首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent observations have indicated that eukaryotic initiation factor (eIF)-2 and GTP or GDP normally bind to 60 S ribosomal subunits in rabbit reticulocyte lysate and that when eIF-2 alpha is phosphorylated and polypeptide chain initiation is inhibited, eIF-2 X GDP accumulates on 60 S subunits due to impaired dissociation that is normally mediated by the reversing factor (eIF-2B). Current findings now indicate that inhibition due to phosphorylation of eIF-2 alpha is mediated, at least in part, by the inability to dissociate eIF-2 X GDP from the 60 S subunit of complete initiation complexes. At the onset of inhibition, there is an accumulation of Met-tRNA(f) and eIF-2 on the polysomes, despite a marked reduction in Met-tRNA(f) bound to 40 S subunits and Met-peptidyl-tRNA bound to the polysomes. This initial effect is not associated with the formation of "half-mers" (polysomes containing an extra unpaired 40 S subunit), and the 40 S X Met-tRNA(f) complexes, though reduced, still sediment at 43 S. When inhibition is maximal and the polysomes are largely disaggregated, there is an accumulation of 48 S complexes consisting of a 40 S subunit and Met-tRNA(f) bound to globin mRNA as well as small polysomal half-mers, such that residual protein synthesis occurs to about the same degree on "1 1/2"s and "2 1/2"s as on mono-, di-, and triribosomes. Exogenous eIF-2B increases protein synthesis on mono-, di-, and triribosomes and decreases that on half-mers. This is associated with reduced binding of Met-tRNA(f) and eIF-2 to ribosomal particles sedimenting at 80 S and greater and a shift from 48 S to 43 S complexes. These results suggest that eIF-2B must normally promote dissociation of eIF-2 X GDP from the 60 S subunit of complete initiation complexes before they can elongate but cannot when eIF-2 alpha is phosphorylated, resulting in the accumulation of these complexes, some of which dissociate into Met-tRNA(f) X 40 S X mRNA and 60 S X eIF-2 X GDP.  相似文献   

2.
Eukaryotic initiation factor 2 (eIF-2), purified to at least 98% homogeneity as judged by polyacrylamide gel electrophoresis in sodium dodecyl sulfate, and containing no detectable amounts of eukaryotic initiation factor 4B (eIF-4B), is active both in the binding of Met-tRNA and in the binding of globin mRNA. The mRNA-binding activity is completely sensitive to competitive inhibition by Met-tRNA, provided GTP is present, but not by uncharged tRNA. By contrast, binding of mRNA to partially purified eIF-4B is not inhibited by Met-tRNAf. These results establish that the only mRNA-binding component in the eIF-2 preparation is eIF-2 itself, and show that a given molecule of eIF-2 can either bind to a molecule of mRNA, or form a ternary complex with Met-tRNAf and GTP, but cannot do both at once.  相似文献   

3.
Eukaryotic initiation factor 2 (eIF-2) forms a ternary complex with methionyl-tRNA(fMet) and GTP on one hand, and it binds to a specific site in mRNA molecules on the other. Antibodies directed against eIF-2 were used to analyze these dual binding activities. A monoclonal antibody directed against the beta-subunit of eIF-2, 5A4, is able to inhibit ternary complex formation as well as binding of mRNA, showing that this subunit is essential for both binding activities of eIF-2. However, a polyclonal antibody, PR1, is able to distinguish between these activities in the eIF-2 molecule. In the presence of PR1, binding of mRNA by eIF-2 is inhibited completely, yet ternary complex formation with methionyl-tRNA(fMet) and GTP is stimulated more than 5-fold. Apparently, specific antibodies to eIF-2 can induce a conformational change in inactive factor molecules that permits them to form ternary complexes. These results show that distinct epitopes in eIF-2 are involved in binding of mRNA and in ternary complex formation with methionyl-tRNA(fMet) and GTP.  相似文献   

