首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The malarial parasite Plasmodium falciparum (Pf) lacks the de novo pathway and relies on the salvage enzyme, hypoxanthine–guanine–xanthine phosphoribosyltransferase (HGXPRT), for the synthesis of the 6-oxopurine nucleoside monophosphates. Specific acyclic nucleoside phosphonates (ANPs) inhibit PfHGXPRT and possess anti-plasmodial activity. Two series of novel branched ANPs derived from 9-[2-(2-phosphonoethoxy)ethyl]purines were synthesized to investigate their inhibition of PfHGXPRT and human HGPRT. The best inhibitor of PfHGXPRT has a Ki of 1 μM. The data showed that both the position and nature of the hydrophobic substituent change the potency and selectivity of the ANPs.  相似文献   

2.
6-Oxopurine acyclic nucleoside phosphonates (ANPs) have been shown to be potent inhibitors of hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRT), a key enzyme of the purine salvage pathway in human malarial parasites. These compounds also exhibit antimalarial activity against parasites grown in culture. Here, a new series of ANPs, hypoxanthine and guanine 9-[2-hydroxy-3-(phosphonomethoxy)propyl] derivatives with different chemical substitutions in the 2'-position of the aliphatic chain were prepared and tested as inhibitors of Plasmodium falciparum (Pf) HGXPRT, Plasmodium vivax (Pv) HGPRT and human HGPRT. The attachment of an hydroxyl group to this position and the movement of the oxygen by one atom distal from N(9) in the purine ring compared with 2-(phosphonoethoxy)ethyl hypoxanthine (PEEHx) and 2-(phosphonoethoxy)ethyl guanine (PEEG) changes the affinity and selectivity for human HGPRT, PfHGXPRT and PvHGPRT. This is attributed to the differences in the three-dimensional structure of these inhibitors which affects their mode of binding. A novel observation is that these molecules are not always strictly competitive with 5-phospho-α-d-ribosyl-1-pyrophosphate. 9-[2-Hydroxy-3-(phosphonomethoxy)propyl]hypoxanthine (iso-HPMP-Hx) is a very weak inhibitor of human HGPRT but remains a good inhibitor of both the parasite enzymes with K(i) values of 2μM and 5μM for PfHGXPRT and PvHGPRT, respectively. The addition of pyrophosphate to the assay decreased the K(i) values for the parasite enzymes by sixfold. This suggests that the covalent attachment of a second group to the ANPs mimicking pyrophosphate and occupying its binding pocket could increase the affinity for these enzymes.  相似文献   

3.
Identifying potent enzyme inhibitors through a robust HTS assay is currently thought to be the most efficient way of searching for lead molecules. We have developed a HTS assay that mimics a crucial step in an essential metabolic pathway, the purine salvage pathway of the malarial parasite Plasmodium falciparum. In this assay we have used purified recombinant enzymes: hypoxanthine guanine phosphoribosyl transferase (HGPRT) and inosine monophosphate dehydrogenase (IMPDH) from the malarial parasite and the human host, respectively. These two enzymes, which work in tandem, are used to set up a coupled assay that is robust enough to meet the stringent criteria of an HTS assay. In the first phase of our screen we seem to have identified novel inhibitors that kill the parasite by inhibiting the salvage pathway of the parasite.  相似文献   

4.
All parasitic protozoa lack the ability to synthesize purine nucleotides de novo, relying instead on purine salvage enzymes for their survival. Hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRT) from the protozoan parasite Tritrichomonas foetus is a rational target for antiparasitic drug design because it is the primary enzyme the parasite uses to salvage purine bases from the host. The study presented here is a continuation of our efforts to use the X-ray structure of the T. foetus HGXPRT-GMP complex to design compounds that bind tightly to the purine pocket of HGXPRT. The goal of the current project was to improve the affinity and selectivity of previously identified HGXPRT inhibitor TF1 [4-(3-nitroanilino)phthalic anhydride]. A virtual library of substituted 4-phthalimidocarboxanilides was constructed using methods of structure-based drug design, and was implemented synthetically on solid support. Compound 20 [(4'-phthalimido)carboxamido-3-benzyloxybenzene] was then used as a secondary lead for the second round of combinatorial chemistry, producing a number of low-micromolar inhibitors of HGXPRT. One of these compounds, TF2 [(4'-phthalimido)carboxamido-3-(4-bromobenzyloxy)benzene], was further characterized as a competitive inhibitor of T. foetus HGXPRT with respect to guanine with a K(I) of 0.49 microM and a 30-fold selectivity over the human HGPRT. TF2 inhibited the growth of cultured T. foetus cells in a concentration-dependent manner with an ED(50) of 2.8 microM, and this inhibitory effect could be reversed by addition of exogenous hypoxanthine. These studies underscore the efficiency of combining structure-based drug design with combinatorial chemistry to produce effective species-specific enzyme inhibitors of medicinal importance.  相似文献   

