首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary An analysis of phosphorus concentrations and standing stocks in the various components of a dense Potamogeton pectinatus L. community in a brackish lake showed that the amounts of P per unit area varied in the following order: Sediments > Above ground macrophytes > Detritus > Benthic Invertebrates > Below ground macrophyte tissue > Epiphytic algae > Water soluble P > Water borne particulate P. Seasonal changes in the variability of these stocks are described, and shown to be controlled by the annual growth and decomposition pattern of the Potamogeton. The sediments were suggested as the major source of P for the plant biomass. Studies using 32P tracer showed that of a given input of P to the water, 32% went to large epiphytic algae, 17% to the Potamogeton, 16% to the benthic fauna (mostly filter feeding bivalves), 28% to the sediments (almost all incorporated in the top 1 cm), and the remaining 7% was adsorbed on to, or absorbed by microorganisms associated with detritus. Analysis of 32P uptake curves indicated that of the P absorbed by the Potamogeton, a significant proportion went to the complex adnate periphyton on the leaf surface. We were unable to separate this fraction. Movement of P in the community was shown to be a closed cycle, and any release of P from decaying macrophytes would be rapidly reabsorbed by epiphytic algae. It is unlikely that phosphorus, once cycling in the macrophyte community, would become transferred to the circulation in the open lake.  相似文献   

2.
Inorganic nitrogen processing and assimilation in a forested wetland   总被引:1,自引:1,他引:0  
Feeding selectivity by five epilithic, case-building trichopteran species from a first-order stream was examined using laboratory experiments. Larvae had the choice of three food types: periphyton and detritus from the stream, and nettle broth as an artificial food source. Food type influenced the microdistribution of these species. Larvae were able to distinguish between different food types and showed species-specific responses to the various types of food. Drusus annulatus, Micrasema longulum and Apatania fimbriata favoured periphyton, while Agapetus fuscipes and Silo pallipes showed no preference for periphyton over detritus. Four of the five species examined (Apatania fimbriata was the exception) tended to avoid nettle broth. The complexity of foraging behaviour was illustrated by M. longulum. Given a choice between detritus, periphyton and periphyton with the addition of moss, they clearly preferred the latter food type, scraping mostly on the epiphytic algae. Proportions of a given species selecting periphyton were correlated with percentage areas of algae in the gut contents of that species in the field. D. annulatus, M. longulum and A. fimbriata showed the greatest preference for periphyton, and consumed the highest proportions of algae in the field. A. fuscipes and S. pallipes often selected detritus, and these species had the lowest proportions of algae, and the highest proportions of detritus, in their guts.  相似文献   

3.
  • 1 The resistance and resilience of littoral zone communities to sedimentation will depend both on the extent to which sediment deposition affects productivity, and on interactions within the communities. A series of hypotheses were set up and tested to examine interactions and feedback mechanisms among deposited sediments, periphyton, macrophytes and grazers in a large oligotrophic lake subject to fluctuating sediment loadings.
  • 2 Although sediments incorporated into periphyton reduced light availability to macrophytes, periphytic algae were generally the dominant light absorbing component under natural conditions. When grazers were absent, both sediments incorporated in the periphyton and periphytic algal densities increased, and both were then important in reducing light available to macrophytes.
  • 3 Grazing rate and assimilation efficiency for the dominant grazer, the prosobranch gastropod Potamopyrgus antipodarum, increased with increasing sediment content under natural lake conditions to reach a maximum at 10 mg sediment cm?2.
  • 4 An increase in sediment incorporation into periphyton films resulted in an increased grazing rate and hence grooming of sediments from macrophytes.
  • 5 Grazing invertebrates can play a major role in maintenance of littoral communities by continuously grooming macrophyte hosts of periphytic algae and settled sediments.
  相似文献   