4.
The eukaryotic initiation factor (eIF)-5 mediates hydrolysis of GTP bound to the 40 S initiation complex in the absence of 60 S ribosomal subunits. The eIF-2.GDP formed under these conditions is released from the 40 S ribosomal subunit while initiator Met-tRNA(f) remains bound. The released eIF-2.GDP can participate in an eIF-2B-catalyzed GDP/GTP exchange reaction to reform the Met-tRNA(f).eIF-2.GTP ternary complex. In contrast, when 60 S ribosomal subunits were also present in an eIF-5-catalyzed reaction, the eIF-2.GDP produced remained bound to the 60 S ribosomal subunit of the 80 S initiation complex. When such an 80 S initiation complex, containing bound eIF-2.GDP, was incubated with GTP and eIF-2B, GDP was released. However, eIF-2 still remained bound to the ribosomes and was unable to form a Met-tRNA(f)l.eIF-2.GTP ternary complex. In contrast, when 60 S ribosomal subunits were preincubated with either free eIF-2 or with eIF-2.eIF-2B complex and then added to a reaction containing both the 40 S initiation complex and eIF-5, the eIF-2.GDP produced did not bind to the 60 S ribosomal subunits but was released from the ribosomes. Thus, the 80 S initiation complex formed under these conditions did not contain bound eIF-2.GDP. Under similar experimental conditions, preincubation of 60 S ribosomal subunits with purified eIF-2B (free of eIF-2) failed to cause release of eIF-2.GDP from the ribosomal initiation complex. These results suggest that 60 S ribosome-bound eIF-2.GDP does not act as a direct substrate for eIF-2B-mediated release of eIF-2 from ribosomes. Rather, the affinity of 60 S ribosomal subunits for either eIF-2, or the eIF-2 moiety of the eIF-2.eIF-2B complex, prevents association of 60 S ribosomal subunits with eIF-2.GDP formed in the initiation reaction. This ensures release of eIF-2 from ribosomes following hydrolysis of GTP bound to the 40 S initiation complex.  相似文献   

5.
The ability of the initiation factor eIF-2 in skeletal muscle extracts to form ternary initiation complexes ([Met-tRNA(f).eIF-2.GDP]) is decreased by either starvation or diabetes. These conditions also impair the ability of muscle extracts to dissociate [eIF-2.GDP], suggesting inhibition of the guanine nucleotide exchange reaction essential for eIF-2 recycling. We could not, however, detect any change in the phosphorylation state of the alpha subunit of eIF-2. This suggests that eIF-2 activity may be regulated in this system by a mechanism not involving its phosphorylation.  相似文献   

6.
The ATP-dependent interaction of eukaryotic initiation factors with mRNA   总被引:35,自引:0,他引:35  
The interaction of three protein synthesis initiation factors, eukaryotic initiation factor (eIF)-4A, -4B, and -4F, with mRNA has been examined. Three assays specifically designed to evaluate this interaction are RNA-dependent ATP hydrolysis, retention of mRNAs on nitrocellulose filters, and cross-linking to periodate-oxidized mRNAs. The ATPase activity of eIF-4A is only activated by RNA which is lacking in secondary structure, and the minimal size of an oligonucleotide capable of effecting an optimal activation is 12-18 bases. In the presence of ATP, eIF-4A is capable of binding mRNA. Consistent with the ATPase activity, this binding shows a definite preference for single-stranded RNA. In the absence of ATP, eIF-4F is the only factor to bind capped mRNAs, and this binding, unlike that of eIF-4A, is sensitive to m7GDP inhibition. The activities of both eIF-4A and eIF-4F are stimulated by eIF-4B, which seems to have no specific independent activity in our assays. Evidence from the cross-linking studies indicates that in the absence of ATP, only the 24,000-dalton polypeptide of eIF-4F binds to the 5' cap region of the mRNA. From the data presented in conjunction with the current literature, a suggested sequence of factor binding to mRNA is: eIF-4F is the first initiation factor to bind mRNA ind an ATP-independent fashion; eIF-4B then binds to eIF-4F, if in fact it was not already bound prior to mRNA binding; and finally, eIF-4A binds to the eIF-4F X eIF-4B X mRNA complex and functions in an ATP-dependent manner to allow unwinding of the mRNA.  相似文献   