5.
Plasmodium falciparum is the causative agent of the most serious and fatal malarial infections, and it has developed resistance to commonly employed chemotherapeutics. The de novo pyrimidine biosynthesis enzymes offer potential as targets for drug design, because, unlike the host, the parasite does not have pyrimidine salvage pathways. Dihydroorotate dehydrogenase (DHODH) is a flavin-dependent mitochondrial enzyme that catalyzes the fourth reaction in this essential pathway. Coenzyme Q (CoQ) is utilized as the oxidant. Potent and species-selective inhibitors of malarial DHODH were identified by high-throughput screening of a chemical library, which contained 220,000 drug-like molecules. These novel inhibitors represent a diverse range of chemical scaffolds, including a series of halogenated phenyl benzamide/naphthamides and urea-based compounds containing napthyl or quinolinyl substituents. Inhibitors in these classes with IC(50) values below 600 nm were purified by high pressure liquid chromatography, characterized by mass spectroscopy, and subjected to kinetic analysis against the parasite and human enzymes. The most active compound is a competitive inhibitor of CoQ with an IC(50) against malarial DHODH of 16 nm, and it is 12,500-fold less active against the human enzyme. Site-directed mutagenesis of residues in the CoQ-binding site significantly reduced inhibitor potency. The structural basis for the species selective enzyme inhibition is explained by the variable amino acid sequence in this binding site, making DHODH a particularly strong candidate for the development of new anti-malarial compounds.  相似文献   

6.
The purine salvage enzyme, hypoxanthine-guanine-(xanthine) phosphoribosyltransferase [HG(X)PRT], catalyses the synthesis of the purine nucleoside monophosphates, IMP, GMP or XMP essential for DNA/RNA production. In protozoan parasites, such as Plasmodium, this is the only route available for their synthesis as they lack the de novo pathway which is present in human cells. Acyclic nucleoside phosphonates (ANPs), analogs of the purine nucleoside monophosphates, have been found to inhibit Plasmodium falciparum (Pf) HGXPRT and Plasmodium vivax (Pv) HGPRT with K(i) values as low as 100 nM. They arrest parasitemia in cell based assays with IC(50) values of the order of 1-10 μM. ANPs with phosphonoalkyl and phosphonoalkoxyalkyl moieties linking the purine base and phosphonate group were designed and synthesised to evaluate the influence of this linker on the potency and/or selectivity of the ANPs for the human and malarial enzymes. This data shows that variability in the linker, as well as the positioning of the oxygen in this linker, influences binding. The human enzyme binds the ANPs with K(i) values of 0.5 μM when the number of atoms in the linker was 5 or 6 atoms. However, the parasite enzymes have little affinity for such long chains unless oxygen is included in the three-position. In comparison, all three enzymes have little affinity for ANPs where the number of atoms linking the base and the phosphonate group is of the order of 2-3 atoms. The chemical nature of the purine base also effects the K(i) values. This data shows that both the linker and the purine base play an important role in the binding of the ANPs to these three enzymes.  相似文献   

7.
The malarial parasite imports an infected host's red blood cell enzymes for heme biosynthesis during the intraerythrocytic stage. This is despite all the genes of the heme-biosynthetic pathway having been identified on the parasite genome. On the basis of predictions of parasite genome-coded enzyme localization, functionality of some of these enzymes and shuttling of intermediates between different parasite compartments, a hybrid model for parasite heme biosynthesis has been proposed. However, this model does not take into account the possible role of imported host enzymes in parasite heme biosynthesis. We propose an alternative model with an extrinsic heme-biosynthetic pathway in the parasite cytosol that uses imported host enzymes, and an intrinsic pathway confined to the organellar fractions that uses the parasite-genome-encoded enzymes.  相似文献   

8.
Subbayya IN  Balaram H 《FEBS letters》2002,521(1-3):72-76
Hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRT) from Plasmodium falciparum catalyzes the phosphoribosylation of hypoxanthine, guanine and xanthine. The functionally active form of HGXPRT is a tetramer but interface residues do not contribute to catalysis. Here we report the characterization of an interface mutant Y96C, which has a decreased k(cat), an increase in the K(m) for phosphoribosyl pyrophosphate (PRPP) and no change in K(m) for the purine bases when compared to the wild type enzyme. The mutant enzyme does not tetramerize in the presence of PRPP, unlike the wild type in which the tetramer is stabilized by PRPP. This is the first report of a HGXPRT mutation, at a unique interface where non-adjacent subunits interact, that impairs catalysis.  相似文献   