4.
Carbon flow in the littoral food web of an oligotrophic lake   总被引:6,自引:3,他引:3  
James  Mark R.  Hawes  Ian  Weatherhead  Mark  Stanger  Carmen  Gibbs  Max 《Hydrobiologia》2000,441(1):93-106
Benthic food web dynamics and carbon flow were examined in the littoral zone of Lake Coleridge, a large deep oligotrophic lake, using radioactive and stable isotope techniques in conjunction with analyses of stomach contents of the fauna. We specifically address two hypotheses: (1) that macrophytes only contribute to the carbon flow to higher trophic levels when they have decayed; and (2) that epiphytic algae is the major source of carbon for macroinvertebrates, and thus fish, with only minor contributions from phytoplankton or terrestrial sources. Epiphytic diatoms were a major component of the stomach contents of the gastropod snail Potamopyrgus antipodarum, and of chironomids. Animal remains were also common in the diet of some chironomids, while amorphous organic matter predominated in the stomachs of oligochaetes. A variety of epiphytic algal taxa was found in trichopteran larvae. Feeding rate of P. antipodarum measured with radioactive tracers increased by 10× on decayed macrophytes (Elodea) compared with live material, while feeding rates on characean algae increased by a factor of 3 when decayed material was presented. However, assimilation rates were less than 20% on decayed material compared with 48–52% on live material. Potential carbon sources were easily distinguished based on their 13C values, although isotopic ratios showed significant variation among sites. Epiphytic algae showed less variation among sites than macrophytes and were depleted by 4–5 compared with macrophytes. Detrital material, organic matter in the sediments and plankton were significantly depleted in 13C relative to macrophytes and slightly depleted relative to epiphytic algae. Most macroinvertebrate taxa showed a similar pattern among sites to macrophytes and epiphytic algae. P. antipodarum and chironomids were slightly enriched compared with epiphytic algae. Ratios for the common bully (Gobiomorphus cotidianus) were generally consistent with a diet dominated by chironomids, while there was some evidence for terrestrial inputs for koaro (Galaxias brevipinnis) and juvenile brown trout. Epiphytic algae appear to underpin much of the production in the littoral zone of this oligotrophic lake, with trichopteran and chironomid larvae mediating carbon flows from algae to fish. Macrophytes do not make a major contribution directly to carbon flow to higher trophic levels even when decayed. The lack of a direct link between macrophytes and higher trophic levels is due to the faunal composition, including a lack of large herbivores.  相似文献   

5.
Epiphyton and epipelon were quantitatively collected, respectively, from the submerged macrophytes and the sandy lake bottom of Lake Vechten (The Netherlands). On a weight basis, epiphyton was maximal in autumn and epipelon in summer. In winter the chemical composition of epiphyton and epipelon was similar. In summer the epiphyton had on a unit weight basis more organic matter and carbonate, and had per unit organic matter a higher algal number, nitrogen and energy content than the epipelon. Algae predominating the epiphyton were filamentous greens and pennate diatoms; those in the epipelon were pennate diatoms and blue-green algae. In both cases, species known to frequent the phytoplankton were abundant. The diatoms were quantified using paper chromatographic pigment analyses. Both the epiphyton and the epipelon exhibited maximal photosynthesis in mid summer. That light was generally the limiting factor was evident from periphyton developed on artificial substrates. This periphyton differed widely in its composition from that on the natural substrates, mainly because the latter collected much more sedimenting matter.In dense Ceratophyllum stands light was severely attenuated and the significant gradients in oxygen and pH were caused by the differences with depth in the proportions of photosynthesis and respiration. The oxygen content and pH at the bottom decreased owing to epipelic respiration. The epiphytic composition depended greatly on the degree of light attenuation. The epiphytic and epipelic respiration, except during part of the early summer, exceeded photosynthesis on a 24 h basis; this included the macrophytic photosynthesis during the time the vegetation was maximally developed. During the growing season import of organic matter, i.e. deposited seston, greatly exceeded that due to the photosynthetic production. After the summer maximum, the epipelon decreased faster than predicted from its oxygen exchange. It was concluded that sedimentation and resuspension determined mainly the changes in epiphyton and epipelon. Especially when covered with vegetation, the lower littoral of Lake Vechten plays a large part in the aerobic decomposition of sestonic organic matter.  相似文献   

6.
Aquatic Ecology - In epiphytic associations, cyanobacteria form the periphyton with phytoplanktonic algae and with aquatic macrophytes. In this study, we found homocytous and heterocytous...  相似文献   