7.
Protein synthesis in sea urchin eggs is stimulated dramatically upon fertilization. We previously demonstrated that this stimulation is primarily due to an increase in the rate of polypeptide chain initiation which in turn may be regulated at the level of recycling of eukaryotic initiation factor 2 (eIF-2) (Colin, A. M., Brown, B. D., Dholakia, J. N., Woodley, C. L., Wahba, A. J., and Hille, M. B. (1987) Dev. Biol. 123, 354-363). We have now purified eIF-2 from sea urchin Strongylocentrotus purpuratus blastulae to apparent homogeneity by chromatography on DEAE-cellulose, phosphocellulose, Mono Q, Mono P, and Mono S columns. The factor, which differs from mammalian eIF-2, is composed of three non-identical subunits with apparent molecular weights of 40,000-alpha; 47,000-beta, and 58,000-gamma as estimated by sodium dodecyl-polyacrylamide gel electrophoresis. Antibodies raised against rabbit reticulocyte eIF-2 do not cross-react with sea urchin eIF-2. The binding of Met-tRNA(f) to sea urchin eIF-2 is totally dependent on GTP. A 4-fold stimulation in the rate of protein synthesis in unfertilized sea urchin egg extracts is observed by the addition of 1 micrograms of purified eIF-2. The factor also binds GDP to form a binary (eIF-2.GDP) complex which is stable in the presence of Mg2+. GDP binding to sea urchin eIF-2 inhibits ternary (eIF-2-GTP.[35S]Met-tRNA(f) complex formation. The rabbit reticulocyte guanine nucleotide exchange factor (GEF) catalyzes the exchange of GDP bound to sea urchin eIF-2 for GTP and stimulates ternary complex formation. The requirement of GEF for the recycling of eIF-2 suggests that protein synthesis in sea urchins is similar to that in mammalian systems and may also be regulated at the level of GEF activity. The reticulocyte heme-controlled repressor phosphorylates the alpha-subunit of eIF-2 from both sea urchins and rabbit reticulocytes. However, casein kinase II which phosphorylates the beta-subunit of the reticulocyte factor specifically phosphorylates the alpha-subunit of sea urchin eIF-2. In this respect, the sea urchin factor is similar to eIF-2 isolated from other nonmammalian sources. Since both heme controlled repressor and casein kinase II phosphorylate the alpha-subunit of sea urchin eIF-2 caution should be exercised when interpreting the significance of eIF-2(alpha) phosphorylation in sea urchins.  相似文献   

