not affect its promotion of ACX2/3 activity via interaction. CAT2-N, a truncated protein with no catalase activity, interacted with and promoted ACX2/3. Overexpressing CAT2-N in Arabidopsis plants resulted in increased ACX activity, higher JA accumulation, and stronger resistance to Bcinerea B05.10 infection. Additionally, SA dramatically repressed JA biosynthesis and resistance to Bcinerea in the wild type but not in the CAT2-N-overexpressing plants. Together, our study reveals that CAT2-N can be utilized as an accelerator for JA biosynthesis during plant resistance to Bcinerea B05.10, and this truncated protein partly relieves SA repression of JA biosynthesis in plant defence responses.  相似文献   

11.
Fungi cause severe diseases on a broad range of crop and ornamental plants, leading to significant economical losses. Plant pathogenic fungi exhibit a huge variability in their mode of infection, differentiation and function of infection structures and nutritional strategy. In this review, advances in understanding mechanisms of biotrophy, necrotrophy and hemibiotrophic lifestyles are described. Special emphasis is given to the biotrophy-necrotrophy switch of hemibiotrophic pathogens, and to biosynthesis, chemical diversity and mode of action of various fungal toxins produced during the infection process.  相似文献   

12.
SsITL, a secretory protein of the necrotrophic phytopathogen Sclerotinia sclerotiorum, was previously reported to suppress host immunity at the early stages of infection. However, the molecular mechanism that SsITL uses to inhibit plant defence against S. sclerotiorum has not yet been elucidated. Here, we report that SsITL interacted with a chloroplast-localized calcium-sensing receptor, CAS, in chloroplasts. We found that CAS is a positive regulator of the salicylic acid signalling pathway in plant immunity to S. sclerotiorum and CAS-mediated resistance against S. sclerotiorum depends on Ca2+ signalling. Furthermore, we showed that SsITL could interfere with the plant salicylic acid (SA) signalling pathway and SsITL-expressing transgenic plants were more susceptible to S. sclerotiorum. However, truncated SsITLs (SsITL-NT1 or SsITL-CT1) that lost the ability to interact with CAS do not affect plant resistance to S. sclerotiorum. Taken together, our findings reveal that SsITL inhibits SA accumulation during the early stage of infection by interacting with CAS and then facilitating the infection by S. sclerotiorum.  相似文献   

13.
14.
15.
Legionella species are ubiquitous, waterborne bacteria that thrive in numerous ecological niches. Yet, in contrast to many other environmental bacteria, Legionella spp. are also able to grow intracellularly in predatory protozoa. This feature mainly accounts for the pathogenicity of Legionella pneumophila, which causes the majority of clinical cases of a severe pneumonia termed Legionnaires' disease. The pathomechanism underlying L. pneumophila infection is based on macrophage resistance, which in turn is largely defined by the opportunistic pathogen's resistance towards amoebae. L. pneumophila replicates in macrophages or amoebae in a unique membrane‐bound compartment, the Legionella‐containing vacuole (LCV). LCV formation requires the bacterial intracellular multiplication/defective for organelle trafficking (Icm/Dot) type IV secretion system and involves a plethora of translocated effector proteins, which subvert pivotal processes in the host cell. Of the ca. 300 different experimentally validated Icm/Dot substrates, about 50 have been studied and attributed a cellular function to date. The versatility and ingenuity of these effectors' mode of actions is striking. In this review, we summarize insight into the cellular functions and biochemical activities of well‐characterized L. pneumophila effector proteins and the host pathways they target. Recent studies not only substantially increased our knowledge about pathogen–host interactions, but also shed light on novel biological mechanisms.  相似文献   

16.
The role of autophagy in necrotrophic fungal physiology and infection biology is poorly understood. We have studied autophagy in the necrotrophic plant pathogen Fusarium graminearum in relation to development of nonassimilating structures and infection. We identified an ATG8 homolog F. graminearum ATG8 whose first 116 amino acids before the predicted ATG4 cleavage site are 100% identical to Podospora anserina ATG8. We generated a ΔFgatg8 mutant by gene replacement and showed that this cannot form autophagic compartments. The strain forms no perithecia, has reduced conidia production and the aerial mycelium collapses after a few days in culture. The collapsing aerial mycelium contains lipid droplets indicative of nitrogen starvation and/or an inability to use storage lipids. The capacity to use carbon/energy stored in lipid droplets after a shift from carbon rich conditions to carbon starvation is severely inhibited in the ΔFgatg8 strain demonstrating autophagy-dependent lipid utilization, lipophagy, in fungi. Radial growth rate of the ΔFgatg8 strain is reduced compared with the wild type and the mutant does not grow over inert plastic surfaces in contrast to the wild type. The ability to infect barley and wheat is normal but the mutant is unable to spread from spikelet to spikelet in wheat. Complementation by inserting the F. graminearum atg8 gene into a region adjacent to the actin gene in ΔFgatg8 fully restores the WT phenotype. The results showed that autophagy plays a pivotal role for supplying nutrients to nonassimilating structures necessary for growth and is important for plant colonization. This also indicates that autophagy is a central mechanism for fungal adaptation to nonoptimal C/N ratios.  相似文献   