7.
Summary We began this experiment to test specific hypotheses regarding direct and indirect effects of fish predation on the littoral macroinvertebrate community of Bays Mountain Lake, Tennessee. We used 24 m2 enclosures in which we manipulated the presence and absence of large redear sunfish (Lepomis microlophus>150 mm SL), and small sunfish (L. macrochirus and L. microlophus <50 mm SL) over a 16-mo period. Here we report on effects of fish predation on gastropod grazers that appear to cascade to periphyton and macrophytes.Both large redear sunfish and small sunfish maintained low snail biomass, but snails in fish-free controls increased significantly during the first 2-mo of the experiment. By late summer of the first year of the experiment, the difference in biomass between enclosures with and without fish had increased dramatically (>10×). Midway through the second summer of the experiment, we noted apparent differences in the abundance of periphyton between enclosures containing fish and those that did not. We also noted differences in the macrophyte distribution among enclosures. To document these responses, we estimated periphyton cover, biovolume and cell size frequencies as well as macrophyte distributions among enclosures at the end of the experiment. When fish were absent, periphyton percent cover was significantly reduced compared to when fish were present. Periphyton cell-size distributions in enclosures without fish were skewed toward small cells (only 12% were greater than 200 m3), which is consistent with intense snail grazing. The macrophyte Najas flexilis had more than 60 x higher biomass in the fish-free enclosures than in enclosures containing fish; Potamogeton diversifolius was found only in fish-free enclosures. These results suggest a chain of strong interactions (i.e. from fish to snails to periphyton to macrophytes) that may be important in lake littoral systems. This contrasts sharply with earlier predictions based on cascading trophic interactions that propose that fish predation on snails would enhance macrophyte biomass.  相似文献   

8.
The seasonal succession of epiphytic communities on Equisetum fluviatile was controlled both directly and indirectly by the macrophyte. Decaying macrophytic material supported rich algal growth and biomass accumulation in spring and early summer. Emergence of the macrophytes severely reduced underwater light availability, and the epiphytic algal biomass declined rapidly as a result of both lower photosynthetic activity of the epiphytic algae, and more intensive grazing by invertebrate herbivores. Epiphytic N: P ratios were lower than those in the water around suggesting that either the water was not the only source of phosphorus for the epiphytic algae or the algae took phosphorus up selectively from the water. Low epiphytic C: N ratios suggested a high potential nutritional value for herbivores.  相似文献   

9.
The relationships between producers (e.g., macrophytes, phytoplankton and epiphytic algae) and snails play an important role in maintaining the function and stability of shallow ecosystems. Complex relationships exist among macrophytes, epiphytic algae, phytoplankton, and snails. We studied the effects of snail communities (consisting of Radix swinhoei, Hippeutis cantori, Bellamya aeruginosa, and Parafossarulus striatulus) on the biomass of phytoplankton and epiphytic algae as well as on the growth of three species of submerged macrophytes (Hydrilla verticillata, Vallisneria natans, and one exotic submerged plant, Elodea nuttallii) in a 90‐day outdoor mesocosm experiment conducted on the shore of subtropical Lake Liangzihu, China. A structural equation model showed that the snail communities affected the submerged macrophytes by grazing phytoplankton and epiphytic algae (reduction in phytoplankton Chl‐a and epiphytic algal abundance), enhancing the biomass of submerged macrophytes. Highly branched macrophytes with high surfaces and morphologies and many microhabitats supported the most snails and epiphytic algae (the biomass of the snail communities and epiphytic algae on Hverticillata was greater than that on Vnatans), and snails preferred to feed on native plants. Competition drove the snails to change their grazing preferences to achieve coexistence.  相似文献   

10.
The importance of detritus varies greatly among shore zones of lakes, but in a large majority of these regions detrital pathways prevail. Aside from a great spatial and seasonal variability, macrophytes and bottom sediments appear to be dominant stores of nutrients in these habitats. Macrophytes hold a central position in nutrient cycling in the shore-littoral lake zones. They are the main source of autochthonous detritus as they prevail in the total biomass of littoral organisms, and they are only rarely available as direct food of consumers. Various processes and interactions determine the role of macrophytes in nutrients dynamics. These are: the intensity of nutrient uptake and translocation, release of nutrients by healthy plants and from decomposing plants, exchange of elements between macrophytes and their periphyton, as well as interception of seston by macrophyte stands. Particular plant species differ in their time of dying and susceptibility to decomposition. The changes in decomposing material (size structure of particles and nutrient content) mean that detritus in various stages of decomposition differs in its role in trophic dynamics of shore-littoral lake zones. Several types of shore regions as regards detritus sources and retention level are discussed.  相似文献   