8.
Eukaryotic initiation factor 2 (eIF-2) is shown to bind ATP with high affinity. Binding of ATP to eIF-2 induces loss of the ability to form a ternary complex with Met-tRNAf and GTP, while still allowing, and even stimulating, the binding of mRNA. Ternary complex formation between eIF-2, GTP, and Met-tRNAf is inhibited effectively by ATP, but not by CTP or UTP. Hydrolysis of ATP is not required for inhibition, for adenyl-5'-yl imidodiphosphate (AMP-PNP), a nonhydrolyzable analogue of ATP, is as active an inhibitor; adenosine 5'-O-(thiotriphosphate) (ATP gamma S) inhibits far more weakly. Ternary complex formation is inhibited effectively by ATP, dATP, or ADP, but not by AMP and adenosine. Hence, the gamma-phosphate of ATP and its 3'-OH group are not required for inhibition, but the beta-phosphate is indispensible. Specific complex formation between ATP and eIF-2 is shown 1) by effective retention of Met-tRNAf- and mRNA-binding activities on ATP-agarose and by the ability of free ATP, but not GTP, CTP, or UTP, to effect elution of eIF-2 from this substrate; 2) by eIF-2-dependent retention of [alpha-32P]ATP or dATP on nitrocellulose filters and its inhibition by excess ATP, but not by GTP, CTP, or UTP. Upon elution from ATP-agarose by high salt concentrations, eIF-2 recovers its ability to form a ternary complex with Met-tRNAf and GTP. ATP-induced inhibition of ternary complex formation is relieved by excess Met-tRNAf, but not by excess GTP or guanyl-5'-yl imidodiphosphate (GMP-PNP). Thus, ATP does not act by inhibiting binding of GTP to eIF-2. Instead, ATP causes Met-tRNAf in ternary complex to dissociate from eIF-2. Conversely, affinity of eIF-2 for ATP is high in the absence of GTP and Met-tRNAf (Kd less than or equal to 10(-12) M), but decreases greatly in conditions of ternary complex formation. These results support the concept that eIF-2 assumes distinct conformations for ternary complex formation and for binding of mRNA, and that these are affected differently by ATP. Interaction of ATP with an eIF-2 molecule in ternary complex with Met-tRNAf and GTP promotes displacement of Met-tRNAf from eIF-2, inducing a state favorable for binding of mRNA. ATP may thus regulate the dual binding activities of eIF-2 during initiation of translation.  相似文献   

9.
A cDNA containing the complete genome of satellite tobacco necrosis virus (STNV) RNA was constructed and cloned into a plasmid vector containing the T7 polymerase promotor. A second clone containing the first 54 nucleotides from the 5' end, which includes the ribosome binding site, was also constructed. RNAs were transcribed from these plasmids (pSTNV1239 and pSTNV54) and tested for their ability to bind to wheat germ 40 S ribosomal subunits in the presence of wheat germ initiation factors eIF-4A, eIF-4F, eIF-4G, eIF-3, eIF-2, Met-tRNA, ATP, and guanosine 5'-(beta, gamma-imino)triphosphate (GMP-PNP). Maximal binding of the STNV RNA transcribed from pSTNV1239 is obtained only in the presence of all the initiation factors and ATP. In contrast, close to maximal binding of STNV RNA transcribed from pSTNV54 is obtained in the absence of eIF-4A, eIF-4F, eIF-4G, and ATP. A series of deletion clones from the 3' end of the STNV cDNA was prepared, and the requirements for binding to 40 S ribosomal subunits were determined. STNV RNAs containing more than 134 nucleotides from the 5' end require eIF-4A, eIF-4F, eIF-4G, and ATP for maximal binding to 40 S ribosomal subunits, whereas STNV RNAs containing 86 nucleotides or less no longer require ATP and these factors. These findings indicate that a region 3' to the initiation codon affects the requirements for eIF-4A, eIF-4F, eIF-4G, and ATP.  相似文献   

10.
To understand how phosphorylation of eukaryotic translation initiation factor (eIF)-2 alpha in Saccharomyces cerevisiae stimulates GCN4 mRNA translation while at the same time inhibiting general translation initiation, we examined the effects of altering the gene dosage of initiator tRNA(Met), eIF-2, and the guanine nucleotide exchange factor for eIF-2, eIF-2B. Overexpression of all three subunits of eIF-2 or all five subunits of eIF-2B suppressed the effects of eIF-2 alpha hyperphosphorylation on both GCN4-specific and general translation initiation. Consistent with eIF-2 functioning in translation as part of a ternary complex composed of eIF-2, GTP, and Met-tRNA(iMet), reduced gene dosage of initiator tRNA(Met) mimicked phosphorylation of eIF-2 alpha and stimulated GCN4 translation. In addition, overexpression of a combination of eIF-2 and tRNA(iMet) suppressed the growth-inhibitory effects of eIF-2 hyperphosphorylation more effectively than an increase in the level of either component of the ternary complex alone. These results provide in vivo evidence that phosphorylation of eIF-2 alpha reduces the activities of both eIF-2 and eIF-2B and that the eIF-2.GTP. Met-tRNA(iMet) ternary complex is the principal component limiting translation in cells when eIF-2 alpha is phosphorylated on serine 51. Analysis of eIF-2 alpha phosphorylation in the eIF-2-overexpressing strain also provides in vivo evidence that phosphorylated eIF-2 acts as a competitive inhibitor of eIF-2B rather than forming an excessively stable inactive complex. Finally, our results demonstrate that the concentration of eIF-2-GTP. Met-tRNA(iMet) ternary complexes is the cardinal parameter determining the site of reinitiation on GCN4 mRNA and support the idea that reinitiation at GCN4 is inversely related to the concentration of ternary complexes in the cell.  相似文献   