17.
Rosen R  Ron EZ 《Proteomics》2011,11(15):3134-3142
Agrobacterium tumefaciens is an important plant pathogen which belongs to the α-proteobacteria. In addition, it has served as the main tool for plant molecular genetics. Here we focus on three major aspects: (i) proteomic mapping, (ii) the use of proteomics for the understanding of the response of A. tumefaciens to changes in environmental conditions and (iii) the analysis of the changes in genome expression following interaction with the host. These studies convey a global outlook on the functional genomics of A. tumefaciens and help to understand the physiology of this important organism.  相似文献   

18.
BACKGROUND: Blackleg disease of Brassica napus, caused by the necrotrophic fungus Leptosphaeria maculans, causes severe yield losses in Australia, Europe and Canada. In Western Australia, it nearly destroyed the oilseed rape industry in 1972 when host genotypes and conducive environmental conditions favoured severe epidemics. The introduction of cultivars with polygenic resistance and the adoption of sound cultural practices two decades later helped to manage the disease. These were abandoned by many farmers in recent years in favour of the effective but ephemeral resistance conferred by the single dominant gene-based resistance derived from B. rapa ssp. sylvestris. Recently, several cultivars carrying this gene have collapsed widely within a period of 3 years after their commercial release. An environment conducive to the disease and the association of the pathogen with susceptible hosts in Western Australia for over 80 years together have led to the proliferation of L. maculans races, amounting to half of all races delineated to date from Europe, including the United Kingdom, Canada and Australia. SCOPE: This review demonstrates the problems that emerge when traditional cultural practices employed, along with cultivars containing polygenic resistance to a serious necrotrophic pathogen, are discarded in preference to the exclusive deployment of effective but ephemeral single dominant gene-based resistance to the disease across Southern Australia. CONCLUSIONS: Single dominant gene-based resistance currently available, on its own, will not confer durable resistance to blackleg disease in oilseed rape. Return to earlier management practices, including reliance upon polygenic resistance and induced resistance, may be the best currently available options to maintain production in regions across Southern Australia predisposed to severe epidemics.  相似文献   

19.
In plants, autophagy has been assigned 'pro-death' and 'pro-survival' roles in controlling programmed cell death associated with microbial effector-triggered immunity. The role of autophagy in basal immunity to virulent pathogens has not been addressed systematically, however. Using several autophagy-deficient (atg) genotypes, we determined the function of autophagy in basal plant immunity. Arabidopsis mutants lacking ATG5, ATG10 and ATG18a develop spreading necrosis upon infection with the necrotrophic fungal pathogen, Alternaria brassicicola, which is accompanied by the production of reactive oxygen intermediates and by enhanced hyphal growth. Likewise, treatment with the fungal toxin fumonisin B1 causes spreading lesion formation in atg mutant genotypes. We suggest that autophagy constitutes a 'pro-survival' mechanism that controls the containment of host tissue-destructive microbial infections. In contrast, atg plants do not show spreading necrosis, but exhibit marked resistance against the virulent biotrophic phytopathogen, Pseudomonas syringae pv. tomato. Inducible defenses associated with basal plant immunity, such as callose production or mitogen-activated protein kinase activation, were unaltered in atg genotypes. However, phytohormone analysis revealed that salicylic acid (SA) levels in non-infected and bacteria-infected atg plants were slightly higher than those in Col-0 plants, and were accompanied by elevated SA-dependent gene expression and camalexin production. This suggests that previously undetected moderate infection-induced rises in SA result in measurably enhanced bacterial resistance, and that autophagy negatively controls SA-dependent defenses and basal immunity to bacterial infection. We infer that the way in which autophagy contributes to plant immunity to different pathogens is mechanistically diverse, and thus resembles the complex role of this process in animal innate immunity.  相似文献   

20.
《Autophagy》2013,9(3):326-337
The role of autophagy in necrotrophic fungal physiology and infection biology is poorly understood. We have studied autophagy in the necrotrophic plant pathogen Fusarium graminearum in relation to development of nonassimilating structures and infection. We identified an ATG8 homolog F. graminearum ATG8 whose first 116 amino acids before the predicted ATG4 cleavage site are 100% identical to Podospora anserina ATG8. We generated a ΔFgatg8 mutant by gene replacement and showed that this cannot form autophagic compartments. The strain forms no perithecia, has reduced conidia production and the aerial mycelium collapses after a few days in culture. The collapsing aerial mycelium contains lipid droplets indicative of nitrogen starvation and/or an inability to use storage lipids. The capacity to use carbon/energy stored in lipid droplets after a shift from carbon rich conditions to carbon starvation is severely inhibited in the ΔFgatg8 strain demonstrating autophagy-dependent lipid utilization, lipophagy, in fungi. Radial growth rate of the ΔFgatg8 strain is reduced compared with the wild type and the mutant does not grow over inert plastic surfaces in contrast to the wild type. The ability to infect barley and wheat is normal but the mutant is unable to spread from spikelet to spikelet in wheat. Complementation by inserting the F. graminearum atg8 gene into a region adjacent to the actin gene in ΔFgatg8 fully restores the WT phenotype. The results showed that autophagy plays a pivotal role for supplying nutrients to nonassimilating structures necessary for growth and is important for plant colonization. This also indicates that autophagy is a central mechanism for fungal adaptation to nonoptimal C/N ratios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号