11.
Summary The composition of algal periphyton was examined on eleven species of submerged macrophytes collected at a depth of 0.25 m in Sewell Lake, southwestern Manitoba, a shallow nitrogen and phosphorus rich lake. There were substantial differences in the periphyton on all macrophyte species. Diatom subcommunities were the most similar, while the green algal subcommunities were the most dissimilar on different plant hosts.Potamogeton zosteriformis differed the most from all other macrophytes with respect to the composition of its periphyton. These results and a comparison of the literature suggest that the composition and structure of periphyton communities on living substrates is a product of the interaction of many variables, determined by the characteristics of the host plant, the external environment and the algae themselves. Studies of periphyton at a given site must take into account the various substrates available.  相似文献   

12.
The role of omnivorous crayfish in littoral communities   总被引:5,自引:0,他引:5  
Dorn NJ  Wojdak JM 《Oecologia》2004,140(1):150-159
Large omnivorous predators may play particularly important roles determining the structure of communities because of their broad diets and simultaneous effects on multiple trophic levels. From June 2001 to June 2002 we quantified community structure and ecosystem attributes of six newly establishing freshwater ponds (660 m2 each) after populations of omnivorous crayfish (Orconectes virilis) were introduced to three of the ponds. Crayfish preyed heavily on fish eggs in this experiment, which reduced recruitment of young-of-year fish. This effect indirectly enhanced zooplankton biomass in crayfish ponds. Phytoplankton abundance exhibited a more complex pattern and was probably influenced by non-trophic (e.g., bioturbation) effects of crayfish. Peak dissolved oxygen levels were lower in the crayfish ponds indicating that they had lower primary production: respiration ratios. Metaphytic algae were strongly affected by crayfish presence; filamentous greens quickly disappeared and the blue-green Gleotrichia (a less preferred food item) eventually dominated the composition in crayfish ponds. Chara vulgaris and vascular macrophytes established 34% cover in control ponds by June 2002, but were not able to establish in crayfish ponds. Two important periphyton herbivores (tadpoles and gastropods) were absent or significantly reduced in the crayfish ponds, but periphyton differences were temporally variable and not easily explained by a simple trophic cascade (i.e., crayfish—snails and tadpoles—periphyton). Our results indicate that crayfish can have dramatic direct and indirect impacts on littoral pond communities via feeding links with multiple trophic levels (i.e., fish, invertebrates, and plants) and non-trophic activities (bioturbation). Although the effects of omnivorous crayfish on littoral communities can be large, their complex effects do not fit neatly into current theories about trophic interactions or freshwater community structure.  相似文献   

13.
沉水植物茎叶微界面特性研究进展   总被引:1,自引:0,他引:1  
董彬  韩睿明  王国祥 《生态学报》2017,37(6):1769-1776
沉水植物茎叶-水界面是浅水湖泊的重要界面之一,对湖泊生物地球化学循环和水环境质量具有重要影响。富营养化水体中,大量的附着物常富集在沉水植物茎叶表面,形成了特殊的生物-水微界面。对该微界面特性进行深入研究,有助于揭示沉水植物在微环境层面对富营养化水体中物质循环的调控过程和机制。沉水植物茎叶微界面具有促进水体养分转化、改变环境因子及可溶性物质的空间分布,增加物质运输的阻力和距离、降低植物光合作用、调控重金属等生态功能;微界面结构及环境因子受水体营养盐浓度、沉水植物种类及生长阶段等因素的影响。对微界面结构功能的主要研究方法进行了分析总结,并对沉水植物茎叶微界面的研究前沿进行了展望。  相似文献   

14.
  • 1 Large amounts of terrestrial detritus enter many low‐order forested streams, and this organic material is often the major basal resource in the metazoan food webs of such systems. However, despite their apparently low biomass, algae are the dominant food of organisms in a number of aquatic communities which conventionally would have been presumed to be dependent on allochthonous detritus, particularly those in the tropics and also in lowland intermittent streams in arid Australia.
  • 2 The dual stable isotope signatures (δ13C and δ15N) of potential primary food sources were compared with the isotopic signatures of common aquatic animals in lowland intermittent streams in south‐eastern Australia, in both spring and summer, to determine whether allochthonous detritus was an important nutritional resource in these systems. The isotopic signatures of the major potential allochthonous plant food sources (Eucalyptus, Phalaris and Juncus) overlapped, but were distinct from algae and the dominant macrophytes growing in the study reaches. The isotopic signatures of biofilm were more spatially and temporally variable than those of the other basal resources.
  • 3 Despite allochthonous detritus having relatively high C : N ratios compared to other potential basal resources, results from isosource mixing model calculations demonstrated that this detritus, and the associated biofilm, were the major energy sources assimilated by macroinvertebrate primary consumers in both spring and summer. The importance of these energy sources was also reflected in animals higher in the food web, including predatory macroinvertebrates and fish. These resources were supplemented by autochthonous sources of higher nutritional value (i.e. filamentous algae and macrophytes, which had relatively low C : N ratios) when they became more prolific as the streams dried to disconnected pools in summer.
  • 4 The results highlight the importance of allochthonous detritus (particularly from Eucalyptus) as a dependable energy source for benthic macroinvertebrates and fish in lowland intermittent streams of south‐eastern Australia. This contrasts with previous stable isotope studies conducted in lowland intermittent streams in arid Australia, which have reported that the fauna are primarily dependent on autochthonous algae.
  相似文献   