9.
The mitochondrial electron transport system is necessary for growth and survival of malarial parasites in mammalian host cells. NADH dehydrogenase of respiratory complex I was demonstrated in isolated mitochondrial organelles of the human parasite Plasmodium falciparum and the mouse parasite Plasmodium berghei by using the specific inhibitor rotenone on oxygen consumption and enzyme activity. It was partially purified by two sequential steps of fast protein liquid chromatographic techniques from n-octyl glucoside solubilization of the isolated mitochondria of both parasites. In addition, physical and kinetic properties of the malarial enzymes were compared to the host mouse liver mitochondrial respiratory complex I either as intact or as partially purified forms. The malarial enzyme required both NADH and ubiquinone for maximal catalysis. Furthermore, rotenone and plumbagin (ubiquinone analog) showed strong inhibitory effect against the purified malarial enzymes and had antimalarial activity against in vitro growth of P. falciparum. Some unique properties suggest that the enzyme could be exploited as chemotherapeutic target for drug development, and it may have physiological significance in the mitochondrial metabolism of the parasite.  相似文献   

10.
The malarial parasite Plasmodium falciparum exhibits several morphological and developmental stages. We have quantified the level of expression of a battery of genes in the ring and trophozoite stage-two of the most prominent stages in the erythrocytic development of the parasite. Using optimized RT-PCR, we observed that some of the genes show a large variation in stage-specific expression. We have also correlated the level of mRNA expression (of the target enzyme) to its metabolic requirement using specific inhibitors. This protocol gives us a handle to identify vulnerable target genes that could be used to develop antimalarials.  相似文献   

11.
A unique hybrid pathway has been proposed for de novo heme biosynthesis in Plasmodium falciparum involving three different compartments of the parasite, namely mitochondrion, apicoplast and cytosol. While parasite mitochondrion and apicoplast have been shown to harbor key enzymes of the pathway, there has been no experimental evidence for the involvement of parasite cytosol in heme biosynthesis. In this study, a recombinant P. falciparum coproporphyrinogen III oxidase (rPfCPO) was produced in E. coli and confirmed to be active under aerobic conditions. rPfCPO behaved as a monomer of 61 kDa molecular mass in gel filtration analysis. Immunofluorescence studies using antibodies to rPfCPO suggested that the enzyme was present in the parasite cytosol. These results were confirmed by detection of enzyme activity only in the parasite soluble fraction. Western blot analysis with anti-rPfCPO antibodies also revealed a 58 kDa protein only in this fraction and not in the membrane fraction. The cytosolic presence of PfCPO provides evidence for a hybrid heme-biosynthetic pathway in the malarial parasite.  相似文献   

12.
Infection of human erythrocytes by the malarial parasite, Plasmodium falciparum, results in complex membrane sorting and signaling events in the mature erythrocyte. These events appear to rely heavily on proteins resident in erythrocyte lipid rafts. Over the past five years, we and others have undertaken a comprehensive characterization of major proteins present in erythrocyte detergent-resistant membrane lipid rafts and determined which of these proteins traffic to the host-derived membrane that bounds the intraerythrocytic parasite. The data suggest that raft association is necessary but not sufficient for vacuolar recruitment, and that there is likely a mechanism of active uptake of a subset of erythrocyte detergent-resistant membrane proteins. Of the ten internalized proteins, few have been evaluated for a role in malarial entry. The beta(2)-adrenergic receptor and heterotrimeric G protein G(s) signaling pathway proteins regulate invasion. The implications of these differences are discussed. In addition, the latter finding indicates that erythrocytes possess important signaling pathways. These signaling cascades may have important influences on in vivo malarial infection, as well as on erythrocyte membrane flexibility and adhesiveness in sickle cell anemia. With respect to malarial infection, host signaling components alone are not sufficient to induce formation of the malarial vacuole. Parasite proteins are likely to have a major role in making the intraerythrocytic environment conducive for vacuole formation. Such interactions should be the focus of future efforts to understand malarial infection of erythrocytes since host- and parasite-targeted interventions are urgently needed to combat this terrible disease.  相似文献   