11.
The formation of 80 S initiation complexes containing labeled viral mRNA was drastically inhibited when mRNA binding assays were carried out with reticulocyte lysate preincubated with double-stranded RNA (dsRNA). When the assays were analyzed by centrifugation on sucrose gradients, the mRNA incubated with lysate pretreated with dsRNA sedimented as a 48 S complex. Met-tRNA, GDP, and phosphorylated initiation factor eIF-2(alpha P) were shown to co-sediment with the 48 S complex. Therefore, the formation of this complex was attributed to the phosphorylation of eIF-2 alpha by a dsRNA-activated protein kinase. These observations suggested that mRNA could bind to a 40 S ribosomal subunit containing Met-tRNAf, GDP, and eIF-2(alpha P), but the joining of a 60 S ribosomal subunit was inhibited. When the 48 S complex was isolated and incubated with lysate without added dsRNA, the mRNA could form 80 S initiation complexes. The shift of mRNA from 48 S to 80 S complexes was also observed when the eIF-2 alpha kinase activity was inhibited by the addition of 2-aminopurine. This shift was quite slow, however, when compared to the rate of binding of free mRNA to 80 S initiation complexes. The 2-aminopurine was effective in reversing the inhibition of protein synthesis by dsRNA and in maintaining a linear rate of protein synthesis for 3 h in lysates. Without added 2-aminopurine, protein synthesis was inhibited after 90 min even in lysates supplemented with hemin and eIF-2(alpha P) was detected in these lysates. This finding indicated that eIF-2 alpha phosphorylation could be in part responsible for limiting the duration of protein synthesis in mammalian cell-free systems.  相似文献   

12.
The activity of eukaryotic initiation factor eIF-2 as to the formation of the ternary complex, eIF-2 GTP Met-tRNA(f), is inhibited by N-ethylmaleimide. Our preparation of pig liver eIF-2 contained alpha and gamma subunits and was inhibited by more than 90% by N-ethylmaleimide. Using our eIF-2, we determined the sequences around the N-ethylmaleimide-reactive sulfhydryl groups, studied the effect of GDP on the sulfhydryl modification and that of NEM on the [3H]GDP binding, and examined the protective effect of GTP against the inhibition of ternary complex formation by N-ethylmaleimide. Both subunits of native eIF-2 contained [14C]N-ethylmaleimide-reactive sulfhydryl groups. One N-ethylmaleimide-reactive sulfhydryl group was in the alpha subunit and 4 were in the gamma subunit. The sequence of the peptide of the alpha subunit was determined to be: Ala-Gly-Leu-Asn-Cys-Ser-Thr-Glu-Thr-Met-Pro-Ile. Two of the four [14C]N-ethylmaleimide-reactive sulfhydryl groups in the gamma subunit were highly reactive, their sequences being: Ile-Val-Leu-Thr-Asn-Pro-Val-Cys-Thr-Glu-Val-Gly-Glu-Lys (gamma 1); Ser-Cys-Gly-Ser-Ser-Thr-Pro-Asp-Glu-Phe-Pro-Thr-Asp-Ile-Pro-Gly-Thr-Lys (gamma 3a). Peptide gamma 3a contained the consensus sequence element (AspXaaXaaGly) of GTP-binding proteins. With preincubation of eIF-2 with GDP, the incorporation of [14C]N-ethylmaleimide into the gamma subunit was reduced to 40% of the control level, but the 14C-incorporation into the alpha subunit did not change.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Affinity chromatography on beta,gamma-methylene guanosine 5'-triphosphate-Sepharose was used to purify protein synthesis initiation factor eIF-2 from chicken reticulocytes. Gel filtration of the purified factor gave a molecular weight of 150,000, whereas electrophoresis of the purified factor on polyacrylamide gel containing sodium dodecyl sulfate revealed three non-identical subunits with apparent molecular weight of 57,000, 41,000 and 33,000. With Met-tRNA and GTP, the factor formed a ternary complex which would bind the 40S ribosomal subunits. Treatment of the factor with N-ethylmaleimide resulted in a loss of activity. Two sulfhydryl groups per eIF-2 molecule were essential for activity.  相似文献   