15.
Periphyton biomass, nutrient dynamics in the biomass, and species composition were studied in two Florida Everglades sloughs from August 1991 to August 1992. Periphyton biomass on macrophytes was strongly season-dependent. Maximum biomasses, 1180, 161, and 59 g dry mass.m?2 on Eleocharis vivipara, E. cellulosa, and Nymphaea odorata, respectively, occurred in summer and early autumn; winter and spring periphyton biomass was very low (practically not measurable). Periphyton was dominated by blue-green algae (cyanobacteria) during the summer and autumn; diatoms dominated during the winter and spring. Green algae occurred mostly during the summer and autumn, but their growth was sparse and did not contribute significantly to periphyton biomass. Nitrogen-to-phosphorus ratios in the periphyton were very high (59–121:1), suggesting phosphorus limitation of periphyton growth. The periphyton contained large concentrations of calcium (up to 22.3% on dry mass basis) especially in late summer and autumn.  相似文献   

16.
An account is given of a laboratory investigation designed to evaluate the extent to which the freshwater pulmonate snail Biomphalaria glabrata (Say) can utilize various species of aquatic plants, mainly macrophytes, when presented in the following forms over different time scales: normal plants; dried plant material; homogenized plant material in calcium alginate matrices; water-soluble filtrates of plant homogenates in the medium. The following propositions, derived from the theory of phased coevolution of components of the module consisting of the epiphytic bacteria, algae, snails and macrophytes, are evaluated on the basis of the present results and others including those obtained in this laboratory. That as the snails had become specialized to exploit surface communities of epiphytic algae, decaying plant material and dissolved organic matter (DOM) early in their evolutionary history they would continue to exploit these resources when they later become associated with aquatic macrophytes. That pulmonate snails would tend to be feeding generalists capable of adapting to food of varying chemical composition, given sufficient time, provided it was sufficiently small or flaccid. That although macrophytes and snails show a strong positive relationship, the living macrophyte tissue would be little used by the snails. That the hard outer envelope, inherited from their terrestrial ancestors, would remain as the major defence mechanism of aquatic macrophytes against attack by snails and other aquatic invertebrates. That aquatic macrophytes would invest little in the nutrient deficiency strategy to reduce attack by invertebrates such as snails. That truly aquatic submerged macrophytes would not possess secondary plant compounds (SPC) that would be molluscicidal. Emergent parts of subaquatic or aquatic plants might be expected to be better sources of SPC with molluscicidal factors than submerged aquatic plants. Species of epiphytic or planktonic algae might be better sources of SPC with molluscicidal effects than aquatic macrophytes. That the strategies developed by pulmonate snails for obtaining their energy supplies would not be conducive to rapid speciation. The analysis of the present and other related results supports these propositions. Predictions based on the theory of mutualism involving the snails, macrophytes and other components of the module also receive some support from an analysis of the present results. The additional empirical work that could be undertaken to test this theory is briefly discussed.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
We analyzed experimentally the relative contribution of phytoplankton and periphyton in two shallow lakes from the Pampa Plain (Argentina) that represent opposite scenarios according to the alternative states hypothesis for shallow lakes: a clear lake with submerged macrophytes, and a turbid lake with high phytoplankton biomass. To study the temporal changes of both microalgal communities under such contrasting conditions, we placed enclosures in the littoral zone of each lake, including natural phytoplankton and artificial substrata, half previously colonized by periphyton until a mature stage and half clean to analyze periphyton colonization. In the clear vegetated shallow lake, periphyton chlorophyll a concentrations were 3–6 times higher than those of the phytoplankton community. In contrast, phytoplankton chlorophyll a concentrations were 76–1,325 times higher than those of periphyton in the turbid lake. Here, under light limitation conditions, the colonization of the periphyton was significantly lower than in the clear lake. Our results indicate that in turbid shallow lakes, the light limitation caused by phytoplankton determines a low periphyton biomass dominated by heterotrophic components. In clear vegetated shallow lakes, where nitrogen limitation probably occurs, periphyton may develop higher biomass, most likely due to their higher efficiency in nutrient recycling.  相似文献   