13.
Purines and pyrimidines in malarial parasites   总被引:2,自引:0,他引:2  
A M Gero  W J O'Sullivan 《Blood cells》1990,16(2-3):467-84; discussion 485-98
In order for the plasmodium malarial parasite to replicate in the human erythrocyte it requires metabolic pathways which are not operative in the host erythrocyte. Thus, the malarial parasite not only synthesizes enzymes for purine salvage and interconversion, for the pyrimidine biosynthetic pathway de novo, and for the folate cycle, but it also alters the host erythrocyte membrane in respect to the transport of purines. Several of the plasmodium enzymes from these pathways have been cloned and these appear to be highly homologous to the corresponding human enzymes. However, enzymes which have been purified from Plasmodium, have demonstrated physicochemical and kinetic differences and may be potential targets for chemotherapy. Inhibition of individual enzymes, such as the dihydroorotate dehydrogenase (DHO-DHase), and inhibition of the inserted pathway from IMP to AMP and IMP to GMP hold considerable promise as chemotherapeutic targets. An entirely new approach in inhibiting malarial growth involves the altered nucleoside transporter in the infected cell membrane through which cytotoxic compounds may be selectively targeted into only the infected cell.  相似文献   

14.
Hypoxanthine‐guanine‐xanthine phosphoribosyltransference (HGXPRT), a key enzyme in the purine salvage pathway of the malarial parasite, Plasmodium falciparum (Pf), catalyses the conversion of hypoxanthine, guanine, and xanthine to their corresponding mononucleotides; IMP, GMP, and XMP, respectively. Out of the five active site loops (I, II, III, III', and IV) in PfHGXPRT, loop III' facilitates the closure of the hood over the core domain which is the penultimate step during enzymatic catalysis. PfHGXPRT mutants were constructed wherein Trp 181 in loop III' was substituted with Ser, Thr, Tyr, and Phe. The mutants (W181S, W181Y and W181F), when examined for xanthine phosphoribosylation activity, showed an increase in Km for PRPP by 2.1‐3.4 fold under unactivated condition and a decrease in catalytic efficiency by more than 5‐fold under activated condition as compared to that of the wild‐type enzyme. The W181T mutant showed 10‐fold reduced xanthine phosphoribosylation activity. Furthermore, molecular dynamics simulations of WT and in silico W181S/Y/F/T PfHGXPRT mutants bound to IMP.PPi.Mg2+ have been carried out to address the effect of the mutation of W181 on the overall dynamics of the systems and identify local changes in loop III'. Dynamic cross‐correlation analyses show a communication between loop III' and the substrate binding site. Differential cross‐correlation maps indicate altered communication among different regions in the mutants. Changes in the local contacts and hydrogen bonding between residue 181 with the nearby residues cause altered substrate affinity and catalytic efficiency of the mutant enzymes. Proteins 2016; 84:1658–1669. © 2016 Wiley Periodicals, Inc.  相似文献   

15.
Although the molecular mechanism by which chloroquine exerts its effects on the malarial parasite Plasmodium falciparum remains unclear, the drug has previously been found to interact specifically with the glycolytic enzyme lactate dehydrogenase from the parasite. In this study we have determined the crystal structure of the complex between chloroquine and P. falciparum lactate dehydrogenase. The bound chloroquine is clearly seen within the NADH binding pocket of the enzyme, occupying a position similar to that of the adenyl ring of the cofactor. Chloroquine hence competes with NADH for binding to the enzyme, acting as a competitive inhibitor for this critical glycolytic enzyme. Specific interactions between the drug and amino acids unique to the malarial form of the enzyme suggest this binding is selective. Inhibition studies confirm that chloroquine acts as a weak inhibitor of lactate dehydrogenase, with mild selectivity for the parasite enzyme. As chloroquine has been shown to accumulate to millimolar concentrations within the food vacuole in the gut of the parasite, even low levels of inhibition may contribute to the biological efficacy of the drug. The structure of this enzyme-inhibitor complex provides a template from which the quinoline moiety might be modified to develop more efficient inhibitors of the enzyme.  相似文献   

16.
Heme metabolism of Plasmodium is a major antimalarial target   总被引:1,自引:0,他引:1  
The malarial parasite manifests unique features of heme metabolism. In the intraerythrocyte stage it utilizes the host hemoglobin to generate amino acids for its own protein synthesis, but polymerizes the acquired heme as a mechanism for detoxification. At the same time the parasite synthesizes heme de novo for metabolic use. The heme biosynthetic pathway of the parasite is similar to that of hepatocytes and erythrocytes. However, while the parasite makes its own delta-aminolevulinate (ALA) synthase that is immunochemically different from that of the host, it imports ALA dehydrase and perhaps the subsequent enzymes of the pathway from the host red cell. Many schizonticidal drugs such as chloroquine and artemisinin act by interfering with the heme metabolism of the parasite and there is scope to design new molecules based on the unique features of this metabolic machinery in the parasite.  相似文献   