14.
The assembly of initiation complexes is studied in a protein synthesis initiation assay containing ribosomal subunits, globin [125I]mRNA, [3H]Met-tRNAf, seven purified initiation factors, ATP and GTP. By omitting single components from the initiation assay, specific roles of the initiation factors, ATP and GTP are demonstrated. The initiation factor eIF-2 is required for the binding of Met-tRNAf to the 40 S ribosomal subunit. The initial Met-tRNAf binding to the small ribosomal subunit is a stringent prerequisite for the subsequent mRNA binding. The initiation factors eIF-3, eIF-4A, eIF-4B and eIF-4C together with ATP promote the binding of mRNA to the 40 S initiation complex. The association of the 40 S initiation complex with the 60 S ribosome subunit to form an 80 S initiation complex is mediated by the initiation factor eIF-5 and requires the hydrolysis of GTP. The factor eIF-1 gives a twofold overall stimulation of initiation complex formation. A model of the sequential steps in the assembly of the 80 S initiation complex in mammalian protein synthesis is presented.  相似文献   

15.
We have covalently modified rabbit reticulocyte polypeptide chain initiation factor 2 (eIF-2) and the guanine nucleotide exchange factor (GEF) with the 8-azido analogs of GTP (8-N3GTP) and ATP (8-N3ATP). Of the five subunits of GEF, the Mr 40,000 polypeptide binds 8-[gamma-32P]N3GTP, and the Mr 55,000 and 65,000 polypeptides bind 8-[gamma-32P]N3ATP. Both 8-N3GTP and 8-N3ATP specifically label the beta-subunit of eIF-2. Covalent binding of 8-azidopurine analogs to the eukaryotic initiation factors is dependent on UV irradiation. Binding of 8-N3GTP and 8-N3ATP is specific for the guanine- and adenine-binding sites on the protein, respectively. GDP and GTP, but not ATP, inhibit the photoinsertion of 8-N3GTP to the protein. Similarly, ATP, but not GTP, inhibits the photoinsertion of 8-N3ATP. The inclusion of NADP+ in the reaction mixtures also interferes with the binding of 8-N3ATP to GEF. Mg2+ inhibits the binding of the 8-azido analogs of GTP and ATP to both eIF-2 and GEF, whereas EDTA stimulates the photoinsertion of these nucleotides. Identical results are obtained when the binding of GTP and ATP to these proteins, in the presence of Mg2+ or EDTA, is estimated by nitrocellulose membranes. In enzymatic assays, 8-N3GTP supports the activity of eIF-2 and GEF, indicating that the interaction of 8-N3GTP is catalytically relevant.  相似文献   

16.
Bivalent metal ions, particularly Zn2+ and other members of the first-row transition series, promote irreversible inactivation of yeast hexokinase by Cibacron Blue F3G-A at a site competitive with both ATP and D-glucose. Difference spectroscopy indicates that the protein-dye dissociation constant is decreased from 250 micrometers in the absence of metal ions to less than 100 micrometers in the presence of appropriate concentrations of metal ions, with specificity displayed in the sequence of Zn2+ greater than Cu2+ greater than Ni2+ greater than Mn2+. Quantitative inactivation of yeast hexokinase leads to the incorporation of approx. 1 mol of Cibacron Blue F3G-A/mol of subunit of mol. wt. 51 000 in both the presence and the absence of metal ion. These results suggest the formation of a highly specific ternary complex involving enzyme, dye and metal ion at the active-site region of the enzyme, and correlate well with the known effects of metal ions in promoting the binding of hexokinase to immobilized Cibacron Blue F3G-A.  相似文献   