18.
Crustose corallines, crustose and erect brown algae, and sessile animals are major components of the epiphytic community of the Mediterranean seagrass Posidonia oceanica (L.) Delile. Production, biomass, and specific composition of this epiphyte–seagrass association are impacted by anthropogenic increase of nutrient load in this oligotrophic area. In this context, nitrogen uptake by P. oceanica and its epiflora was measured using the isotope 15N at a 10 m depth in the Revellata Bay (Corsica, Mediterranean Sea). Epiflora components showed various seasonal patterns of biomass and abundance. The epiphytic brown algae appeared at the end of spring, later than the crustose corallines, and after the nitrate peak in the bay. Because of their later development in the season, epiphytic brown algae mostly rely on ammonium for their N needs. We hypothesize that the temporal succession of epiphytic organisms plays a crucial role in the N dynamics of this community under natural conditions. The epiphytic brown algae, which have a growth rate one order of magnitude greater than that of crustose corallines, showed lower N‐uptake rates. The greater N‐uptake rates of crustose corallines probably reflect the greater N requirements (i.e., lower C/N ratios) of red algae. We determined that the epiflora incorporated ammonium and nitrate more rapidly than their host. Nevertheless, when biomass was taken into account, P. oceanica was the most important contributor to N uptake from the water column by benthic macrophytes in this seagrass bed.  相似文献   

19.
The stable isotope ratio and seasonal changes in diet of two indigenous (Oreochromis mossambicus, Tilapia rendalli) and one exotic (Oreochromis niloticus) tilapiine cichlids in the subtropical Limpopo River, South Africa were investigated to determine patterns of resource partitioning. Stomach contents of O. niloticus and O. mossambicus indicated high dietary overlap across size class, habitat and season, with both species primarily feeding on vegetative detritus. However, stable isotope analysis revealed that the two Oreochromis species had different stable isotope ratios derived from different food sources. The relatively δ13C-depleted O. niloticus indicates a phytoplankton-based diet, while the δ13C-enriched O. mossambicus indicates a macrophagous diet dominated by vegetative detritus and periphyton. The high similarity in stomach contents and the interspecific differences in isotopic composition reveal fine-scale patterns of food resource partitioning that could be achieved through selective feeding. Tilapia rendalli was largely macrophagous and fed mainly on aquatic macrophytes and had a low dietary overlap with both O. niloticus and O. mossambicus. In the Limpopo River, detritus and algae are probably the most abundant food resources and the causal factors responsible for the observed patterns of resource partitioning among the tilapiines are usually difficult to ascertain. Fish may be able to perceive food resources in terms of the dynamics that determine their availability. Detailed studies of variation in food resource availability and fish habitat use within the system are needed to evaluate this hypothesis.  相似文献   

20.
The distribution of submerged macrophytes in eutrophic lakes has been found to be skewed towards sites with intermediate exposure to waves. Low submerged macrophyte biomass at exposed sites has been explained by, for instance, physical damage from waves. The aim of this study was to investigate if lower biomass at sheltered sites compared to sites with intermediate exposure to waves can be caused by competition from epiphyton.Investigations were performed in eutrophic lakes in southern Sweden. Samples of submerged macrophytes and epiphytic algae on the macrophytes were taken along a wave exposure gradient. The amount of epiphyton (AFDW) per macrophyte biomass decreased with increased exposure. Biomass of submerged macrophytes, on the other hand, increased with increased exposure until a relatively abrupt disappearance of submerged vegetation occurred at high exposures. Production of epiphytic algae was monitored on artificial substrates from June to September at a sheltered and an exposed site in three lakes. It was higher at sheltered sites compared with exposed sites.We suggest that epiphytic algae may be an important factor in limiting the distribution of submerged macrophytes at sheltered sites in eutrophic lakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号