17.
The methylerythritol phosphate pathway to isoprenoids, an alternate biosynthetic route present in many bacteria, algae, plants, and the malarial parasite Plasmodium falciparum, has become an attractive target for the development of new antimalarial and antibacterial compounds. The second enzyme in this pathway, 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR; EC 1.1.1.267), has been shown to be the molecular target for fosmidomycin, a promising antimalarial drug. This enzyme converts 1-deoxy-D-xylulose 5-phosphate (DXP) into the branched compound 2-C-methyl-D-erythritol 4-phosphate (MEP). The transformation of DXP into MEP requires an isomerization, followed by a NADPH-dependent reduction. The discovery of DXR, its subsequent characterization, and the identification of inhibitors will be presented.  相似文献   

18.
Ornithine decarboxylase, the rate-limiting enzyme in the polyamine biosynthetic pathway has been purified 7,600 fold from Plasmodium falciparum by affinity chromatography on a pyridoxamine phosphate column. The partially purified enzyme was specifically tagged with radioactive DL-alpha-difluoromethylornithine and subjected to polyacrylamide gel electrophoresis under denaturing conditions. A major protein band of 49 kilodalton was obtained while with the purified mouse enzyme, a typical 53 kilodalton band, was observed. The catalytic activity of parasite enzyme was dependent on pyridoxal 5'-phosphate and was optimal at pH 8.0. The apparent Michaelis constant for L-ornithine was 52 microM. DL-alpha-difluoromethylornithine efficiently and irreversibly inhibited ornithine decarboxylase activity from P. falciparum grown in vitro or Plasmodium berghei grown in vivo. The Ki of the human malarial enzyme for this inhibitor was 16 microM. Ornithine decarboxylase activity in P. falciparum cultures was rapidly lost upon exposure to the direct product, putrescine. Despite the profound inhibition of protein synthesis with cycloheximide in vitro, parasite enzyme activity was only slightly reduced by 75 min of treatment, suggesting a relatively long half-life for the malarial enzyme. Ornithine decarboxylase activity from P. falciparum and P. berghei was not eliminated by antiserum prepared against purified mouse enzyme. Furthermore, RNA or DNA extracted from P. falciparum failed to hybridize to a mouse ornithine decarboxylase cDNA probe. These results suggest that ODC from P. falciparum bears some structural differences as compared to the mammalian enzyme.  相似文献   

19.
The hybrid pathway for heme biosynthesis in the malarial parasite proposes the involvement of parasite genome-coded enzymes of the pathway localized in different compartments such as apicoplast, mitochondria, and cytosol. However, knowledge on the functionality and localization of many of these enzymes is not available. In this study, we demonstrate that porphobilinogen deaminase encoded by the Plasmodium falciparum genome (PfPBGD) has several unique biochemical properties. Studies carried out with PfPBGD partially purified from parasite membrane fraction, as well as recombinant PfPBGD lacking N-terminal 64 amino acids expressed and purified from Escherichia coli cells (DeltaPfPBGD), indicate that both the proteins are catalytically active. Surprisingly, PfPBGD catalyzes the conversion of porphobilinogen to uroporphyrinogen III (UROGEN III), indicating that it also possesses uroporphyrinogen III synthase (UROS) activity, catalyzing the next step. This obviates the necessity to have a separate gene for UROS that has not been so far annotated in the parasite genome. Interestingly, DeltaPfP-BGD gives rise to UROGEN III even after heat treatment, although UROS from other sources is known to be heat-sensitive. Based on the analysis of active site residues, a DeltaPfPBGDL116K mutant enzyme was created and the specific activity of this recombinant mutant enzyme is 5-fold higher than DeltaPfPBGD. More interestingly, DeltaPfPBGDL116K catalyzes the formation of uroporphyrinogen I (UROGEN I) in addition to UROGEN III, indicating that with increased PBGD activity the UROS activity of PBGD may perhaps become rate-limiting, thus leading to non-enzymatic cyclization of preuroporphyrinogen to UROGEN I. PfPBGD is localized to the apicoplast and is catalytically very inefficient compared with the host red cell enzyme.  相似文献   

20.
The pathogenic protozoa responsible for malaria lack enzymes for the de novo synthesis of purines and rely on purine salvage from the host. In Plasmodium falciparum (Pf), hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRT) converts hypoxanthine to inosine monophosphate and is essential for purine salvage making the enzyme an anti-malarial drug target. We have synthesized a number of simple acyclic aza-C-nucleosides and shown that some are potent inhibitors of Pf HGXPRT while showing excellent selectivity for the Pf versus the human enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号