17.
The protein synthesis initiation factor eIF-3 (a multicomponent protein complex) was labelled with 32P by phosphorylation with a protein kinase present in a partially purified 'hemin-controlled repressor' preparation. The interaction of the labelled factor with the 40 S ribosomal subunit during the course of initiation was followed. It binds to the 40 S subunit in the absence of other initiation factors and inhibits the Mg2+-dependent reassociation of the 40 S with the 60 S ribosomal subunit. It stimulates the binding of the ternary complex (eIF-2, GTP, Met-tRNAf) to the 40 S subunit, and earlier work (Trachsel, H., Schreier, M.H., Erni, B. and Staehelin, T. (1977) J. Mol. Biol. 116, 745-767) also showed it to be essential for the subsequent binding of mRNA. The factor is released from the 40 S initiation complex during the 60 S subunit joining reaction.  相似文献   

18.
Monospecific polyclonal antibodies against seven proteins of the 40 S subunit of rat liver ribosomes were used to identify ribosomal proteins involved in interaction with initiation factor eIF-2 in the quaternary initiation complex [eIF-2 X GMPPCP X [3H]Met-tRNAf X 40 S ribosomal subunit]. Dimeric immune complexes of 40 S subunits mediated by antibodies against ribosomal proteins S3a, S13/16, S19 and S24 were found to be unable to bind the ternary initiation complex [eIF-2 X GMPPCP X [3H]Met-tRNAf]. In contrast, 40 S dimers mediated by antibodies against proteins S2, S3 and S17 were found to bind the ternary complex. Therefore, from the ribosomal proteins tested, only proteins S3a, S13/16, S19 and S24 are concluded to be involved in eIF-2 binding to the 40 S subunit.  相似文献   

19.
The proposal of E. Stellwagen [(1976) J. Mol Biol., 106, 903–911] that the structure of a protein can be predicted by sequence analysis provided that the protein specifically binds Cibacron blue F3GA, is not sound at least for muscle fructose bisphosphate aldolase. Contrary to the predictions we have shown that Cibacron blue does not interact directly with lysine 227 at the catalytic sites but with different sites which bind also ATP and fructose bisphosphate. We have shown also that aldolase binds 3.5 molecules of dye per subunit (dissociation constant 1.9 μm), too great a number to support the hypothesis that the binding of Cibacron blue is a specific indication of the presence of an NAD domain.  相似文献   

20.
1. Phosphofructokinase from baker's yeast is partitioned between the phases of an aqueous two-phase system, containing dextran (Mr = 500000) and poly(ethyleneglycol) (Mr = 6000), in favour of the dextran-rich phase. By covalent binding of the dye Cibacron blue F3G-A to poly(ethyleneglycol) the enzyme can be extracted to the phase rich in this polymer, i.e. affinity partitioning. 2. The affinity partitioning effect, measured as the logarithmic increase of the partition coefficient by introducing polymer-bound Cibacron blue, depends on several factors. The influence of dye-polymer concentration, polymer concentration, polymer molecular weight, kind of salt and salt concentration, pH and temperature has been studied. 3. The effect of ATP, ADP, AMP, ITP, fructose 1,6-bis-phosphate and fructose 6-phosphate show large differences in the binding strength of these substances to the Cibacron blue binding sites. AMP cannot compete with Cibacron blue while ATP is strongly competing. 4. The use of affinity partitioning for enzyme isolation and determination of ligand binding is discussed, as well as possible mechanisms concerning this type of liquid/liquid extraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号